New upstream version 17.11.4
[deb_dpdk.git] / lib / librte_hash / rte_cuckoo_hash.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <string.h>
35 #include <stdint.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <stdarg.h>
39 #include <sys/queue.h>
40
41 #include <rte_common.h>
42 #include <rte_memory.h>         /* for definition of RTE_CACHE_LINE_SIZE */
43 #include <rte_log.h>
44 #include <rte_memcpy.h>
45 #include <rte_prefetch.h>
46 #include <rte_branch_prediction.h>
47 #include <rte_malloc.h>
48 #include <rte_eal.h>
49 #include <rte_eal_memconfig.h>
50 #include <rte_per_lcore.h>
51 #include <rte_errno.h>
52 #include <rte_string_fns.h>
53 #include <rte_cpuflags.h>
54 #include <rte_rwlock.h>
55 #include <rte_spinlock.h>
56 #include <rte_ring.h>
57 #include <rte_compat.h>
58 #include <rte_pause.h>
59
60 #include "rte_hash.h"
61 #include "rte_cuckoo_hash.h"
62
63 #if defined(RTE_ARCH_X86)
64 #include "rte_cuckoo_hash_x86.h"
65 #endif
66
67 TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
68
69 static struct rte_tailq_elem rte_hash_tailq = {
70         .name = "RTE_HASH",
71 };
72 EAL_REGISTER_TAILQ(rte_hash_tailq)
73
74 struct rte_hash *
75 rte_hash_find_existing(const char *name)
76 {
77         struct rte_hash *h = NULL;
78         struct rte_tailq_entry *te;
79         struct rte_hash_list *hash_list;
80
81         hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
82
83         rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
84         TAILQ_FOREACH(te, hash_list, next) {
85                 h = (struct rte_hash *) te->data;
86                 if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
87                         break;
88         }
89         rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
90
91         if (te == NULL) {
92                 rte_errno = ENOENT;
93                 return NULL;
94         }
95         return h;
96 }
97
98 void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
99 {
100         h->cmp_jump_table_idx = KEY_CUSTOM;
101         h->rte_hash_custom_cmp_eq = func;
102 }
103
104 static inline int
105 rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
106 {
107         if (h->cmp_jump_table_idx == KEY_CUSTOM)
108                 return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
109         else
110                 return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
111 }
112
113 struct rte_hash *
114 rte_hash_create(const struct rte_hash_parameters *params)
115 {
116         struct rte_hash *h = NULL;
117         struct rte_tailq_entry *te = NULL;
118         struct rte_hash_list *hash_list;
119         struct rte_ring *r = NULL;
120         char hash_name[RTE_HASH_NAMESIZE];
121         void *k = NULL;
122         void *buckets = NULL;
123         char ring_name[RTE_RING_NAMESIZE];
124         unsigned num_key_slots;
125         unsigned hw_trans_mem_support = 0;
126         unsigned i;
127
128         hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
129
130         if (params == NULL) {
131                 RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
132                 return NULL;
133         }
134
135         /* Check for valid parameters */
136         if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
137                         (params->entries < RTE_HASH_BUCKET_ENTRIES) ||
138                         !rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) ||
139                         (params->key_len == 0)) {
140                 rte_errno = EINVAL;
141                 RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
142                 return NULL;
143         }
144
145         /* Check extra flags field to check extra options. */
146         if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
147                 hw_trans_mem_support = 1;
148
149         /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
150         if (hw_trans_mem_support)
151                 /*
152                  * Increase number of slots by total number of indices
153                  * that can be stored in the lcore caches
154                  * except for the first cache
155                  */
156                 num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
157                                         (LCORE_CACHE_SIZE - 1) + 1;
158         else
159                 num_key_slots = params->entries + 1;
160
161         snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
162         /* Create ring (Dummy slot index is not enqueued) */
163         r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots),
164                         params->socket_id, 0);
165         if (r == NULL) {
166                 RTE_LOG(ERR, HASH, "memory allocation failed\n");
167                 goto err;
168         }
169
170         snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
171
172         rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
173
174         /* guarantee there's no existing: this is normally already checked
175          * by ring creation above */
176         TAILQ_FOREACH(te, hash_list, next) {
177                 h = (struct rte_hash *) te->data;
178                 if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
179                         break;
180         }
181         h = NULL;
182         if (te != NULL) {
183                 rte_errno = EEXIST;
184                 te = NULL;
185                 goto err_unlock;
186         }
187
188         te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
189         if (te == NULL) {
190                 RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
191                 goto err_unlock;
192         }
193
