Imported Upstream version 16.04
[deb_dpdk.git] / lib / librte_sched / rte_sched.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <string.h>
36
37 #include <rte_common.h>
38 #include <rte_log.h>
39 #include <rte_memory.h>
40 #include <rte_malloc.h>
41 #include <rte_cycles.h>
42 #include <rte_prefetch.h>
43 #include <rte_branch_prediction.h>
44 #include <rte_mbuf.h>
45
46 #include "rte_sched.h"
47 #include "rte_bitmap.h"
48 #include "rte_sched_common.h"
49 #include "rte_approx.h"
50 #include "rte_reciprocal.h"
51
52 #ifdef __INTEL_COMPILER
53 #pragma warning(disable:2259) /* conversion may lose significant bits */
54 #endif
55
56 #ifdef RTE_SCHED_VECTOR
57 #include <rte_vect.h>
58
59 #if defined(__SSE4__)
60 #define SCHED_VECTOR_SSE4
61 #endif
62
63 #endif
64
65 #define RTE_SCHED_TB_RATE_CONFIG_ERR          (1e-7)
66 #define RTE_SCHED_WRR_SHIFT                   3
67 #define RTE_SCHED_GRINDER_PCACHE_SIZE         (64 / RTE_SCHED_QUEUES_PER_PIPE)
68 #define RTE_SCHED_PIPE_INVALID                UINT32_MAX
69 #define RTE_SCHED_BMP_POS_INVALID             UINT32_MAX
70
71 /* Scaling for cycles_per_byte calculation
72  * Chosen so that minimum rate is 480 bit/sec
73  */
74 #define RTE_SCHED_TIME_SHIFT                  8
75
76 struct rte_sched_subport {
77         /* Token bucket (TB) */
78         uint64_t tb_time; /* time of last update */
79         uint32_t tb_period;
80         uint32_t tb_credits_per_period;
81         uint32_t tb_size;
82         uint32_t tb_credits;
83
84         /* Traffic classes (TCs) */
85         uint64_t tc_time; /* time of next update */
86         uint32_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
87         uint32_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
88         uint32_t tc_period;
89
90         /* TC oversubscription */
91         uint32_t tc_ov_wm;
92         uint32_t tc_ov_wm_min;
93         uint32_t tc_ov_wm_max;
94         uint8_t tc_ov_period_id;
95         uint8_t tc_ov;
96         uint32_t tc_ov_n;
97         double tc_ov_rate;
98
99         /* Statistics */
100         struct rte_sched_subport_stats stats;
101 };
102
103 struct rte_sched_pipe_profile {
104         /* Token bucket (TB) */
105         uint32_t tb_period;
106         uint32_t tb_credits_per_period;
107         uint32_t tb_size;
108
109         /* Pipe traffic classes */
110         uint32_t tc_period;
111         uint32_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
112         uint8_t tc_ov_weight;
113
114         /* Pipe queues */
115         uint8_t  wrr_cost[RTE_SCHED_QUEUES_PER_PIPE];
116 };
117
118 struct rte_sched_pipe {
119         /* Token bucket (TB) */
120         uint64_t tb_time; /* time of last update */
121         uint32_t tb_credits;
122
123         /* Pipe profile and flags */
124         uint32_t profile;
125
126         /* Traffic classes (TCs) */
127         uint64_t tc_time; /* time of next update */
128         uint32_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
129
130         /* Weighted Round Robin (WRR) */
131         uint8_t wrr_tokens[RTE_SCHED_QUEUES_PER_PIPE];
132
133         /* TC oversubscription */
134         uint32_t tc_ov_credits;
135         uint8_t tc_ov_period_id;
136         uint8_t reserved[3];
137 } __rte_cache_aligned;
138
139 struct rte_sched_queue {
140         uint16_t qw;
141         uint16_t qr;
142 };
143
144 struct rte_sched_queue_extra {
145         struct rte_sched_queue_stats stats;
146 #ifdef RTE_SCHED_RED
147         struct rte_red red;
148 #endif
149 };
150
151 enum grinder_state {
152         e_GRINDER_PREFETCH_PIPE = 0,
153         e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS,
154         e_GRINDER_PREFETCH_MBUF,
155         e_GRINDER_READ_MBUF
156 };
157
158 /*
159  * Path through the scheduler hierarchy used by the scheduler enqueue
160  * operation to identify the destination queue for the current
161  * packet. Stored in the field pkt.hash.sched of struct rte_mbuf of
162  * each packet, typically written by the classification stage and read
163  * by scheduler enqueue.
164  */
165 struct rte_sched_port_hierarchy {
166         uint16_t queue:2;                /**< Queue ID (0 .. 3) */
167         uint16_t traffic_class:2;        /**< Traffic class ID (0 .. 3)*/
168         uint32_t color:2;                /**< Color */
169         uint16_t unused:10;
170         uint16_t subport;                /**< Subport ID */
171         uint32_t pipe;                   /**< Pipe ID */
172 };
173
174 struct rte_sched_grinder {
175         /* Pipe cache */
176         uint16_t pcache_qmask[RTE_SCHED_GRINDER_PCACHE_SIZE];
177         uint32_t pcache_qindex[RTE_SCHED_GRINDER_PCACHE_SIZE];
178         uint32_t pcache_w;
179         uint32_t pcache_r;
180
181         /* Current pipe */
182         enum grinder_state state;
183         uint32_t productive;
184         uint32_t pindex;
185         struct rte_sched_subport *subport;
186         struct rte_sched_pipe *pipe;
187         struct rte_sched_pipe_profile *pipe_params;
188
189         /* TC cache */
190         uint8_t tccache_qmask[4];
191         uint32_t tccache_qindex[4];
192         uint32_t tccache_w;
193         uint32_t tccache_r;
194
195         /* Current TC */
196         uint32_t tc_index;
197         struct rte_sched_queue *queue[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
198         struct rte_mbuf **qbase[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
199         uint32_t qindex[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
200         uint16_t qsize;
201         uint32_t qmask;
202         uint32_t qpos;
203         struct rte_mbuf *pkt;
204
205         /* WRR */
206         uint16_t wrr_tokens[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
207         uint16_t wrr_mask[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
208         uint8_t wrr_cost[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
209 };
210
211 struct rte_sched_port {
212         /* User parameters */
213         uint32_t n_subports_per_port;
214         uint32_t n_pipes_per_subport;
215         uint32_t rate;
216         uint32_t mtu;
217         uint32_t frame_overhead;
218         uint16_t qsize[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
219         uint32_t n_pipe_profiles;
220         uint32_t pipe_tc3_rate_max;
221 #ifdef RTE_SCHED_RED
222         struct rte_red_config red_config[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE][e_RTE_METER_COLORS];
223 #endif
224
225         /* Timing */
226         uint64_t time_cpu_cycles;     /* Current CPU time measured in CPU cyles */
227         uint64_t time_cpu_bytes;      /* Current CPU time measured in bytes */
228         uint64_t time;                /* Current NIC TX time measured in bytes */
229         struct rte_reciprocal inv_cycles_per_byte; /* CPU cycles per byte */
230
231         /* Scheduling loop detection */
232         uint32_t pipe_loop;
233         uint32_t pipe_exhaustion;
234
235         /* Bitmap */
236         struct rte_bitmap *bmp;
237         uint32_t grinder_base_bmp_pos[RTE_SCHED_PORT_N_GRINDERS] __rte_aligned_16;
238
239         /* Grinders */
240         struct rte_sched_grinder grinder[RTE_SCHED_PORT_N_GRINDERS];
241         uint32_t busy_grinders;
242         struct rte_mbuf **pkts_out;
243         uint32_t n_pkts_out;
244
245         /* Queue base calculation */
246         uint32_t qsize_add[RTE_SCHED_QUEUES_PER_PIPE];
247         uint32_t qsize_sum;
248
249         /* Large data structures */
250         struct rte_sched_subport *subport;
251         struct rte_sched_pipe *pipe;
252         struct rte_sched_queue *queue;
253         struct rte_sched_queue_extra *queue_extra;
254         struct rte_sched_pipe_profile *pipe_profiles;
255         uint8_t *bmp_array;
256         struct rte_mbuf **queue_array;
257         uint8_t memory[0] __rte_cache_aligned;
258 } __rte_cache_aligned;
259
260 enum rte_sched_port_array {
261         e_RTE_SCHED_PORT_ARRAY_SUBPORT = 0,
262         e_RTE_SCHED_PORT_ARRAY_PIPE,
263         e_RTE_SCHED_PORT_ARRAY_QUEUE,
264         e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA,
265         e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES,
266         e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY,
267         e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY,
268         e_RTE_SCHED_PORT_ARRAY_TOTAL,
269 };
270
271 #ifdef RTE_SCHED_COLLECT_STATS
272
273 static inline uint32_t
274 rte_sched_port_queues_per_subport(struct rte_sched_port *port)
275 {
276         return RTE_SCHED_QUEUES_PER_PIPE * port->n_pipes_per_subport;
277 }
278
279 #endif
280
281 static inline uint32_t
282 rte_sched_port_queues_per_port(struct rte_sched_port *port)
283 {
284         return RTE_SCHED_QUEUES_PER_PIPE * port->n_pipes_per_subport * port->n_subports_per_port;
285 }
286
287 static inline struct rte_mbuf **
288 rte_sched_port_qbase(struct rte_sched_port *port, uint32_t qindex)
289 {
290         uint32_t pindex = qindex >> 4;
291         uint32_t qpos = qindex & 0xF;
292
293         return (port->queue_array + pindex *
294                 port->qsize_sum + port->qsize_add[qpos]);
295 }
296
297 static inline uint16_t
298 rte_sched_port_qsize(struct rte_sched_port *port, uint32_t qindex)
299 {
300         uint32_t tc = (qindex >> 2) & 0x3;
301
302         return port->qsize[tc];
303 }
304
305 static int
306 rte_sched_port_check_params(struct rte_sched_port_params *params)
307 {
308         uint32_t i, j;
309
310         if (params == NULL)
311                 return -1;
312
313         /* socket */
314         if ((params->socket < 0) || (params->socket >= RTE_MAX_NUMA_NODES))
315                 return -3;
316
317         /* rate */
318         if (params->rate == 0)
319                 return -4;
320
321         /* mtu */
322         if (params->mtu == 0)
323                 return -5;
324
325         /* n_subports_per_port: non-zero, limited to 16 bits, power of 2 */
326         if (params->n_subports_per_port == 0 ||
327             params->n_subports_per_port > 1u << 16 ||
328             !rte_is_power_of_2(params->n_subports_per_port))
329                 return -6;
330
331         /* n_pipes_per_subport: non-zero, power of 2 */
332         if (params->n_pipes_per_subport == 0 ||
333             !rte_is_power_of_2(params->n_pipes_per_subport))
334                 return -7;
335
336         /* qsize: non-zero, power of 2,
337          * no bigger than 32K (due to 16-bit read/write pointers)
338          */
339         for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
340                 uint16_t qsize = params->qsize[i];
341
342                 if (qsize == 0 || !rte_is_power_of_2(qsize))
343                         return -8;