194         h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
195                                         RTE_CACHE_LINE_SIZE, params->socket_id);
196
197         if (h == NULL) {
198                 RTE_LOG(ERR, HASH, "memory allocation failed\n");
199                 goto err_unlock;
200         }
201
202         const uint32_t num_buckets = rte_align32pow2(params->entries)
203                                         / RTE_HASH_BUCKET_ENTRIES;
204
205         buckets = rte_zmalloc_socket(NULL,
206                                 num_buckets * sizeof(struct rte_hash_bucket),
207                                 RTE_CACHE_LINE_SIZE, params->socket_id);
208
209         if (buckets == NULL) {
210                 RTE_LOG(ERR, HASH, "memory allocation failed\n");
211                 goto err_unlock;
212         }
213
214         const uint32_t key_entry_size = sizeof(struct rte_hash_key) + params->key_len;
215         const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
216
217         k = rte_zmalloc_socket(NULL, key_tbl_size,
218                         RTE_CACHE_LINE_SIZE, params->socket_id);
219
220         if (k == NULL) {
221                 RTE_LOG(ERR, HASH, "memory allocation failed\n");
222                 goto err_unlock;
223         }
224
225 /*
226  * If x86 architecture is used, select appropriate compare function,
227  * which may use x86 intrinsics, otherwise use memcmp
228  */
229 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
230         /* Select function to compare keys */
231         switch (params->key_len) {
232         case 16:
233                 h->cmp_jump_table_idx = KEY_16_BYTES;
234                 break;
235         case 32:
236                 h->cmp_jump_table_idx = KEY_32_BYTES;
237                 break;
238         case 48:
239                 h->cmp_jump_table_idx = KEY_48_BYTES;
240                 break;
241         case 64:
242                 h->cmp_jump_table_idx = KEY_64_BYTES;
243                 break;
244         case 80:
245                 h->cmp_jump_table_idx = KEY_80_BYTES;
246                 break;
247         case 96:
248                 h->cmp_jump_table_idx = KEY_96_BYTES;
249                 break;
250         case 112:
251                 h->cmp_jump_table_idx = KEY_112_BYTES;
252                 break;
253         case 128:
254                 h->cmp_jump_table_idx = KEY_128_BYTES;
255                 break;
256         default:
257                 /* If key is not multiple of 16, use generic memcmp */
258                 h->cmp_jump_table_idx = KEY_OTHER_BYTES;
259         }
260 #else
261         h->cmp_jump_table_idx = KEY_OTHER_BYTES;
262 #endif
263
264         if (hw_trans_mem_support) {
265                 h->local_free_slots = rte_zmalloc_socket(NULL,
266                                 sizeof(struct lcore_cache) * RTE_MAX_LCORE,
267                                 RTE_CACHE_LINE_SIZE, params->socket_id);
268         }
269
270         /* Setup hash context */
271         snprintf(h->name, sizeof(h->name), "%s", params->name);
272         h->entries = params->entries;
273         h->key_len = params->key_len;
274         h->key_entry_size = key_entry_size;
275         h->hash_func_init_val = params->hash_func_init_val;
276
277         h->num_buckets = num_buckets;
278         h->bucket_bitmask = h->num_buckets - 1;
279         h->buckets = buckets;
280         h->hash_func = (params->hash_func == NULL) ?
281                 DEFAULT_HASH_FUNC : params->hash_func;
282         h->key_store = k;
283         h->free_slots = r;
284         h->hw_trans_mem_support = hw_trans_mem_support;
285
286 #if defined(RTE_ARCH_X86)
287         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
288                 h->sig_cmp_fn = RTE_HASH_COMPARE_AVX2;
289         else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2))
290                 h->sig_cmp_fn = RTE_HASH_COMPARE_SSE;
291         else
292 #endif
293                 h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR;
294
295         /* Turn on multi-writer only with explicit flat from user and TM
296          * support.
297          */
298         if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
299                 if (h->hw_trans_mem_support) {
300                         h->add_key = ADD_KEY_MULTIWRITER_TM;
301                 } else {
302                         h->add_key = ADD_KEY_MULTIWRITER;
303                         h->multiwriter_lock = rte_malloc(NULL,
304                                                         sizeof(rte_spinlock_t),
305                                                         RTE_CACHE_LINE_SIZE);
306                         if (h->multiwriter_lock == NULL)
307                                 goto err_unlock;
308
309                         rte_spinlock_init(h->multiwriter_lock);
310                 }
311         } else
312                 h->add_key = ADD_KEY_SINGLEWRITER;
313
314         /* Populate free slots ring. Entry zero is reserved for key misses. */
315         for (i = 1; i < num_key_slots; i++)
316                 rte_ring_sp_enqueue(r, (void *)((uintptr_t) i));
317
318         te->data = (void *) h;
319         TAILQ_INSERT_TAIL(hash_list, te, next);
320         rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
321
322         return h;
323 err_unlock:
324         rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
325 err:
326         rte_ring_free(r);
327         rte_free(te);
328         rte_free(h);
329         rte_free(buckets);
330         rte_free(k);
331         return NULL;
332 }
333
334 void
335 rte_hash_free(struct rte_hash *h)
336 {
337         struct rte_tailq_entry *te;
338         struct rte_hash_list *hash_list;
339
340         if (h == NULL)