344         }
345
346         /* pipe_profiles and n_pipe_profiles */
347         if (params->pipe_profiles == NULL ||
348             params->n_pipe_profiles == 0 ||
349             params->n_pipe_profiles > RTE_SCHED_PIPE_PROFILES_PER_PORT)
350                 return -9;
351
352         for (i = 0; i < params->n_pipe_profiles; i++) {
353                 struct rte_sched_pipe_params *p = params->pipe_profiles + i;
354
355                 /* TB rate: non-zero, not greater than port rate */
356                 if (p->tb_rate == 0 || p->tb_rate > params->rate)
357                         return -10;
358
359                 /* TB size: non-zero */
360                 if (p->tb_size == 0)
361                         return -11;
362
363                 /* TC rate: non-zero, less than pipe rate */
364                 for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) {
365                         if (p->tc_rate[j] == 0 || p->tc_rate[j] > p->tb_rate)
366                                 return -12;
367                 }
368
369                 /* TC period: non-zero */
370                 if (p->tc_period == 0)
371                         return -13;
372
373 #ifdef RTE_SCHED_SUBPORT_TC_OV
374                 /* TC3 oversubscription weight: non-zero */
375                 if (p->tc_ov_weight == 0)
376                         return -14;
377 #endif
378
379                 /* Queue WRR weights: non-zero */
380                 for (j = 0; j < RTE_SCHED_QUEUES_PER_PIPE; j++) {
381                         if (p->wrr_weights[j] == 0)
382                                 return -15;
383                 }
384         }
385
386         return 0;
387 }
388
389 static uint32_t
390 rte_sched_port_get_array_base(struct rte_sched_port_params *params, enum rte_sched_port_array array)
391 {
392         uint32_t n_subports_per_port = params->n_subports_per_port;
393         uint32_t n_pipes_per_subport = params->n_pipes_per_subport;
394         uint32_t n_pipes_per_port = n_pipes_per_subport * n_subports_per_port;
395         uint32_t n_queues_per_port = RTE_SCHED_QUEUES_PER_PIPE * n_pipes_per_subport * n_subports_per_port;
396
397         uint32_t size_subport = n_subports_per_port * sizeof(struct rte_sched_subport);
398         uint32_t size_pipe = n_pipes_per_port * sizeof(struct rte_sched_pipe);
399         uint32_t size_queue = n_queues_per_port * sizeof(struct rte_sched_queue);
400         uint32_t size_queue_extra
401                 = n_queues_per_port * sizeof(struct rte_sched_queue_extra);
402         uint32_t size_pipe_profiles
403                 = RTE_SCHED_PIPE_PROFILES_PER_PORT * sizeof(struct rte_sched_pipe_profile);
404         uint32_t size_bmp_array = rte_bitmap_get_memory_footprint(n_queues_per_port);
405         uint32_t size_per_pipe_queue_array, size_queue_array;
406
407         uint32_t base, i;
408
409         size_per_pipe_queue_array = 0;
410         for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
411                 size_per_pipe_queue_array += RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS
412                         * params->qsize[i] * sizeof(struct rte_mbuf *);
413         }
414         size_queue_array = n_pipes_per_port * size_per_pipe_queue_array;
415
416         base = 0;
417
418         if (array == e_RTE_SCHED_PORT_ARRAY_SUBPORT)
419                 return base;
420         base += RTE_CACHE_LINE_ROUNDUP(size_subport);
421
422         if (array == e_RTE_SCHED_PORT_ARRAY_PIPE)
423                 return base;
424         base += RTE_CACHE_LINE_ROUNDUP(size_pipe);
425
426         if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE)
427                 return base;
428         base += RTE_CACHE_LINE_ROUNDUP(size_queue);
429
430         if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA)
431                 return base;
432         base += RTE_CACHE_LINE_ROUNDUP(size_queue_extra);
433
434         if (array == e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES)
435                 return base;
436         base += RTE_CACHE_LINE_ROUNDUP(size_pipe_profiles);
437
438         if (array == e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY)
439                 return base;
440         base += RTE_CACHE_LINE_ROUNDUP(size_bmp_array);
441
442         if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY)
443                 return base;
444         base += RTE_CACHE_LINE_ROUNDUP(size_queue_array);
445
446         return base;
447 }
448
449 uint32_t
450 rte_sched_port_get_memory_footprint(struct rte_sched_port_params *params)
451 {
452         uint32_t size0, size1;
453         int status;
454
455         status = rte_sched_port_check_params(params);
456         if (status != 0) {
457                 RTE_LOG(NOTICE, SCHED,
458                         "Port scheduler params check failed (%d)\n", status);
459
460                 return 0;
461         }
462
463         size0 = sizeof(struct rte_sched_port);
464         size1 = rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_TOTAL);
465
466         return size0 + size1;
467 }
468
469 static void
470 rte_sched_port_config_qsize(struct rte_sched_port *port)
471 {
472         /* TC 0 */
473         port->qsize_add[0] = 0;
474         port->qsize_add[1] = port->qsize_add[0] + port->qsize[0];
475         port->qsize_add[2] = port->qsize_add[1] + port->qsize[0];
476         port->qsize_add[3] = port->qsize_add[2] + port->qsize[0];
477
478         /* TC 1 */
479         port->qsize_add[4] = port->qsize_add[3] + port->qsize[0];
480         port->qsize_add[5] = port->qsize_add[4] + port->qsize[1];
481         port->qsize_add[6] = port->qsize_add[5] + port->qsize[1];
482         port->qsize_add[7] = port->qsize_add[6] + port->qsize[1];
483
484         /* TC 2 */
485         port->qsize_add[8] = port->qsize_add[7] + port->qsize[1];
486         port->qsize_add[9] = port->qsize_add[8] + port->qsize[2];
487         port->qsize_add[10] = port->qsize_add[9] + port->qsize[2];
488         port->qsize_add[11] = port->qsize_add[10] + port->qsize[2];
489
490         /* TC 3 */
491         port->qsize_add[12] = port->qsize_add[11] + port->qsize[2];
492         port->qsize_add[13] = port->qsize_add[12] + port->qsize[3];
493         port->qsize_add[14] = port->qsize_add[13] + port->qsize[3];
494         port->qsize_add[15] = port->qsize_add[14] + port->qsize[3];
495
496         port->qsize_sum = port->qsize_add[15] + port->qsize[3];
497 }
498
499 static void
500 rte_sched_port_log_pipe_profile(struct rte_sched_port *port, uint32_t i)
501 {
502         struct rte_sched_pipe_profile *p = port->pipe_profiles + i;
503
504         RTE_LOG(DEBUG, SCHED, "Low level config for pipe profile %u:\n"
505                 "    Token bucket: period = %u, credits per period = %u, size = %u\n"
506                 "    Traffic classes: period = %u, credits per period = [%u, %u, %u, %u]\n"
507                 "    Traffic class 3 oversubscription: weight = %hhu\n"
508                 "    WRR cost: [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu]\n",
509                 i,
510
511                 /* Token bucket */
512                 p->tb_period,
513                 p->tb_credits_per_period,
514                 p->tb_size,
515
516                 /* Traffic classes */
517                 p->tc_period,
518                 p->tc_credits_per_period[0],
519                 p->tc_credits_per_period[1],
520                 p->tc_credits_per_period[2],
521                 p->tc_credits_per_period[3],
522
523                 /* Traffic class 3 oversubscription */
524                 p->tc_ov_weight,
525
526                 /* WRR */
527                 p->wrr_cost[ 0], p->wrr_cost[ 1], p->wrr_cost[ 2], p->wrr_cost[ 3],
528                 p->wrr_cost[ 4], p->wrr_cost[ 5], p->wrr_cost[ 6], p->wrr_cost[ 7],
529                 p->wrr_cost[ 8], p->wrr_cost[ 9], p->wrr_cost[10], p->wrr_cost[11],
530                 p->wrr_cost[12], p->wrr_cost[13], p->wrr_cost[14], p->wrr_cost[15]);
531 }
532
533 static inline uint64_t
534 rte_sched_time_ms_to_bytes(uint32_t time_ms, uint32_t rate)
535 {
536         uint64_t time = time_ms;
537
538         time = (time * rate) / 1000;
539
540         return time;
541 }
542
543 static void
544 rte_sched_port_config_pipe_profile_table(struct rte_sched_port *port, struct rte_sched_port_params *params)
545 {
546         uint32_t i, j;
547
548         for (i = 0; i < port->n_pipe_profiles; i++) {
549                 struct rte_sched_pipe_params *src = params->pipe_profiles + i;
550                 struct rte_sched_pipe_profile *dst = port->pipe_profiles + i;
551
552                 /* Token Bucket */
553                 if (src->tb_rate == params->rate) {
554                         dst->tb_credits_per_period = 1;
555                         dst->tb_period = 1;
556                 } else {
557                         double tb_rate = (double) src->tb_rate
558                                 / (double) params->rate;
559                         double d = RTE_SCHED_TB_RATE_CONFIG_ERR;
560
561                         rte_approx(tb_rate, d,
562                                    &dst->tb_credits_per_period, &dst->tb_period);
563                 }
564                 dst->tb_size = src->tb_size;
565
566                 /* Traffic Classes */
567                 dst->tc_period = rte_sched_time_ms_to_bytes(src->tc_period,
568                                                             params->rate);
569
570                 for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++)
571                         dst->tc_credits_per_period[j]
572                                 = rte_sched_time_ms_to_bytes(src->tc_period,
573                                                              src->tc_rate[j]);
574
575 #ifdef RTE_SCHED_SUBPORT_TC_OV
576                 dst->tc_ov_weight = src->tc_ov_weight;
577 #endif
578
579                 /* WRR */
580                 for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) {
581                         uint32_t wrr_cost[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
582                         uint32_t lcd, lcd1, lcd2;
583                         uint32_t qindex;
584
585                         qindex = j * RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS;
586
587                         wrr_cost[0] = src->wrr_weights[qindex];
588                         wrr_cost[1] = src->wrr_weights[qindex + 1];
589                         wrr_cost[2] = src->wrr_weights[qindex + 2];
590                         wrr_cost[3] = src->wrr_weights[qindex + 3];
591
592                         lcd1 = rte_get_lcd(wrr_cost[0], wrr_cost[1]);
593                         lcd2 = rte_get_lcd(wrr_cost[2], wrr_cost[3]);