341                 return;
342
343         hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
344
345         rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
346
347         /* find out tailq entry */
348         TAILQ_FOREACH(te, hash_list, next) {
349                 if (te->data == (void *) h)
350                         break;
351         }
352
353         if (te == NULL) {
354                 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
355                 return;
356         }
357
358         TAILQ_REMOVE(hash_list, te, next);
359
360         rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
361
362         if (h->hw_trans_mem_support)
363                 rte_free(h->local_free_slots);
364
365         if (h->add_key == ADD_KEY_MULTIWRITER)
366                 rte_free(h->multiwriter_lock);
367         rte_ring_free(h->free_slots);
368         rte_free(h->key_store);
369         rte_free(h->buckets);
370         rte_free(h);
371         rte_free(te);
372 }
373
374 hash_sig_t
375 rte_hash_hash(const struct rte_hash *h, const void *key)
376 {
377         /* calc hash result by key */
378         return h->hash_func(key, h->key_len, h->hash_func_init_val);
379 }
380
381 /* Calc the secondary hash value from the primary hash value of a given key */
382 static inline hash_sig_t
383 rte_hash_secondary_hash(const hash_sig_t primary_hash)
384 {
385         static const unsigned all_bits_shift = 12;
386         static const unsigned alt_bits_xor = 0x5bd1e995;
387
388         uint32_t tag = primary_hash >> all_bits_shift;
389
390         return primary_hash ^ ((tag + 1) * alt_bits_xor);
391 }
392
393 void
394 rte_hash_reset(struct rte_hash *h)
395 {
396         void *ptr;
397         uint32_t tot_ring_cnt, i;
398
399         if (h == NULL)
400                 return;
401
402         memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
403         memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
404
405         /* clear the free ring */
406         while (rte_ring_dequeue(h->free_slots, &ptr) == 0)
407                 rte_pause();
408
409         /* Repopulate the free slots ring. Entry zero is reserved for key misses */
410         if (h->hw_trans_mem_support)
411                 tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
412                                         (LCORE_CACHE_SIZE - 1);
413         else
414                 tot_ring_cnt = h->entries;
415
416         for (i = 1; i < tot_ring_cnt + 1; i++)
417                 rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));
418
419         if (h->hw_trans_mem_support) {
420                 /* Reset local caches per lcore */
421                 for (i = 0; i < RTE_MAX_LCORE; i++)
422                         h->local_free_slots[i].len = 0;
423         }
424 }
425
426 /* Search for an entry that can be pushed to its alternative location */
427 static inline int
428 make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt,
429                 unsigned int *nr_pushes)
430 {
431         unsigned i, j;
432         int ret;
433         uint32_t next_bucket_idx;
434         struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];
435
436         /*
437          * Push existing item (search for bucket with space in
438          * alternative locations) to its alternative location
439          */
440         for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
441                 /* Search for space in alternative locations */
442                 next_bucket_idx = bkt->sig_alt[i] & h->bucket_bitmask;
443                 next_bkt[i] = &h->buckets[next_bucket_idx];
444                 for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
445                         if (next_bkt[i]->key_idx[j] == EMPTY_SLOT)
446                                 break;
447                 }
448
449                 if (j != RTE_HASH_BUCKET_ENTRIES)
450                         break;
451         }
452
453         /* Alternative location has spare room (end of recursive function) */
454         if (i != RTE_HASH_BUCKET_ENTRIES) {
455                 next_bkt[i]->sig_alt[j] = bkt->sig_current[i];
456                 next_bkt[i]->sig_current[j] = bkt->sig_alt[i];
457                 next_bkt[i]->key_idx[j] = bkt->key_idx[i];
458                 return i;
459         }
460
461         /* Pick entry that has not been pushed yet */
462         for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
463                 if (bkt->flag[i] == 0)
464                         break;
465
466         /* All entries have been pushed, so entry cannot be added */
467         if (i == RTE_HASH_BUCKET_ENTRIES || ++(*nr_pushes) > RTE_HASH_MAX_PUSHES)
468                 return -ENOSPC;
469
470         /* Set flag to indicate that this entry is going to be pushed */
471         bkt->flag[i] = 1;
472
473         /* Need room in alternative bucket to insert the pushed entry */
474         ret = make_space_bucket(h, next_bkt[i], nr_pushes);
475         /*
476          * After recursive function.
477          * Clear flags and insert the pushed entry
478          * in its alternative location if successful,
479          * or return error
480          */
481         bkt->flag[i] = 0;
482         if (ret >= 0) {
483                 next_bkt[i]->sig_alt[ret] = bkt->sig_current[i];
484                 next_bkt[i]->sig_current[ret] = bkt->sig_alt[i];
485                 next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
486                 return i;
487         } else
488                 return ret;
489
490 }
491
492 /*
493  * Function called to enqueue back an index in the cache/ring,
494  * as slot has not being used and it can be used in the
495  * next addition attempt.