594                         lcd = rte_get_lcd(lcd1, lcd2);
595
596                         wrr_cost[0] = lcd / wrr_cost[0];
597                         wrr_cost[1] = lcd / wrr_cost[1];
598                         wrr_cost[2] = lcd / wrr_cost[2];
599                         wrr_cost[3] = lcd / wrr_cost[3];
600
601                         dst->wrr_cost[qindex] = (uint8_t) wrr_cost[0];
602                         dst->wrr_cost[qindex + 1] = (uint8_t) wrr_cost[1];
603                         dst->wrr_cost[qindex + 2] = (uint8_t) wrr_cost[2];
604                         dst->wrr_cost[qindex + 3] = (uint8_t) wrr_cost[3];
605                 }
606
607                 rte_sched_port_log_pipe_profile(port, i);
608         }
609
610         port->pipe_tc3_rate_max = 0;
611         for (i = 0; i < port->n_pipe_profiles; i++) {
612                 struct rte_sched_pipe_params *src = params->pipe_profiles + i;
613                 uint32_t pipe_tc3_rate = src->tc_rate[3];
614
615                 if (port->pipe_tc3_rate_max < pipe_tc3_rate)
616                         port->pipe_tc3_rate_max = pipe_tc3_rate;
617         }
618 }
619
620 struct rte_sched_port *
621 rte_sched_port_config(struct rte_sched_port_params *params)
622 {
623         struct rte_sched_port *port = NULL;
624         uint32_t mem_size, bmp_mem_size, n_queues_per_port, i, cycles_per_byte;
625
626         /* Check user parameters. Determine the amount of memory to allocate */
627         mem_size = rte_sched_port_get_memory_footprint(params);
628         if (mem_size == 0)
629                 return NULL;
630
631         /* Allocate memory to store the data structures */
632         port = rte_zmalloc("qos_params", mem_size, RTE_CACHE_LINE_SIZE);
633         if (port == NULL)
634                 return NULL;
635
636         /* compile time checks */
637         RTE_BUILD_BUG_ON(RTE_SCHED_PORT_N_GRINDERS == 0);
638         RTE_BUILD_BUG_ON(RTE_SCHED_PORT_N_GRINDERS & (RTE_SCHED_PORT_N_GRINDERS - 1));
639
640         /* User parameters */
641         port->n_subports_per_port = params->n_subports_per_port;
642         port->n_pipes_per_subport = params->n_pipes_per_subport;
643         port->rate = params->rate;
644         port->mtu = params->mtu + params->frame_overhead;
645         port->frame_overhead = params->frame_overhead;
646         memcpy(port->qsize, params->qsize, sizeof(params->qsize));
647         port->n_pipe_profiles = params->n_pipe_profiles;
648
649 #ifdef RTE_SCHED_RED
650         for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
651                 uint32_t j;
652
653                 for (j = 0; j < e_RTE_METER_COLORS; j++) {
654                         /* if min/max are both zero, then RED is disabled */
655                         if ((params->red_params[i][j].min_th |
656                              params->red_params[i][j].max_th) == 0) {
657                                 continue;
658                         }
659
660                         if (rte_red_config_init(&port->red_config[i][j],
661                                 params->red_params[i][j].wq_log2,
662                                 params->red_params[i][j].min_th,
663                                 params->red_params[i][j].max_th,
664                                 params->red_params[i][j].maxp_inv) != 0) {
665                                 return NULL;
666                         }
667                 }
668         }
669 #endif
670
671         /* Timing */
672         port->time_cpu_cycles = rte_get_tsc_cycles();
673         port->time_cpu_bytes = 0;
674         port->time = 0;
675
676         cycles_per_byte = (rte_get_tsc_hz() << RTE_SCHED_TIME_SHIFT)
677                 / params->rate;
678         port->inv_cycles_per_byte = rte_reciprocal_value(cycles_per_byte);
679
680         /* Scheduling loop detection */
681         port->pipe_loop = RTE_SCHED_PIPE_INVALID;
682         port->pipe_exhaustion = 0;
683
684         /* Grinders */
685         port->busy_grinders = 0;
686         port->pkts_out = NULL;
687         port->n_pkts_out = 0;
688
689         /* Queue base calculation */
690         rte_sched_port_config_qsize(port);
691
692         /* Large data structures */
693         port->subport = (struct rte_sched_subport *)
694                 (port->memory + rte_sched_port_get_array_base(params,
695                                                               e_RTE_SCHED_PORT_ARRAY_SUBPORT));
696         port->pipe = (struct rte_sched_pipe *)
697                 (port->memory + rte_sched_port_get_array_base(params,
698                                                               e_RTE_SCHED_PORT_ARRAY_PIPE));
699         port->queue = (struct rte_sched_queue *)
700                 (port->memory + rte_sched_port_get_array_base(params,
701                                                               e_RTE_SCHED_PORT_ARRAY_QUEUE));
702         port->queue_extra = (struct rte_sched_queue_extra *)
703                 (port->memory + rte_sched_port_get_array_base(params,
704                                                               e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA));
705         port->pipe_profiles = (struct rte_sched_pipe_profile *)
706                 (port->memory + rte_sched_port_get_array_base(params,
707                                                               e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES));
708         port->bmp_array =  port->memory
709                 + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY);
710         port->queue_array = (struct rte_mbuf **)
711                 (port->memory + rte_sched_port_get_array_base(params,
712                                                               e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY));
713
714         /* Pipe profile table */
715         rte_sched_port_config_pipe_profile_table(port, params);
716
717         /* Bitmap */
718         n_queues_per_port = rte_sched_port_queues_per_port(port);
719         bmp_mem_size = rte_bitmap_get_memory_footprint(n_queues_per_port);
720         port->bmp = rte_bitmap_init(n_queues_per_port, port->bmp_array,
721                                     bmp_mem_size);
722         if (port->bmp == NULL) {
723                 RTE_LOG(ERR, SCHED, "Bitmap init error\n");
724                 return NULL;
725         }
726
727         for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i++)
728                 port->grinder_base_bmp_pos[i] = RTE_SCHED_PIPE_INVALID;
729
730
731         return port;
732 }
733
734 void
735 rte_sched_port_free(struct rte_sched_port *port)
736 {
737         unsigned int queue;
738
739         /* Check user parameters */
740         if (port == NULL)
741                 return;
742
743         /* Free enqueued mbufs */
744         for (queue = 0; queue < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; queue++) {
745                 struct rte_mbuf **mbufs = rte_sched_port_qbase(port, queue);
746                 unsigned int i;
747
748                 for (i = 0; i < rte_sched_port_qsize(port, queue); i++)
749                         rte_pktmbuf_free(mbufs[i]);
750         }
751
752         rte_bitmap_free(port->bmp);
753         rte_free(port);
754 }
755
756 static void
757 rte_sched_port_log_subport_config(struct rte_sched_port *port, uint32_t i)
758 {
759         struct rte_sched_subport *s = port->subport + i;
760
761         RTE_LOG(DEBUG, SCHED, "Low level config for subport %u:\n"
762                 "    Token bucket: period = %u, credits per period = %u, size = %u\n"
763                 "    Traffic classes: period = %u, credits per period = [%u, %u, %u, %u]\n"
764                 "    Traffic class 3 oversubscription: wm min = %u, wm max = %u\n",
765                 i,
766
767                 /* Token bucket */
768                 s->tb_period,
769                 s->tb_credits_per_period,
770                 s->tb_size,
771
772                 /* Traffic classes */
773                 s->tc_period,
774                 s->tc_credits_per_period[0],
775                 s->tc_credits_per_period[1],
776                 s->tc_credits_per_period[2],
777                 s->tc_credits_per_period[3],
778
779                 /* Traffic class 3 oversubscription */
780                 s->tc_ov_wm_min,
781                 s->tc_ov_wm_max);
782 }
783
784 int
785 rte_sched_subport_config(struct rte_sched_port *port,
786         uint32_t subport_id,
787         struct rte_sched_subport_params *params)
788 {
789         struct rte_sched_subport *s;
790         uint32_t i;
791
792         /* Check user parameters */
793         if (port == NULL ||
794             subport_id >= port->n_subports_per_port ||
795             params == NULL)
796                 return -1;
797
798         if (params->tb_rate == 0 || params->tb_rate > port->rate)
799                 return -2;
800
801         if (params->tb_size == 0)
802                 return -3;
803
804         for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
805                 if (params->tc_rate[i] == 0 ||
806                     params->tc_rate[i] > params->tb_rate)
807                         return -4;
808         }
809
810         if (params->tc_period == 0)
811                 return -5;
812
813         s = port->subport + subport_id;
814
815         /* Token Bucket (TB) */
816         if (params->tb_rate == port->rate) {
817                 s->tb_credits_per_period = 1;
818                 s->tb_period = 1;
819         } else {
820                 double tb_rate = ((double) params->tb_rate) / ((double) port->rate);
821                 double d = RTE_SCHED_TB_RATE_CONFIG_ERR;
822
823                 rte_approx(tb_rate, d, &s->tb_credits_per_period, &s->tb_period);
824         }
825
826         s->tb_size = params->tb_size;
827         s->tb_time = port->time;
828         s->tb_credits = s->tb_size / 2;
829
830         /* Traffic Classes (TCs) */
831         s->tc_period = rte_sched_time_ms_to_bytes(params->tc_period, port->rate);
832         for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
833                 s->tc_credits_per_period[i]
834                         = rte_sched_time_ms_to_bytes(params->tc_period,
835                                                      params->tc_rate[i]);
836         }
837         s->tc_time = port->time + s->tc_period;
838         for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++)
839                 s->tc_credits[i] = s->tc_credits_per_period[i];
840
841 #ifdef RTE_SCHED_SUBPORT_TC_OV
842         /* TC oversubscription */
843         s->tc_ov_wm_min = port->mtu;
844         s->tc_ov_wm_max = rte_sched_time_ms_to_bytes(params->tc_period,
845                                                      port->pipe_tc3_rate_max);
846         s->tc_ov_wm = s->tc_ov_wm_max;
847         s->tc_ov_period_id = 0;
848         s->tc_ov = 0;
849         s->tc_ov_n = 0;
850         s->tc_ov_rate = 0;
851 #endif
852
853         rte_sched_port_log_subport_config(port, subport_id);
854
855         return 0;
856 }
857
858 int
859 rte_sched_pipe_config(struct rte_sched_port *port,
860         uint32_t subport_id,
861         uint32_t pipe_id,
862         int32_t pipe_profile)
863 {
864         struct rte_sched_subport *s;
865         struct rte_sched_pipe *p;
866         struct rte_sched_pipe_profile *params;
867         uint32_t deactivate, profile, i;
868
869         /* Check user parameters */
870         profile = (uint32_t) pipe_profile;
871         deactivate = (pipe_profile < 0);
872
873         if (port == NULL ||
874             subport_id >= port->n_subports_per_port ||
875             pipe_id >= port->n_pipes_per_subport ||
876             (!deactivate && profile >= port->n_pipe_profiles))
877                 return -1;
878
879
880         /* Check that subport configuration is valid */
881         s = port->subport + subport_id;
882         if (s->tb_period == 0)
883                 return -2;
884
885         p = port->pipe + (subport_id * port->n_pipes_per_subport + pipe_id);
886
887         /* Handle the case when pipe already has a valid configuration */
888         if (p->tb_time) {
889                 params = port->pipe_profiles + p->profile;
890
891 #ifdef RTE_SCHED_SUBPORT_TC_OV
892                 double subport_tc3_rate = (double) s->tc_credits_per_period[3]
893                         / (double) s->tc_period;
894                 double pipe_tc3_rate = (double) params->tc_credits_per_period[3]
895                         / (double) params->tc_period;
896                 uint32_t tc3_ov = s->tc_ov;
897
898                 /* Unplug pipe from its subport */
899                 s->tc_ov_n -= params->tc_ov_weight;
900                 s->tc_ov_rate -= pipe_tc3_rate;
901                 s->tc_ov = s->tc_ov_rate > subport_tc3_rate;
902
903                 if (s->tc_ov != tc3_ov) {
904                         RTE_LOG(DEBUG, SCHED,
905                                 "Subport %u TC3 oversubscription is OFF (%.4lf >= %.4lf)\n",
906                                 subport_id, subport_tc3_rate, s->tc_ov_rate);
907                 }
908 #endif
909
910                 /* Reset the pipe */
911                 memset(p, 0, sizeof(struct rte_sched_pipe));
912         }
913
914         if (deactivate)
915                 return 0;
916
917         /* Apply the new pipe configuration */
918         p->profile = profile;
919         params = port->pipe_profiles + p->profile;
920
921         /* Token Bucket (TB) */
922         p->tb_time = port->time;
923         p->tb_credits = params->tb_size / 2;
924
925         /* Traffic Classes (TCs) */
926         p->tc_time = port->time + params->tc_period;
927         for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++)
928                 p->tc_credits[i] = params->tc_credits_per_period[i];
929
930 #ifdef RTE_SCHED_SUBPORT_TC_OV
931         {
932                 /* Subport TC3 oversubscription */
933                 double subport_tc3_rate = (double) s->tc_credits_per_period[3]
934                         / (double) s->tc_period;
935                 double pipe_tc3_rate = (double) params->tc_credits_per_period[3]
936                         / (double) params->tc_period;
937                 uint32_t tc3_ov = s->tc_ov;
938
939                 s->tc_ov_n += params->tc_ov_weight;
940                 s->tc_ov_rate += pipe_tc3_rate;
941                 s->tc_ov = s->tc_ov_rate > subport_tc3_rate;
942
943                 if (s->tc_ov != tc3_ov) {
944                         RTE_LOG(DEBUG, SCHED,
945                                 "Subport %u TC3 oversubscription is ON (%.4lf < %.4lf)\n",
946                                 subport_id, subport_tc3_rate, s->tc_ov_rate);
947                 }
948                 p->tc_ov_period_id = s->tc_ov_period_id;
949                 p->tc_ov_credits = s->tc_ov_wm;
950         }
951 #endif
952
953         return 0;
954 }
955
956 void
957 rte_sched_port_pkt_write(struct rte_mbuf *pkt,
958                          uint32_t subport, uint32_t pipe, uint32_t traffic_class,
959                          uint32_t queue, enum rte_meter_color color)
960 {
961         struct rte_sched_port_hierarchy *sched
962                 = (struct rte_sched_port_hierarchy *) &pkt->hash.sched;
963
964         RTE_BUILD_BUG_ON(sizeof(*sched) > sizeof(pkt->hash.sched));
965
966         sched->color = (uint32_t) color;
967         sched->subport = subport;
968         sched->pipe = pipe;
969         sched->traffic_class = traffic_class;
970         sched->queue = queue;
971 }
972
973 void
974 rte_sched_port_pkt_read_tree_path(const struct rte_mbuf *pkt,
975                                   uint32_t *subport, uint32_t *pipe,
976                                   uint32_t *traffic_class, uint32_t *queue)
977 {
978         const struct rte_sched_port_hierarchy *sched
979                 = (const struct rte_sched_port_hierarchy *) &pkt->hash.sched;
980
981         *subport = sched->subport;
982         *pipe = sched->pipe;
983         *traffic_class = sched->traffic_class;
984         *queue = sched->queue;
985 }
986
987 enum rte_meter_color
988 rte_sched_port_pkt_read_color(const struct rte_mbuf *pkt)
989 {
990         const struct rte_sched_port_hierarchy *sched
991                 = (const struct rte_sched_port_hierarchy *) &pkt->hash.sched;
992
993         return (enum rte_meter_color) sched->color;
994 }
995
996 int
997 rte_sched_subport_read_stats(struct rte_sched_port *port,
998                              uint32_t subport_id,
999                              struct rte_sched_subport_stats *stats,
1000                              uint32_t *tc_ov)
1001 {
1002         struct rte_sched_subport *s;
1003
1004         /* Check user parameters */
1005         if (port == NULL || subport_id >= port->n_subports_per_port ||
1006             stats == NULL || tc_ov == NULL)
1007                 return -1;
1008
1009         s = port->subport + subport_id;
1010
1011         /* Copy subport stats and clear */
1012         memcpy(stats, &s->stats, sizeof(struct rte_sched_subport_stats));
1013         memset(&s->stats, 0, sizeof(struct rte_sched_subport_stats));
1014
1015         /* Subport TC ovesubscription status */
1016         *tc_ov = s->tc_ov;
1017
1018         return 0;
1019 }
1020
1021 int
1022 rte_sched_queue_read_stats(struct rte_sched_port *port,
1023         uint32_t queue_id,
1024         struct rte_sched_queue_stats *stats,
1025         uint16_t *qlen)
1026 {
1027         struct rte_sched_queue *q;
1028         struct rte_sched_queue_extra *qe;
1029
1030         /* Check user parameters */
1031         if ((port == NULL) ||
1032             (queue_id >= rte_sched_port_queues_per_port(port)) ||
1033                 (stats == NULL) ||
1034                 (qlen == NULL)) {
1035                 return -1;
1036         }
1037         q = port->queue + queue_id;
1038         qe = port->queue_extra + queue_id;
1039
1040         /* Copy queue stats and clear */
1041         memcpy(stats, &qe->stats, sizeof(struct rte_sched_queue_stats));
1042         memset(&qe->stats, 0, sizeof(struct rte_sched_queue_stats));
1043
1044         /* Queue length */
1045         *qlen = q->qw - q->qr;
1046
1047         return 0;
1048 }
1049
1050 static inline uint32_t
1051 rte_sched_port_qindex(struct rte_sched_port *port, uint32_t subport, uint32_t pipe, uint32_t traffic_class, uint32_t queue)
1052 {
1053         uint32_t result;
1054
1055         result = subport * port->n_pipes_per_subport + pipe;
1056         result = result * RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE + traffic_class;
1057         result = result * RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS + queue;
1058
1059         return result;
1060 }
1061
1062 #ifdef RTE_SCHED_DEBUG
1063
1064 static inline int
1065 rte_sched_port_queue_is_empty(struct rte_sched_port *port, uint32_t qindex)
1066 {
1067         struct rte_sched_queue *queue = port->queue + qindex;
1068
1069         return queue->qr == queue->qw;
1070 }
1071
1072 #endif /* RTE_SCHED_DEBUG */
1073
1074 #ifdef RTE_SCHED_COLLECT_STATS
1075
1076 static inline void
1077 rte_sched_port_update_subport_stats(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt)
1078 {
1079         struct rte_sched_subport *s = port->subport + (qindex / rte_sched_port_queues_per_subport(port));
1080         uint32_t tc_index = (qindex >> 2) & 0x3;
1081         uint32_t pkt_len = pkt->pkt_len;
1082
1083         s->stats.n_pkts_tc[tc_index] += 1;
1084         s->stats.n_bytes_tc[tc_index] += pkt_len;
1085 }
1086
1087 static inline void
1088 rte_sched_port_update_subport_stats_on_drop(struct rte_sched_port *port,
1089                                             uint32_t qindex,
1090                                             struct rte_mbuf *pkt, uint32_t red)
1091 {
1092         struct rte_sched_subport *s = port->subport + (qindex / rte_sched_port_queues_per_subport(port));
1093         uint32_t tc_index = (qindex >> 2) & 0x3;
1094         uint32_t pkt_len = pkt->pkt_len;
1095
1096         s->stats.n_pkts_tc_dropped[tc_index] += 1;
1097         s->stats.n_bytes_tc_dropped[tc_index] += pkt_len;
1098 #ifdef RTE_SCHED_RED
1099         s->stats.n_pkts_red_dropped[tc_index] += red;
1100 #endif
1101 }
1102
1103 static inline void
1104 rte_sched_port_update_queue_stats(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt)
1105 {
1106         struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
1107         uint32_t pkt_len = pkt->pkt_len;
1108
1109         qe->stats.n_pkts += 1;
1110         qe->stats.n_bytes += pkt_len;
1111 }
1112
1113 static inline void
1114 rte_sched_port_update_queue_stats_on_drop(struct rte_sched_port *port,
1115                                           uint32_t qindex,
1116                                           struct rte_mbuf *pkt, uint32_t red)
1117 {
1118         struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
1119         uint32_t pkt_len = pkt->pkt_len;
1120
1121         qe->stats.n_pkts_dropped += 1;
1122         qe->stats.n_bytes_dropped += pkt_len;
1123 #ifdef RTE_SCHED_RED
1124         qe->stats.n_pkts_red_dropped += red;
1125 #endif
1126 }
1127
1128 #endif /* RTE_SCHED_COLLECT_STATS */
1129
1130 #ifdef RTE_SCHED_RED
1131
1132 static inline int
1133 rte_sched_port_red_drop(struct rte_sched_port *port, struct rte_mbuf *pkt, uint32_t qindex, uint16_t qlen)
1134 {
1135         struct rte_sched_queue_extra *qe;