496  */
497 static inline void
498 enqueue_slot_back(const struct rte_hash *h,
499                 struct lcore_cache *cached_free_slots,
500                 void *slot_id)
501 {
502         if (h->hw_trans_mem_support) {
503                 cached_free_slots->objs[cached_free_slots->len] = slot_id;
504                 cached_free_slots->len++;
505         } else
506                 rte_ring_sp_enqueue(h->free_slots, slot_id);
507 }
508
509 static inline int32_t
510 __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
511                                                 hash_sig_t sig, void *data)
512 {
513         hash_sig_t alt_hash;
514         uint32_t prim_bucket_idx, sec_bucket_idx;
515         unsigned i;
516         struct rte_hash_bucket *prim_bkt, *sec_bkt;
517         struct rte_hash_key *new_k, *k, *keys = h->key_store;
518         void *slot_id = NULL;
519         uint32_t new_idx;
520         int ret;
521         unsigned n_slots;
522         unsigned lcore_id;
523         struct lcore_cache *cached_free_slots = NULL;
524         unsigned int nr_pushes = 0;
525
526         if (h->add_key == ADD_KEY_MULTIWRITER)
527                 rte_spinlock_lock(h->multiwriter_lock);
528
529         prim_bucket_idx = sig & h->bucket_bitmask;
530         prim_bkt = &h->buckets[prim_bucket_idx];
531         rte_prefetch0(prim_bkt);
532
533         alt_hash = rte_hash_secondary_hash(sig);
534         sec_bucket_idx = alt_hash & h->bucket_bitmask;
535         sec_bkt = &h->buckets[sec_bucket_idx];
536         rte_prefetch0(sec_bkt);
537
538         /* Get a new slot for storing the new key */
539         if (h->hw_trans_mem_support) {
540                 lcore_id = rte_lcore_id();
541                 cached_free_slots = &h->local_free_slots[lcore_id];
542                 /* Try to get a free slot from the local cache */
543                 if (cached_free_slots->len == 0) {
544                         /* Need to get another burst of free slots from global ring */
545                         n_slots = rte_ring_mc_dequeue_burst(h->free_slots,
546                                         cached_free_slots->objs,
547                                         LCORE_CACHE_SIZE, NULL);
548                         if (n_slots == 0) {
549                                 ret = -ENOSPC;
550                                 goto failure;
551                         }
552
553                         cached_free_slots->len += n_slots;
554                 }
555
556                 /* Get a free slot from the local cache */
557                 cached_free_slots->len--;
558                 slot_id = cached_free_slots->objs[cached_free_slots->len];
559         } else {
560                 if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0) {
561                         ret = -ENOSPC;
562                         goto failure;
563                 }
564         }
565
566         new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
567         rte_prefetch0(new_k);
568         new_idx = (uint32_t)((uintptr_t) slot_id);
569
570         /* Check if key is already inserted in primary location */
571         for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
572                 if (prim_bkt->sig_current[i] == sig &&
573                                 prim_bkt->sig_alt[i] == alt_hash) {
574                         k = (struct rte_hash_key *) ((char *)keys +
575                                         prim_bkt->key_idx[i] * h->key_entry_size);
576                         if (rte_hash_cmp_eq(key, k->key, h) == 0) {
577                                 /* Enqueue index of free slot back in the ring. */
578                                 enqueue_slot_back(h, cached_free_slots, slot_id);
579                                 /* Update data */
580                                 k->pdata = data;
581                                 /*
582                                  * Return index where key is stored,
583                                  * subtracting the first dummy index
584                                  */
585                                 ret = prim_bkt->key_idx[i] - 1;
586                                 goto failure;
587                         }
588                 }
589         }
590
591         /* Check if key is already inserted in secondary location */
592         for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
593                 if (sec_bkt->sig_alt[i] == sig &&
594                                 sec_bkt->sig_current[i] == alt_hash) {
595                         k = (struct rte_hash_key *) ((char *)keys +
596                                         sec_bkt->key_idx[i] * h->key_entry_size);
597                         if (rte_hash_cmp_eq(key, k->key, h) == 0) {
598                                 /* Enqueue index of free slot back in the ring. */
599                                 enqueue_slot_back(h, cached_free_slots, slot_id);
600                                 /* Update data */
601                                 k->pdata = data;
602                                 /*
603                                  * Return index where key is stored,
604                                  * subtracting the first dummy index
605                                  */
606                                 ret = sec_bkt->key_idx[i] - 1;
607                                 goto failure;
608                         }
609                 }
610         }
611
612         /* Copy key */
613         rte_memcpy(new_k->key, key, h->key_len);
614         new_k->pdata = data;
615
616 #if defined(RTE_ARCH_X86) /* currently only x86 support HTM */
617         if (h->add_key == ADD_KEY_MULTIWRITER_TM) {
618                 ret = rte_hash_cuckoo_insert_mw_tm(prim_bkt,
619                                 sig, alt_hash, new_idx);
620                 if (ret >= 0)
621                         return new_idx - 1;
622
623                 /* Primary bucket full, need to make space for new entry */
624                 ret = rte_hash_cuckoo_make_space_mw_tm(h, prim_bkt, sig,
625                                                         alt_hash, new_idx);
626
627                 if (ret >= 0)
628                         return new_idx - 1;
629
630                 /* Also search secondary bucket to get better occupancy */
631                 ret = rte_hash_cuckoo_make_space_mw_tm(h, sec_bkt, sig,
632                                                         alt_hash, new_idx);
633
634                 if (ret >= 0)
635                         return new_idx - 1;
636         } else {
637 #endif
638                 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
639                         /* Check if slot is available */
640                         if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
641                                 prim_bkt->sig_current[i] = sig;
642                                 prim_bkt->sig_alt[i] = alt_hash;
643                                 prim_bkt->key_idx[i] = new_idx;
644                                 break;
645                         }
646                 }
647
648                 if (i != RTE_HASH_BUCKET_ENTRIES) {
649                         if (h->add_key == ADD_KEY_MULTIWRITER)
650                                 rte_spinlock_unlock(h->multiwriter_lock);
651                         return new_idx - 1;
652                 }
653
654                 /* Primary bucket full, need to make space for new entry
655                  * After recursive function.