1136         struct rte_red_config *red_cfg;
1137         struct rte_red *red;
1138         uint32_t tc_index;
1139         enum rte_meter_color color;
1140
1141         tc_index = (qindex >> 2) & 0x3;
1142         color = rte_sched_port_pkt_read_color(pkt);
1143         red_cfg = &port->red_config[tc_index][color];
1144
1145         if ((red_cfg->min_th | red_cfg->max_th) == 0)
1146                 return 0;
1147
1148         qe = port->queue_extra + qindex;
1149         red = &qe->red;
1150
1151         return rte_red_enqueue(red_cfg, red, qlen, port->time);
1152 }
1153
1154 static inline void
1155 rte_sched_port_set_queue_empty_timestamp(struct rte_sched_port *port, uint32_t qindex)
1156 {
1157         struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
1158         struct rte_red *red = &qe->red;
1159
1160         rte_red_mark_queue_empty(red, port->time);
1161 }
1162
1163 #else
1164
1165 #define rte_sched_port_red_drop(port, pkt, qindex, qlen)             0
1166
1167 #define rte_sched_port_set_queue_empty_timestamp(port, qindex)
1168
1169 #endif /* RTE_SCHED_RED */
1170
1171 #ifdef RTE_SCHED_DEBUG
1172
1173 static inline void
1174 debug_check_queue_slab(struct rte_sched_port *port, uint32_t bmp_pos,
1175                        uint64_t bmp_slab)
1176 {
1177         uint64_t mask;
1178         uint32_t i, panic;
1179
1180         if (bmp_slab == 0)
1181                 rte_panic("Empty slab at position %u\n", bmp_pos);
1182
1183         panic = 0;
1184         for (i = 0, mask = 1; i < 64; i++, mask <<= 1) {
1185                 if (mask & bmp_slab) {
1186                         if (rte_sched_port_queue_is_empty(port, bmp_pos + i)) {
1187                                 printf("Queue %u (slab offset %u) is empty\n", bmp_pos + i, i);
1188                                 panic = 1;
1189                         }
1190                 }
1191         }
1192
1193         if (panic)
1194                 rte_panic("Empty queues in slab 0x%" PRIx64 "starting at position %u\n",
1195                         bmp_slab, bmp_pos);
1196 }
1197
1198 #endif /* RTE_SCHED_DEBUG */
1199
1200 static inline uint32_t
1201 rte_sched_port_enqueue_qptrs_prefetch0(struct rte_sched_port *port,
1202                                        struct rte_mbuf *pkt)
1203 {
1204         struct rte_sched_queue *q;
1205 #ifdef RTE_SCHED_COLLECT_STATS
1206         struct rte_sched_queue_extra *qe;
1207 #endif
1208         uint32_t subport, pipe, traffic_class, queue, qindex;
1209
1210         rte_sched_port_pkt_read_tree_path(pkt, &subport, &pipe, &traffic_class, &queue);
1211
1212         qindex = rte_sched_port_qindex(port, subport, pipe, traffic_class, queue);
1213         q = port->queue + qindex;
1214         rte_prefetch0(q);
1215 #ifdef RTE_SCHED_COLLECT_STATS
1216         qe = port->queue_extra + qindex;
1217         rte_prefetch0(qe);
1218 #endif
1219
1220         return qindex;
1221 }
1222
1223 static inline void
1224 rte_sched_port_enqueue_qwa_prefetch0(struct rte_sched_port *port,
1225                                      uint32_t qindex, struct rte_mbuf **qbase)
1226 {
1227         struct rte_sched_queue *q;
1228         struct rte_mbuf **q_qw;
1229         uint16_t qsize;
1230
1231         q = port->queue + qindex;
1232         qsize = rte_sched_port_qsize(port, qindex);
1233         q_qw = qbase + (q->qw & (qsize - 1));
1234
1235         rte_prefetch0(q_qw);
1236         rte_bitmap_prefetch0(port->bmp, qindex);
1237 }
1238
1239 static inline int
1240 rte_sched_port_enqueue_qwa(struct rte_sched_port *port, uint32_t qindex,
1241                            struct rte_mbuf **qbase, struct rte_mbuf *pkt)
1242 {
1243         struct rte_sched_queue *q;
1244         uint16_t qsize;
1245         uint16_t qlen;
1246
1247         q = port->queue + qindex;
1248         qsize = rte_sched_port_qsize(port, qindex);
1249         qlen = q->qw - q->qr;
1250
1251         /* Drop the packet (and update drop stats) when queue is full */
1252         if (unlikely(rte_sched_port_red_drop(port, pkt, qindex, qlen) ||
1253                      (qlen >= qsize))) {
1254                 rte_pktmbuf_free(pkt);
1255 #ifdef RTE_SCHED_COLLECT_STATS
1256                 rte_sched_port_update_subport_stats_on_drop(port, qindex, pkt,
1257                                                             qlen < qsize);
1258                 rte_sched_port_update_queue_stats_on_drop(port, qindex, pkt,
1259                                                           qlen < qsize);
1260 #endif
1261                 return 0;
1262         }
1263
1264         /* Enqueue packet */
1265         qbase[q->qw & (qsize - 1)] = pkt;
1266         q->qw++;
1267
1268         /* Activate queue in the port bitmap */
1269         rte_bitmap_set(port->bmp, qindex);
1270
1271         /* Statistics */
1272 #ifdef RTE_SCHED_COLLECT_STATS
1273         rte_sched_port_update_subport_stats(port, qindex, pkt);
1274         rte_sched_port_update_queue_stats(port, qindex, pkt);
1275 #endif
1276
1277         return 1;
1278 }
1279
1280
1281 /*
1282  * The enqueue function implements a 4-level pipeline with each stage
1283  * processing two different packets. The purpose of using a pipeline
1284  * is to hide the latency of prefetching the data structures. The
1285  * naming convention is presented in the diagram below:
1286  *
1287  *   p00  _______   p10  _______   p20  _______   p30  _______
1288  * ----->|       |----->|       |----->|       |----->|       |----->
1289  *       |   0   |      |   1   |      |   2   |      |   3   |
1290  * ----->|_______|----->|_______|----->|_______|----->|_______|----->
1291  *   p01            p11            p21            p31
1292  *
1293  */
1294 int
1295 rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts,
1296                        uint32_t n_pkts)
1297 {
1298         struct rte_mbuf *pkt00, *pkt01, *pkt10, *pkt11, *pkt20, *pkt21,
1299                 *pkt30, *pkt31, *pkt_last;
1300         struct rte_mbuf **q00_base, **q01_base, **q10_base, **q11_base,
1301                 **q20_base, **q21_base, **q30_base, **q31_base, **q_last_base;
1302         uint32_t q00, q01, q10, q11, q20, q21, q30, q31, q_last;
1303         uint32_t r00, r01, r10, r11, r20, r21, r30, r31, r_last;
1304         uint32_t result, i;
1305
1306         result = 0;
1307
1308         /*
1309          * Less then 6 input packets available, which is not enough to
1310          * feed the pipeline
1311          */
1312         if (unlikely(n_pkts < 6)) {
1313                 struct rte_mbuf **q_base[5];
1314                 uint32_t q[5];
1315
1316                 /* Prefetch the mbuf structure of each packet */
1317                 for (i = 0; i < n_pkts; i++)
1318                         rte_prefetch0(pkts[i]);
1319
1320                 /* Prefetch the queue structure for each queue */
1321                 for (i = 0; i < n_pkts; i++)
1322                         q[i] = rte_sched_port_enqueue_qptrs_prefetch0(port,
1323                                                                       pkts[i]);
1324
1325                 /* Prefetch the write pointer location of each queue */
1326                 for (i = 0; i < n_pkts; i++) {
1327                         q_base[i] = rte_sched_port_qbase(port, q[i]);
1328                         rte_sched_port_enqueue_qwa_prefetch0(port, q[i],
1329                                                              q_base[i]);
1330                 }
1331
1332                 /* Write each packet to its queue */
1333                 for (i = 0; i < n_pkts; i++)
1334                         result += rte_sched_port_enqueue_qwa(port, q[i],
1335                                                              q_base[i], pkts[i]);
1336
1337                 return result;
1338         }
1339
1340         /* Feed the first 3 stages of the pipeline (6 packets needed) */
1341         pkt20 = pkts[0];
1342         pkt21 = pkts[1];
1343         rte_prefetch0(pkt20);
1344         rte_prefetch0(pkt21);
1345
1346         pkt10 = pkts[2];
1347         pkt11 = pkts[3];
1348         rte_prefetch0(pkt10);
1349         rte_prefetch0(pkt11);
1350
1351         q20 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt20);
1352         q21 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt21);
1353
1354         pkt00 = pkts[4];
1355         pkt01 = pkts[5];
1356         rte_prefetch0(pkt00);
1357         rte_prefetch0(pkt01);
1358
1359         q10 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt10);
1360         q11 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt11);
1361
1362         q20_base = rte_sched_port_qbase(port, q20);
1363         q21_base = rte_sched_port_qbase(port, q21);
1364         rte_sched_port_enqueue_qwa_prefetch0(port, q20, q20_base);
1365         rte_sched_port_enqueue_qwa_prefetch0(port, q21, q21_base);
1366
1367         /* Run the pipeline */
1368         for (i = 6; i < (n_pkts & (~1)); i += 2) {
1369                 /* Propagate stage inputs */
1370                 pkt30 = pkt20;
1371                 pkt31 = pkt21;
1372                 pkt20 = pkt10;
1373                 pkt21 = pkt11;
1374                 pkt10 = pkt00;
1375                 pkt11 = pkt01;
1376                 q30 = q20;
1377                 q31 = q21;
1378                 q20 = q10;
1379                 q21 = q11;
1380                 q30_base = q20_base;
1381                 q31_base = q21_base;
1382
1383                 /* Stage 0: Get packets in */
1384                 pkt00 = pkts[i];
1385                 pkt01 = pkts[i + 1];
1386                 rte_prefetch0(pkt00);
1387                 rte_prefetch0(pkt01);
1388
1389                 /* Stage 1: Prefetch queue structure storing queue pointers */
1390                 q10 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt10);
1391                 q11 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt11);
1392
1393                 /* Stage 2: Prefetch queue write location */
1394                 q20_base = rte_sched_port_qbase(port, q20);
1395                 q21_base = rte_sched_port_qbase(port, q21);
1396                 rte_sched_port_enqueue_qwa_prefetch0(port, q20, q20_base);
1397                 rte_sched_port_enqueue_qwa_prefetch0(port, q21, q21_base);
1398
1399                 /* Stage 3: Write packet to queue and activate queue */
1400                 r30 = rte_sched_port_enqueue_qwa(port, q30, q30_base, pkt30);
1401                 r31 = rte_sched_port_enqueue_qwa(port, q31, q31_base, pkt31);
1402                 result += r30 + r31;
1403         }
1404
1405         /*
1406          * Drain the pipeline (exactly 6 packets).
1407          * Handle the last packet in the case
1408          * of an odd number of input packets.