656                  * Insert the new entry in the position of the pushed entry
657                  * if successful or return error and
658                  * store the new slot back in the ring
659                  */
660                 ret = make_space_bucket(h, prim_bkt, &nr_pushes);
661                 if (ret >= 0) {
662                         prim_bkt->sig_current[ret] = sig;
663                         prim_bkt->sig_alt[ret] = alt_hash;
664                         prim_bkt->key_idx[ret] = new_idx;
665                         if (h->add_key == ADD_KEY_MULTIWRITER)
666                                 rte_spinlock_unlock(h->multiwriter_lock);
667                         return new_idx - 1;
668                 }
669 #if defined(RTE_ARCH_X86)
670         }
671 #endif
672         /* Error in addition, store new slot back in the ring and return error */
673         enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx));
674
675 failure:
676         if (h->add_key == ADD_KEY_MULTIWRITER)
677                 rte_spinlock_unlock(h->multiwriter_lock);
678         return ret;
679 }
680
681 int32_t
682 rte_hash_add_key_with_hash(const struct rte_hash *h,
683                         const void *key, hash_sig_t sig)
684 {
685         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
686         return __rte_hash_add_key_with_hash(h, key, sig, 0);
687 }
688
689 int32_t
690 rte_hash_add_key(const struct rte_hash *h, const void *key)
691 {
692         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
693         return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
694 }
695
696 int
697 rte_hash_add_key_with_hash_data(const struct rte_hash *h,
698                         const void *key, hash_sig_t sig, void *data)
699 {
700         int ret;
701
702         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
703         ret = __rte_hash_add_key_with_hash(h, key, sig, data);
704         if (ret >= 0)
705                 return 0;
706         else
707                 return ret;
708 }
709
710 int
711 rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
712 {
713         int ret;
714
715         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
716
717         ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
718         if (ret >= 0)
719                 return 0;
720         else
721                 return ret;
722 }
723 static inline int32_t
724 __rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
725                                         hash_sig_t sig, void **data)
726 {
727         uint32_t bucket_idx;
728         hash_sig_t alt_hash;
729         unsigned i;
730         struct rte_hash_bucket *bkt;
731         struct rte_hash_key *k, *keys = h->key_store;
732
733         bucket_idx = sig & h->bucket_bitmask;
734         bkt = &h->buckets[bucket_idx];
735
736         /* Check if key is in primary location */
737         for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
738                 if (bkt->sig_current[i] == sig &&
739                                 bkt->key_idx[i] != EMPTY_SLOT) {
740                         k = (struct rte_hash_key *) ((char *)keys +
741                                         bkt->key_idx[i] * h->key_entry_size);
742                         if (rte_hash_cmp_eq(key, k->key, h) == 0) {
743                                 if (data != NULL)
744                                         *data = k->pdata;
745                                 /*
746                                  * Return index where key is stored,
747                                  * subtracting the first dummy index
748                                  */
749                                 return bkt->key_idx[i] - 1;
750                         }
751                 }
752         }
753
754         /* Calculate secondary hash */
755         alt_hash = rte_hash_secondary_hash(sig);
756         bucket_idx = alt_hash & h->bucket_bitmask;
757         bkt = &h->buckets[bucket_idx];
758
759         /* Check if key is in secondary location */
760         for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
761                 if (bkt->sig_current[i] == alt_hash &&
762                                 bkt->sig_alt[i] == sig) {
763                         k = (struct rte_hash_key *) ((char *)keys +
764                                         bkt->key_idx[i] * h->key_entry_size);
765                         if (rte_hash_cmp_eq(key, k->key, h) == 0) {
766                                 if (data != NULL)
767                                         *data = k->pdata;
768                                 /*
769                                  * Return index where key is stored,
770                                  * subtracting the first dummy index
771                                  */
772                                 return bkt->key_idx[i] - 1;
773                         }
774                 }
775         }
776
777         return -ENOENT;
778 }
779
780 int32_t
781 rte_hash_lookup_with_hash(const struct rte_hash *h,
782                         const void *key, hash_sig_t sig)
783 {
784         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
785         return __rte_hash_lookup_with_hash(h, key, sig, NULL);
786 }
787
788 int32_t
789 rte_hash_lookup(const struct rte_hash *h, const void *key)
790 {
791         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
792         return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
793 }
794
795 int
796 rte_hash_lookup_with_hash_data(const struct rte_hash *h,
797                         const void *key, hash_sig_t sig, void **data)
798 {
799         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
800         return __rte_hash_lookup_with_hash(h, key, sig, data);
801 }
802
803 int
804 rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
805 {
806         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
807         return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
808 }
809
810 static inline void
811 remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
812 {
813         unsigned lcore_id, n_slots;
814         struct lcore_cache *cached_free_slots;
815
816         bkt->sig_current[i] = NULL_SIGNATURE;
817         bkt->sig_alt[i] = NULL_SIGNATURE;
818         if (h->hw_trans_mem_support) {
819                 lcore_id = rte_lcore_id();
820                 cached_free_slots = &h->local_free_slots[lcore_id];
821                 /* Cache full, need to free it. */
822                 if (cached_free_slots->len == LCORE_CACHE_SIZE) {
823                         /* Need to enqueue the free slots in global ring. */
824                         n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
825                                                 cached_free_slots->objs,
826                                                 LCORE_CACHE_SIZE, NULL);
827                         cached_free_slots->len -= n_slots;
828                 }
829                 /* Put index of new free slot in cache. */
830                 cached_free_slots->objs[cached_free_slots->len] =
831                                 (void *)((uintptr_t)bkt->key_idx[i]);
832                 cached_free_slots->len++;
833         } else {
834                 rte_ring_sp_enqueue(h->free_slots,
835                                 (void *)((uintptr_t)bkt->key_idx[i]));
836         }
837 }
838
839 static inline int32_t
840 __rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
841                                                 hash_sig_t sig)
842 {
843         uint32_t bucket_idx;
844         hash_sig_t alt_hash;
845         unsigned i;
846         struct rte_hash_bucket *bkt;
847         struct rte_hash_key *k, *keys = h->key_store;
848         int32_t ret;
849
850         bucket_idx = sig & h->bucket_bitmask;
851         bkt = &h->buckets[bucket_idx];
852
853         /* Check if key is in primary location */
854         for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
855                 if (bkt->sig_current[i] == sig &&
856                                 bkt->key_idx[i] != EMPTY_SLOT) {
857                         k = (struct rte_hash_key *) ((char *)keys +
858                                         bkt->key_idx[i] * h->key_entry_size);
859                         if (rte_hash_cmp_eq(key, k->key, h) == 0) {
860                                 remove_entry(h, bkt, i);
861
862                                 /*
863                                  * Return index where key is stored,
864                                  * subtracting the first dummy index
865                                  */
866                                 ret = bkt->key_idx[i] - 1;
867                                 bkt->key_idx[i] = EMPTY_SLOT;
868                                 return ret;
869                         }
870                 }
871         }
872
873         /* Calculate secondary hash */
874         alt_hash = rte_hash_secondary_hash(sig);
875         bucket_idx = alt_hash & h->bucket_bitmask;
876         bkt = &h->buckets[bucket_idx];
877
878         /* Check if key is in secondary location */
879         for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
880                 if (bkt->sig_current[i] == alt_hash &&
881                                 bkt->key_idx[i] != EMPTY_SLOT) {
882                         k = (struct rte_hash_key *) ((char *)keys +
883                                         bkt->key_idx[i] * h->key_entry_size);
884                         if (rte_hash_cmp_eq(key, k->key, h) == 0) {
885                                 remove_entry(h, bkt, i);
886
887                                 /*
888                                  * Return index where key is stored,
889                                  * subtracting the first dummy index
890                                  */
891                                 ret = bkt->key_idx[i] - 1;
892                                 bkt->key_idx[i] = EMPTY_SLOT;
893                                 return ret;
894                         }
895                 }
896         }
897
898         return -ENOENT;
899 }
900
901 int32_t
902 rte_hash_del_key_with_hash(const struct rte_hash *h,
903                         const void *key, hash_sig_t sig)
904 {
905         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
906         return __rte_hash_del_key_with_hash(h, key, sig);
907 }
908
909 int32_t
910 rte_hash_del_key(const struct rte_hash *h, const void *key)
911 {
912         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
913         return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
914 }
915
916 int
917 rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
918                                void **key)
919 {
920         RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
921
922         struct rte_hash_key *k, *keys = h->key_store;
923         k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
924                                      h->key_entry_size);
925         *key = k->key;
926
927         if (position !=
928             __rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
929                                         NULL)) {
930                 return -ENOENT;
931         }
932
933         return 0;
934 }
935
936 static inline void
937 compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches,
938                         const struct rte_hash_bucket *prim_bkt,
939                         const struct rte_hash_bucket *sec_bkt,
940                         hash_sig_t prim_hash, hash_sig_t sec_hash,
941                         enum rte_hash_sig_compare_function sig_cmp_fn)
942 {