1409          */
1410         pkt_last = pkts[n_pkts - 1];
1411         rte_prefetch0(pkt_last);
1412
1413         q00 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt00);
1414         q01 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt01);
1415
1416         q10_base = rte_sched_port_qbase(port, q10);
1417         q11_base = rte_sched_port_qbase(port, q11);
1418         rte_sched_port_enqueue_qwa_prefetch0(port, q10, q10_base);
1419         rte_sched_port_enqueue_qwa_prefetch0(port, q11, q11_base);
1420
1421         r20 = rte_sched_port_enqueue_qwa(port, q20, q20_base, pkt20);
1422         r21 = rte_sched_port_enqueue_qwa(port, q21, q21_base, pkt21);
1423         result += r20 + r21;
1424
1425         q_last = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt_last);
1426
1427         q00_base = rte_sched_port_qbase(port, q00);
1428         q01_base = rte_sched_port_qbase(port, q01);
1429         rte_sched_port_enqueue_qwa_prefetch0(port, q00, q00_base);
1430         rte_sched_port_enqueue_qwa_prefetch0(port, q01, q01_base);
1431
1432         r10 = rte_sched_port_enqueue_qwa(port, q10, q10_base, pkt10);
1433         r11 = rte_sched_port_enqueue_qwa(port, q11, q11_base, pkt11);
1434         result += r10 + r11;
1435
1436         q_last_base = rte_sched_port_qbase(port, q_last);
1437         rte_sched_port_enqueue_qwa_prefetch0(port, q_last, q_last_base);
1438
1439         r00 = rte_sched_port_enqueue_qwa(port, q00, q00_base, pkt00);
1440         r01 = rte_sched_port_enqueue_qwa(port, q01, q01_base, pkt01);
1441         result += r00 + r01;
1442
1443         if (n_pkts & 1) {
1444                 r_last = rte_sched_port_enqueue_qwa(port, q_last, q_last_base, pkt_last);
1445                 result += r_last;
1446         }
1447
1448         return result;
1449 }
1450
1451 #ifndef RTE_SCHED_SUBPORT_TC_OV
1452
1453 static inline void
1454 grinder_credits_update(struct rte_sched_port *port, uint32_t pos)
1455 {
1456         struct rte_sched_grinder *grinder = port->grinder + pos;
1457         struct rte_sched_subport *subport = grinder->subport;
1458         struct rte_sched_pipe *pipe = grinder->pipe;
1459         struct rte_sched_pipe_profile *params = grinder->pipe_params;
1460         uint64_t n_periods;
1461
1462         /* Subport TB */
1463         n_periods = (port->time - subport->tb_time) / subport->tb_period;
1464         subport->tb_credits += n_periods * subport->tb_credits_per_period;
1465         subport->tb_credits = rte_sched_min_val_2_u32(subport->tb_credits, subport->tb_size);
1466         subport->tb_time += n_periods * subport->tb_period;
1467
1468         /* Pipe TB */
1469         n_periods = (port->time - pipe->tb_time) / params->tb_period;
1470         pipe->tb_credits += n_periods * params->tb_credits_per_period;
1471         pipe->tb_credits = rte_sched_min_val_2_u32(pipe->tb_credits, params->tb_size);
1472         pipe->tb_time += n_periods * params->tb_period;
1473
1474         /* Subport TCs */
1475         if (unlikely(port->time >= subport->tc_time)) {
1476                 subport->tc_credits[0] = subport->tc_credits_per_period[0];
1477                 subport->tc_credits[1] = subport->tc_credits_per_period[1];
1478                 subport->tc_credits[2] = subport->tc_credits_per_period[2];
1479                 subport->tc_credits[3] = subport->tc_credits_per_period[3];
1480                 subport->tc_time = port->time + subport->tc_period;
1481         }
1482
1483         /* Pipe TCs */
1484         if (unlikely(port->time >= pipe->tc_time)) {
1485                 pipe->tc_credits[0] = params->tc_credits_per_period[0];
1486                 pipe->tc_credits[1] = params->tc_credits_per_period[1];
1487                 pipe->tc_credits[2] = params->tc_credits_per_period[2];
1488                 pipe->tc_credits[3] = params->tc_credits_per_period[3];
1489                 pipe->tc_time = port->time + params->tc_period;
1490         }
1491 }
1492
1493 #else
1494
1495 static inline uint32_t
1496 grinder_tc_ov_credits_update(struct rte_sched_port *port, uint32_t pos)
1497 {
1498         struct rte_sched_grinder *grinder = port->grinder + pos;
1499         struct rte_sched_subport *subport = grinder->subport;
1500         uint32_t tc_ov_consumption[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
1501         uint32_t tc_ov_consumption_max;
1502         uint32_t tc_ov_wm = subport->tc_ov_wm;
1503
1504         if (subport->tc_ov == 0)
1505                 return subport->tc_ov_wm_max;
1506
1507         tc_ov_consumption[0] = subport->tc_credits_per_period[0] - subport->tc_credits[0];
1508         tc_ov_consumption[1] = subport->tc_credits_per_period[1] - subport->tc_credits[1];
1509         tc_ov_consumption[2] = subport->tc_credits_per_period[2] - subport->tc_credits[2];
1510         tc_ov_consumption[3] = subport->tc_credits_per_period[3] - subport->tc_credits[3];
1511
1512         tc_ov_consumption_max = subport->tc_credits_per_period[3] -
1513                 (tc_ov_consumption[0] + tc_ov_consumption[1] + tc_ov_consumption[2]);
1514
1515         if (tc_ov_consumption[3] > (tc_ov_consumption_max - port->mtu)) {
1516                 tc_ov_wm  -= tc_ov_wm >> 7;
1517                 if (tc_ov_wm < subport->tc_ov_wm_min)
1518                         tc_ov_wm = subport->tc_ov_wm_min;
1519
1520                 return tc_ov_wm;
1521         }
1522
1523         tc_ov_wm += (tc_ov_wm >> 7) + 1;
1524         if (tc_ov_wm > subport->tc_ov_wm_max)
1525                 tc_ov_wm = subport->tc_ov_wm_max;
1526
1527         return tc_ov_wm;
1528 }
1529
1530 static inline void
1531 grinder_credits_update(struct rte_sched_port *port, uint32_t pos)
1532 {
1533         struct rte_sched_grinder *grinder = port->grinder + pos;
1534         struct rte_sched_subport *subport = grinder->subport;
1535         struct rte_sched_pipe *pipe = grinder->pipe;
1536         struct rte_sched_pipe_profile *params = grinder->pipe_params;
1537         uint64_t n_periods;
1538
1539         /* Subport TB */
1540         n_periods = (port->time - subport->tb_time) / subport->tb_period;
1541         subport->tb_credits += n_periods * subport->tb_credits_per_period;
1542         subport->tb_credits = rte_sched_min_val_2_u32(subport->tb_credits, subport->tb_size);
1543         subport->tb_time += n_periods * subport->tb_period;
1544
1545         /* Pipe TB */
1546         n_periods = (port->time - pipe->tb_time) / params->tb_period;
1547         pipe->tb_credits += n_periods * params->tb_credits_per_period;
1548         pipe->tb_credits = rte_sched_min_val_2_u32(pipe->tb_credits, params->tb_size);
1549         pipe->tb_time += n_periods * params->tb_period;
1550
1551         /* Subport TCs */
1552         if (unlikely(port->time >= subport->tc_time)) {
1553                 subport->tc_ov_wm = grinder_tc_ov_credits_update(port, pos);
1554
1555                 subport->tc_credits[0] = subport->tc_credits_per_period[0];
1556                 subport->tc_credits[1] = subport->tc_credits_per_period[1];
1557                 subport->tc_credits[2] = subport->tc_credits_per_period[2];
1558                 subport->tc_credits[3] = subport->tc_credits_per_period[3];
1559
1560                 subport->tc_time = port->time + subport->tc_period;
1561                 subport->tc_ov_period_id++;
1562         }
1563
1564         /* Pipe TCs */
1565         if (unlikely(port->time >= pipe->tc_time)) {
1566                 pipe->tc_credits[0] = params->tc_credits_per_period[0];
1567                 pipe->tc_credits[1] = params->tc_credits_per_period[1];
1568                 pipe->tc_credits[2] = params->tc_credits_per_period[2];
1569                 pipe->tc_credits[3] = params->tc_credits_per_period[3];
1570                 pipe->tc_time = port->time + params->tc_period;
1571         }
1572
1573         /* Pipe TCs - Oversubscription */
1574         if (unlikely(pipe->tc_ov_period_id != subport->tc_ov_period_id)) {
1575                 pipe->tc_ov_credits = subport->tc_ov_wm * params->tc_ov_weight;
1576
1577                 pipe->tc_ov_period_id = subport->tc_ov_period_id;
1578         }
1579 }
1580
1581 #endif /* RTE_SCHED_TS_CREDITS_UPDATE, RTE_SCHED_SUBPORT_TC_OV */
1582
1583
1584 #ifndef RTE_SCHED_SUBPORT_TC_OV
1585
1586 static inline int
1587 grinder_credits_check(struct rte_sched_port *port, uint32_t pos)
1588 {
1589         struct rte_sched_grinder *grinder = port->grinder + pos;
1590         struct rte_sched_subport *subport = grinder->subport;
1591         struct rte_sched_pipe *pipe = grinder->pipe;
1592         struct rte_mbuf *pkt = grinder->pkt;
1593         uint32_t tc_index = grinder->tc_index;
1594         uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
1595         uint32_t subport_tb_credits = subport->tb_credits;
1596         uint32_t subport_tc_credits = subport->tc_credits[tc_index];
1597         uint32_t pipe_tb_credits = pipe->tb_credits;
1598         uint32_t pipe_tc_credits = pipe->tc_credits[tc_index];
1599         int enough_credits;
1600
1601         /* Check queue credits */
1602         enough_credits = (pkt_len <= subport_tb_credits) &&
1603                 (pkt_len <= subport_tc_credits) &&
1604                 (pkt_len <= pipe_tb_credits) &&
1605                 (pkt_len <= pipe_tc_credits);
1606
1607         if (!enough_credits)
1608                 return 0;
1609
1610         /* Update port credits */
1611         subport->tb_credits -= pkt_len;
1612         subport->tc_credits[tc_index] -= pkt_len;
1613         pipe->tb_credits -= pkt_len;
1614         pipe->tc_credits[tc_index] -= pkt_len;
1615
1616         return 1;
1617 }
1618
1619 #else
1620
1621 static inline int
1622 grinder_credits_check(struct rte_sched_port *port, uint32_t pos)
1623 {
1624         struct rte_sched_grinder *grinder = port->grinder + pos;