943         unsigned int i;
944
945         switch (sig_cmp_fn) {
946 #ifdef RTE_MACHINE_CPUFLAG_AVX2
947         case RTE_HASH_COMPARE_AVX2:
948                 *prim_hash_matches = _mm256_movemask_ps((__m256)_mm256_cmpeq_epi32(
949                                 _mm256_load_si256(
950                                         (__m256i const *)prim_bkt->sig_current),
951                                 _mm256_set1_epi32(prim_hash)));
952                 *sec_hash_matches = _mm256_movemask_ps((__m256)_mm256_cmpeq_epi32(
953                                 _mm256_load_si256(
954                                         (__m256i const *)sec_bkt->sig_current),
955                                 _mm256_set1_epi32(sec_hash)));
956                 break;
957 #endif
958 #ifdef RTE_MACHINE_CPUFLAG_SSE2
959         case RTE_HASH_COMPARE_SSE:
960                 /* Compare the first 4 signatures in the bucket */
961                 *prim_hash_matches = _mm_movemask_ps((__m128)_mm_cmpeq_epi16(
962                                 _mm_load_si128(
963                                         (__m128i const *)prim_bkt->sig_current),
964                                 _mm_set1_epi32(prim_hash)));
965                 *prim_hash_matches |= (_mm_movemask_ps((__m128)_mm_cmpeq_epi16(
966                                 _mm_load_si128(
967                                         (__m128i const *)&prim_bkt->sig_current[4]),
968                                 _mm_set1_epi32(prim_hash)))) << 4;
969                 /* Compare the first 4 signatures in the bucket */
970                 *sec_hash_matches = _mm_movemask_ps((__m128)_mm_cmpeq_epi16(
971                                 _mm_load_si128(
972                                         (__m128i const *)sec_bkt->sig_current),
973                                 _mm_set1_epi32(sec_hash)));
974                 *sec_hash_matches |= (_mm_movemask_ps((__m128)_mm_cmpeq_epi16(
975                                 _mm_load_si128(
976                                         (__m128i const *)&sec_bkt->sig_current[4]),
977                                 _mm_set1_epi32(sec_hash)))) << 4;
978                 break;
979 #endif
980         default:
981                 for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
982                         *prim_hash_matches |=
983                                 ((prim_hash == prim_bkt->sig_current[i]) << i);
984                         *sec_hash_matches |=
985                                 ((sec_hash == sec_bkt->sig_current[i]) << i);
986                 }
987         }
988
989 }
990
991 #define PREFETCH_OFFSET 4
992 static inline void
993 __rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
994                         int32_t num_keys, int32_t *positions,
995                         uint64_t *hit_mask, void *data[])
996 {
997         uint64_t hits = 0;
998         int32_t i;
999         uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX];
1000         uint32_t sec_hash[RTE_HASH_LOOKUP_BULK_MAX];
1001         const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
1002         const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
1003         uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
1004         uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
1005
1006         /* Prefetch first keys */
1007         for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++)
1008                 rte_prefetch0(keys[i]);
1009
1010         /*
1011          * Prefetch rest of the keys, calculate primary and
1012          * secondary bucket and prefetch them
1013          */
1014         for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) {
1015                 rte_prefetch0(keys[i + PREFETCH_OFFSET]);
1016
1017                 prim_hash[i] = rte_hash_hash(h, keys[i]);
1018                 sec_hash[i] = rte_hash_secondary_hash(prim_hash[i]);
1019
1020                 primary_bkt[i] = &h->buckets[prim_hash[i] & h->bucket_bitmask];
1021                 secondary_bkt[i] = &h->buckets[sec_hash[i] & h->bucket_bitmask];
1022
1023                 rte_prefetch0(primary_bkt[i]);
1024                 rte_prefetch0(secondary_bkt[i]);
1025         }
1026
1027         /* Calculate and prefetch rest of the buckets */
1028         for (; i < num_keys; i++) {
1029                 prim_hash[i] = rte_hash_hash(h, keys[i]);
1030                 sec_hash[i] = rte_hash_secondary_hash(prim_hash[i]);
1031
1032                 primary_bkt[i] = &h->buckets[prim_hash[i] & h->bucket_bitmask];
1033                 secondary_bkt[i] = &h->buckets[sec_hash[i] & h->bucket_bitmask];
1034
1035                 rte_prefetch0(primary_bkt[i]);
1036                 rte_prefetch0(secondary_bkt[i]);
1037         }
1038
1039         /* Compare signatures and prefetch key slot of first hit */
1040         for (i = 0; i < num_keys; i++) {
1041                 compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
1042                                 primary_bkt[i], secondary_bkt[i],
1043                                 prim_hash[i], sec_hash[i], h->sig_cmp_fn);
1044
1045                 if (prim_hitmask[i]) {
1046                         uint32_t first_hit = __builtin_ctzl(prim_hitmask[i]);
1047                         uint32_t key_idx = primary_bkt[i]->key_idx[first_hit];
1048                         const struct rte_hash_key *key_slot =
1049                                 (const struct rte_hash_key *)(
1050                                 (const char *)h->key_store +
1051                                 key_idx * h->key_entry_size);
1052                         rte_prefetch0(key_slot);
1053                         continue;
1054                 }
1055
1056                 if (sec_hitmask[i]) {
1057                         uint32_t first_hit = __builtin_ctzl(sec_hitmask[i]);