1625         struct rte_sched_subport *subport = grinder->subport;
1626         struct rte_sched_pipe *pipe = grinder->pipe;
1627         struct rte_mbuf *pkt = grinder->pkt;
1628         uint32_t tc_index = grinder->tc_index;
1629         uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
1630         uint32_t subport_tb_credits = subport->tb_credits;
1631         uint32_t subport_tc_credits = subport->tc_credits[tc_index];
1632         uint32_t pipe_tb_credits = pipe->tb_credits;
1633         uint32_t pipe_tc_credits = pipe->tc_credits[tc_index];
1634         uint32_t pipe_tc_ov_mask1[] = {UINT32_MAX, UINT32_MAX, UINT32_MAX, pipe->tc_ov_credits};
1635         uint32_t pipe_tc_ov_mask2[] = {0, 0, 0, UINT32_MAX};
1636         uint32_t pipe_tc_ov_credits = pipe_tc_ov_mask1[tc_index];
1637         int enough_credits;
1638
1639         /* Check pipe and subport credits */
1640         enough_credits = (pkt_len <= subport_tb_credits) &&
1641                 (pkt_len <= subport_tc_credits) &&
1642                 (pkt_len <= pipe_tb_credits) &&
1643                 (pkt_len <= pipe_tc_credits) &&
1644                 (pkt_len <= pipe_tc_ov_credits);
1645
1646         if (!enough_credits)
1647                 return 0;
1648
1649         /* Update pipe and subport credits */
1650         subport->tb_credits -= pkt_len;
1651         subport->tc_credits[tc_index] -= pkt_len;
1652         pipe->tb_credits -= pkt_len;
1653         pipe->tc_credits[tc_index] -= pkt_len;
1654         pipe->tc_ov_credits -= pipe_tc_ov_mask2[tc_index] & pkt_len;
1655
1656         return 1;
1657 }
1658
1659 #endif /* RTE_SCHED_SUBPORT_TC_OV */
1660
1661
1662 static inline int
1663 grinder_schedule(struct rte_sched_port *port, uint32_t pos)
1664 {
1665         struct rte_sched_grinder *grinder = port->grinder + pos;
1666         struct rte_sched_queue *queue = grinder->queue[grinder->qpos];
1667         struct rte_mbuf *pkt = grinder->pkt;
1668         uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
1669
1670         if (!grinder_credits_check(port, pos))
1671                 return 0;
1672
1673         /* Advance port time */
1674         port->time += pkt_len;
1675
1676         /* Send packet */
1677         port->pkts_out[port->n_pkts_out++] = pkt;
1678         queue->qr++;
1679         grinder->wrr_tokens[grinder->qpos] += pkt_len * grinder->wrr_cost[grinder->qpos];
1680         if (queue->qr == queue->qw) {
1681                 uint32_t qindex = grinder->qindex[grinder->qpos];
1682
1683                 rte_bitmap_clear(port->bmp, qindex);
1684                 grinder->qmask &= ~(1 << grinder->qpos);
1685                 grinder->wrr_mask[grinder->qpos] = 0;
1686                 rte_sched_port_set_queue_empty_timestamp(port, qindex);
1687         }
1688
1689         /* Reset pipe loop detection */
1690         port->pipe_loop = RTE_SCHED_PIPE_INVALID;
1691         grinder->productive = 1;
1692
1693         return 1;
1694 }
1695
1696 #ifdef SCHED_VECTOR_SSE4
1697
1698 static inline int
1699 grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe)
1700 {
1701         __m128i index = _mm_set1_epi32(base_pipe);
1702         __m128i pipes = _mm_load_si128((__m128i *)port->grinder_base_bmp_pos);
1703         __m128i res = _mm_cmpeq_epi32(pipes, index);
1704
1705         pipes = _mm_load_si128((__m128i *)(port->grinder_base_bmp_pos + 4));
1706         pipes = _mm_cmpeq_epi32(pipes, index);
1707         res = _mm_or_si128(res, pipes);
1708
1709         if (_mm_testz_si128(res, res))
1710                 return 0;
1711
1712         return 1;
1713 }
1714
1715 #else
1716
1717 static inline int
1718 grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe)
1719 {
1720         uint32_t i;
1721
1722         for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i++) {
1723                 if (port->grinder_base_bmp_pos[i] == base_pipe)
1724                         return 1;
1725         }
1726
1727         return 0;
1728 }
1729
1730 #endif /* RTE_SCHED_OPTIMIZATIONS */
1731
1732 static inline void
1733 grinder_pcache_populate(struct rte_sched_port *port, uint32_t pos, uint32_t bmp_pos, uint64_t bmp_slab)
1734 {
1735         struct rte_sched_grinder *grinder = port->grinder + pos;
1736         uint16_t w[4];
1737
1738         grinder->pcache_w = 0;
1739         grinder->pcache_r = 0;
1740
1741         w[0] = (uint16_t) bmp_slab;
1742         w[1] = (uint16_t) (bmp_slab >> 16);
1743         w[2] = (uint16_t) (bmp_slab >> 32);
1744         w[3] = (uint16_t) (bmp_slab >> 48);
1745
1746         grinder->pcache_qmask[grinder->pcache_w] = w[0];
1747         grinder->pcache_qindex[grinder->pcache_w] = bmp_pos;
1748         grinder->pcache_w += (w[0] != 0);
1749
1750         grinder->pcache_qmask[grinder->pcache_w] = w[1];
1751         grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 16;
1752         grinder->pcache_w += (w[1] != 0);
1753
1754         grinder->pcache_qmask[grinder->pcache_w] = w[2];
1755         grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 32;
1756         grinder->pcache_w += (w[2] != 0);
1757
1758         grinder->pcache_qmask[grinder->pcache_w] = w[3];
1759         grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 48;
1760         grinder->pcache_w += (w[3] != 0);
1761 }
1762
1763 static inline void
1764 grinder_tccache_populate(struct rte_sched_port *port, uint32_t pos, uint32_t qindex, uint16_t qmask)
1765 {
1766         struct rte_sched_grinder *grinder = port->grinder + pos;
1767         uint8_t b[4];
1768
1769         grinder->tccache_w = 0;
1770         grinder->tccache_r = 0;
1771
1772         b[0] = (uint8_t) (qmask & 0xF);
1773         b[1] = (uint8_t) ((qmask >> 4) & 0xF);
1774         b[2] = (uint8_t) ((qmask >> 8) & 0xF);
1775         b[3] = (uint8_t) ((qmask >> 12) & 0xF);
1776
1777         grinder->tccache_qmask[grinder->tccache_w] = b[0];
1778         grinder->tccache_qindex[grinder->tccache_w] = qindex;
1779         grinder->tccache_w += (b[0] != 0);
1780
1781         grinder->tccache_qmask[grinder->tccache_w] = b[1];
1782         grinder->tccache_qindex[grinder->tccache_w] = qindex + 4;
1783         grinder->tccache_w += (b[1] != 0);
1784
1785         grinder->tccache_qmask[grinder->tccache_w] = b[2];
1786         grinder->tccache_qindex[grinder->tccache_w] = qindex + 8;
1787         grinder->tccache_w += (b[2] != 0);
1788
1789         grinder->tccache_qmask[grinder->tccache_w] = b[3];
1790         grinder->tccache_qindex[grinder->tccache_w] = qindex + 12;
1791         grinder->tccache_w += (b[3] != 0);
1792 }
1793
1794 static inline int
1795 grinder_next_tc(struct rte_sched_port *port, uint32_t pos)
1796 {
1797         struct rte_sched_grinder *grinder = port->grinder + pos;
1798         struct rte_mbuf **qbase;
1799         uint32_t qindex;
1800         uint16_t qsize;
1801
1802         if (grinder->tccache_r == grinder->tccache_w)
1803                 return 0;
1804
1805         qindex = grinder->tccache_qindex[grinder->tccache_r];
1806         qbase = rte_sched_port_qbase(port, qindex);
1807         qsize = rte_sched_port_qsize(port, qindex);
1808
1809         grinder->tc_index = (qindex >> 2) & 0x3;
1810         grinder->qmask = grinder->tccache_qmask[grinder->tccache_r];
1811         grinder->qsize = qsize;
1812
1813         grinder->qindex[0] = qindex;
1814         grinder->qindex[1] = qindex + 1;
1815         grinder->qindex[2] = qindex + 2;
1816         grinder->qindex[3] = qindex + 3;
1817
1818         grinder->queue[0] = port->queue + qindex;
1819         grinder->queue[1] = port->queue + qindex + 1;
1820         grinder->queue[2] = port->queue + qindex + 2;
1821         grinder->queue[3] = port->queue + qindex + 3;
1822
1823         grinder->qbase[0] = qbase;
1824         grinder->qbase[1] = qbase + qsize;
1825         grinder->qbase[2] = qbase + 2 * qsize;
1826         grinder->qbase[3] = qbase + 3 * qsize;
1827
1828         grinder->tccache_r++;
1829         return 1;
1830 }
1831
1832 static inline int
1833 grinder_next_pipe(struct rte_sched_port *port, uint32_t pos)
1834 {
1835         struct rte_sched_grinder *grinder = port->grinder + pos;
1836         uint32_t pipe_qindex;
1837         uint16_t pipe_qmask;
1838
1839         if (grinder->pcache_r < grinder->pcache_w) {
1840                 pipe_qmask = grinder->pcache_qmask[grinder->pcache_r];
1841                 pipe_qindex = grinder->pcache_qindex[grinder->pcache_r];
1842                 grinder->pcache_r++;
1843         } else {
1844                 uint64_t bmp_slab = 0;
1845                 uint32_t bmp_pos = 0;
1846
1847                 /* Get another non-empty pipe group */
1848                 if (unlikely(rte_bitmap_scan(port->bmp, &bmp_pos, &bmp_slab) <= 0))
1849                         return 0;
1850
1851 #ifdef RTE_SCHED_DEBUG
1852                 debug_check_queue_slab(port, bmp_pos, bmp_slab);
1853 #endif
1854
1855                 /* Return if pipe group already in one of the other grinders */
1856                 port->grinder_base_bmp_pos[pos] = RTE_SCHED_BMP_POS_INVALID;
1857                 if (unlikely(grinder_pipe_exists(port, bmp_pos)))
1858                         return 0;
1859
1860                 port->grinder_base_bmp_pos[pos] = bmp_pos;
1861
1862                 /* Install new pipe group into grinder's pipe cache */
1863                 grinder_pcache_populate(port, pos, bmp_pos, bmp_slab);
1864
1865                 pipe_qmask = grinder->pcache_qmask[0];
1866                 pipe_qindex = grinder->pcache_qindex[0];
1867                 grinder->pcache_r = 1;
1868         }
1869
1870         /* Install new pipe in the grinder */
1871         grinder->pindex = pipe_qindex >> 4;
1872         grinder->subport = port->subport + (grinder->pindex / port->n_pipes_per_subport);
1873         grinder->pipe = port->pipe + grinder->pindex;