1058                         uint32_t key_idx = secondary_bkt[i]->key_idx[first_hit];
1059                         const struct rte_hash_key *key_slot =
1060                                 (const struct rte_hash_key *)(
1061                                 (const char *)h->key_store +
1062                                 key_idx * h->key_entry_size);
1063                         rte_prefetch0(key_slot);
1064                 }
1065         }
1066
1067         /* Compare keys, first hits in primary first */
1068         for (i = 0; i < num_keys; i++) {
1069                 positions[i] = -ENOENT;
1070                 while (prim_hitmask[i]) {
1071                         uint32_t hit_index = __builtin_ctzl(prim_hitmask[i]);
1072
1073                         uint32_t key_idx = primary_bkt[i]->key_idx[hit_index];
1074                         const struct rte_hash_key *key_slot =
1075                                 (const struct rte_hash_key *)(
1076                                 (const char *)h->key_store +
1077                                 key_idx * h->key_entry_size);
1078                         /*
1079                          * If key index is 0, do not compare key,
1080                          * as it is checking the dummy slot
1081                          */
1082                         if (!!key_idx & !rte_hash_cmp_eq(key_slot->key, keys[i], h)) {
1083                                 if (data != NULL)
1084                                         data[i] = key_slot->pdata;
1085
1086                                 hits |= 1ULL << i;
1087                                 positions[i] = key_idx - 1;
1088                                 goto next_key;
1089                         }
1090                         prim_hitmask[i] &= ~(1 << (hit_index));
1091                 }
1092
1093                 while (sec_hitmask[i]) {
1094                         uint32_t hit_index = __builtin_ctzl(sec_hitmask[i]);
1095
1096                         uint32_t key_idx = secondary_bkt[i]->key_idx[hit_index];
1097                         const struct rte_hash_key *key_slot =
1098                                 (const struct rte_hash_key *)(
1099                                 (const char *)h->key_store +
1100                                 key_idx * h->key_entry_size);
1101                         /*
1102                          * If key index is 0, do not compare key,
1103                          * as it is checking the dummy slot
1104                          */
1105
1106                         if (!!key_idx & !rte_hash_cmp_eq(key_slot->key, keys[i], h)) {
1107                                 if (data != NULL)
1108                                         data[i] = key_slot->pdata;
1109
1110                                 hits |= 1ULL << i;
1111                                 positions[i] = key_idx - 1;
1112                                 goto next_key;
1113                         }
1114                         sec_hitmask[i] &= ~(1 << (hit_index));
1115                 }
1116
1117 next_key:
1118                 continue;
1119         }
1120
1121         if (hit_mask != NULL)
1122                 *hit_mask = hits;
1123 }
1124
1125 int
1126 rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
1127                       uint32_t num_keys, int32_t *positions)
1128 {
1129         RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
1130                         (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
1131                         (positions == NULL)), -EINVAL);
1132
1133         __rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
1134         return 0;
1135 }
1136
1137 int
1138 rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
1139                       uint32_t num_keys, uint64_t *hit_mask, void *data[])
1140 {
1141         RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
1142                         (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
1143                         (hit_mask == NULL)), -EINVAL);
1144
1145         int32_t positions[num_keys];
1146
1147         __rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
1148
1149         /* Return number of hits */
1150         return __builtin_popcountl(*hit_mask);
1151 }
1152
1153 int32_t
1154 rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
1155 {
1156         uint32_t bucket_idx, idx, position;
1157         struct rte_hash_key *next_key;
1158
1159         RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
1160
1161         const uint32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES;
1162         /* Out of bounds */
1163         if (*next >= total_entries)
1164                 return -ENOENT;
1165
1166         /* Calculate bucket and index of current iterator */
1167         bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
1168         idx = *next % RTE_HASH_BUCKET_ENTRIES;
1169
1170         /* If current position is empty, go to the next one */
1171         while (h->buckets[bucket_idx].key_idx[idx] == EMPTY_SLOT) {
1172                 (*next)++;
1173                 /* End of table */
1174                 if (*next == total_entries)
1175                         return -ENOENT;
1176                 bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
1177                 idx = *next % RTE_HASH_BUCKET_ENTRIES;
1178         }
1179
1180         /* Get position of entry in key table */
1181         position = h->buckets[bucket_idx].key_idx[idx];
1182         next_key = (struct rte_hash_key *) ((char *)h->key_store +
1183                                 position * h->key_entry_size);
1184         /* Return key and data */
1185         *key = next_key->key;
1186         *data = next_key->pdata;
1187
1188         /* Increment iterator */
1189         (*next)++;
1190
1191         return position - 1;
1192 }