1874         grinder->pipe_params = NULL; /* to be set after the pipe structure is prefetched */
1875         grinder->productive = 0;
1876
1877         grinder_tccache_populate(port, pos, pipe_qindex, pipe_qmask);
1878         grinder_next_tc(port, pos);
1879
1880         /* Check for pipe exhaustion */
1881         if (grinder->pindex == port->pipe_loop) {
1882                 port->pipe_exhaustion = 1;
1883                 port->pipe_loop = RTE_SCHED_PIPE_INVALID;
1884         }
1885
1886         return 1;
1887 }
1888
1889
1890 static inline void
1891 grinder_wrr_load(struct rte_sched_port *port, uint32_t pos)
1892 {
1893         struct rte_sched_grinder *grinder = port->grinder + pos;
1894         struct rte_sched_pipe *pipe = grinder->pipe;
1895         struct rte_sched_pipe_profile *pipe_params = grinder->pipe_params;
1896         uint32_t tc_index = grinder->tc_index;
1897         uint32_t qmask = grinder->qmask;
1898         uint32_t qindex;
1899
1900         qindex = tc_index * 4;
1901
1902         grinder->wrr_tokens[0] = ((uint16_t) pipe->wrr_tokens[qindex]) << RTE_SCHED_WRR_SHIFT;
1903         grinder->wrr_tokens[1] = ((uint16_t) pipe->wrr_tokens[qindex + 1]) << RTE_SCHED_WRR_SHIFT;
1904         grinder->wrr_tokens[2] = ((uint16_t) pipe->wrr_tokens[qindex + 2]) << RTE_SCHED_WRR_SHIFT;
1905         grinder->wrr_tokens[3] = ((uint16_t) pipe->wrr_tokens[qindex + 3]) << RTE_SCHED_WRR_SHIFT;
1906
1907         grinder->wrr_mask[0] = (qmask & 0x1) * 0xFFFF;
1908         grinder->wrr_mask[1] = ((qmask >> 1) & 0x1) * 0xFFFF;
1909         grinder->wrr_mask[2] = ((qmask >> 2) & 0x1) * 0xFFFF;
1910         grinder->wrr_mask[3] = ((qmask >> 3) & 0x1) * 0xFFFF;
1911
1912         grinder->wrr_cost[0] = pipe_params->wrr_cost[qindex];
1913         grinder->wrr_cost[1] = pipe_params->wrr_cost[qindex + 1];
1914         grinder->wrr_cost[2] = pipe_params->wrr_cost[qindex + 2];
1915         grinder->wrr_cost[3] = pipe_params->wrr_cost[qindex + 3];
1916 }
1917
1918 static inline void
1919 grinder_wrr_store(struct rte_sched_port *port, uint32_t pos)
1920 {
1921         struct rte_sched_grinder *grinder = port->grinder + pos;
1922         struct rte_sched_pipe *pipe = grinder->pipe;
1923         uint32_t tc_index = grinder->tc_index;
1924         uint32_t qindex;
1925
1926         qindex = tc_index * 4;
1927
1928         pipe->wrr_tokens[qindex] = (grinder->wrr_tokens[0] & grinder->wrr_mask[0])
1929                 >> RTE_SCHED_WRR_SHIFT;
1930         pipe->wrr_tokens[qindex + 1] = (grinder->wrr_tokens[1] & grinder->wrr_mask[1])
1931                 >> RTE_SCHED_WRR_SHIFT;
1932         pipe->wrr_tokens[qindex + 2] = (grinder->wrr_tokens[2] & grinder->wrr_mask[2])
1933                 >> RTE_SCHED_WRR_SHIFT;
1934         pipe->wrr_tokens[qindex + 3] = (grinder->wrr_tokens[3] & grinder->wrr_mask[3])
1935                 >> RTE_SCHED_WRR_SHIFT;
1936 }
1937
1938 static inline void
1939 grinder_wrr(struct rte_sched_port *port, uint32_t pos)
1940 {
1941         struct rte_sched_grinder *grinder = port->grinder + pos;
1942         uint16_t wrr_tokens_min;
1943
1944         grinder->wrr_tokens[0] |= ~grinder->wrr_mask[0];
1945         grinder->wrr_tokens[1] |= ~grinder->wrr_mask[1];
1946         grinder->wrr_tokens[2] |= ~grinder->wrr_mask[2];
1947         grinder->wrr_tokens[3] |= ~grinder->wrr_mask[3];
1948
1949         grinder->qpos = rte_min_pos_4_u16(grinder->wrr_tokens);
1950         wrr_tokens_min = grinder->wrr_tokens[grinder->qpos];
1951
1952         grinder->wrr_tokens[0] -= wrr_tokens_min;
1953         grinder->wrr_tokens[1] -= wrr_tokens_min;
1954         grinder->wrr_tokens[2] -= wrr_tokens_min;
1955         grinder->wrr_tokens[3] -= wrr_tokens_min;
1956 }
1957
1958
1959 #define grinder_evict(port, pos)
1960
1961 static inline void
1962 grinder_prefetch_pipe(struct rte_sched_port *port, uint32_t pos)
1963 {
1964         struct rte_sched_grinder *grinder = port->grinder + pos;
1965
1966         rte_prefetch0(grinder->pipe);
1967         rte_prefetch0(grinder->queue[0]);
1968 }
1969
1970 static inline void
1971 grinder_prefetch_tc_queue_arrays(struct rte_sched_port *port, uint32_t pos)
1972 {
1973         struct rte_sched_grinder *grinder = port->grinder + pos;
1974         uint16_t qsize, qr[4];
1975
1976         qsize = grinder->qsize;
1977         qr[0] = grinder->queue[0]->qr & (qsize - 1);
1978         qr[1] = grinder->queue[1]->qr & (qsize - 1);
1979         qr[2] = grinder->queue[2]->qr & (qsize - 1);
1980         qr[3] = grinder->queue[3]->qr & (qsize - 1);
1981
1982         rte_prefetch0(grinder->qbase[0] + qr[0]);
1983         rte_prefetch0(grinder->qbase[1] + qr[1]);
1984
1985         grinder_wrr_load(port, pos);
1986         grinder_wrr(port, pos);
1987
1988         rte_prefetch0(grinder->qbase[2] + qr[2]);
1989         rte_prefetch0(grinder->qbase[3] + qr[3]);
1990 }
1991
1992 static inline void
1993 grinder_prefetch_mbuf(struct rte_sched_port *port, uint32_t pos)
1994 {
1995         struct rte_sched_grinder *grinder = port->grinder + pos;
1996         uint32_t qpos = grinder->qpos;
1997         struct rte_mbuf **qbase = grinder->qbase[qpos];
1998         uint16_t qsize = grinder->qsize;
1999         uint16_t qr = grinder->queue[qpos]->qr & (qsize - 1);
2000
2001         grinder->pkt = qbase[qr];
2002         rte_prefetch0(grinder->pkt);
2003
2004         if (unlikely((qr & 0x7) == 7)) {
2005                 uint16_t qr_next = (grinder->queue[qpos]->qr + 1) & (qsize - 1);
2006
2007                 rte_prefetch0(qbase + qr_next);
2008         }
2009 }
2010
2011 static inline uint32_t
2012 grinder_handle(struct rte_sched_port *port, uint32_t pos)
2013 {
2014         struct rte_sched_grinder *grinder = port->grinder + pos;
2015
2016         switch (grinder->state) {
2017         case e_GRINDER_PREFETCH_PIPE:
2018         {
2019                 if (grinder_next_pipe(port, pos)) {
2020                         grinder_prefetch_pipe(port, pos);
2021                         port->busy_grinders++;
2022
2023                         grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS;
2024                         return 0;
2025                 }
2026
2027                 return 0;
2028         }
2029
2030         case e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS:
2031         {
2032                 struct rte_sched_pipe *pipe = grinder->pipe;
2033
2034                 grinder->pipe_params = port->pipe_profiles + pipe->profile;
2035                 grinder_prefetch_tc_queue_arrays(port, pos);
2036                 grinder_credits_update(port, pos);
2037
2038                 grinder->state = e_GRINDER_PREFETCH_MBUF;
2039                 return 0;
2040         }
2041
2042         case e_GRINDER_PREFETCH_MBUF:
2043         {
2044                 grinder_prefetch_mbuf(port, pos);
2045
2046                 grinder->state = e_GRINDER_READ_MBUF;
2047                 return 0;
2048         }
2049
2050         case e_GRINDER_READ_MBUF:
2051         {
2052                 uint32_t result = 0;
2053
2054                 result = grinder_schedule(port, pos);
2055
2056                 /* Look for next packet within the same TC */
2057                 if (result && grinder->qmask) {
2058                         grinder_wrr(port, pos);
2059                         grinder_prefetch_mbuf(port, pos);
2060
2061                         return 1;
2062                 }
2063                 grinder_wrr_store(port, pos);
2064
2065                 /* Look for another active TC within same pipe */
2066                 if (grinder_next_tc(port, pos)) {
2067                         grinder_prefetch_tc_queue_arrays(port, pos);
2068
2069                         grinder->state = e_GRINDER_PREFETCH_MBUF;
2070                         return result;
2071                 }
2072
2073                 if (grinder->productive == 0 &&
2074                     port->pipe_loop == RTE_SCHED_PIPE_INVALID)
2075                         port->pipe_loop = grinder->pindex;
2076
2077                 grinder_evict(port, pos);
2078
2079                 /* Look for another active pipe */
2080                 if (grinder_next_pipe(port, pos)) {
2081                         grinder_prefetch_pipe(port, pos);
2082
2083                         grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS;
2084                         return result;
2085                 }
2086
2087                 /* No active pipe found */
2088                 port->busy_grinders--;
2089
2090                 grinder->state = e_GRINDER_PREFETCH_PIPE;
2091                 return result;
2092         }
2093
2094         default:
2095                 rte_panic("Algorithmic error (invalid state)\n");
2096                 return 0;
2097         }
2098 }
2099
2100 static inline void
2101 rte_sched_port_time_resync(struct rte_sched_port *port)
2102 {
2103         uint64_t cycles = rte_get_tsc_cycles();
2104         uint64_t cycles_diff = cycles - port->time_cpu_cycles;
2105         uint64_t bytes_diff;
2106
2107         /* Compute elapsed time in bytes */
2108         bytes_diff = rte_reciprocal_divide(cycles_diff << RTE_SCHED_TIME_SHIFT,
2109                                            port->inv_cycles_per_byte);
2110
2111         /* Advance port time */
2112         port->time_cpu_cycles = cycles;
2113         port->time_cpu_bytes += bytes_diff;
2114         if (port->time < port->time_cpu_bytes)
2115                 port->time = port->time_cpu_bytes;
2116
2117         /* Reset pipe loop detection */
2118         port->pipe_loop = RTE_SCHED_PIPE_INVALID;
2119 }
2120
2121 static inline int
2122 rte_sched_port_exceptions(struct rte_sched_port *port, int second_pass)
2123 {
2124         int exceptions;
2125
2126         /* Check if any exception flag is set */
2127         exceptions = (second_pass && port->busy_grinders == 0) ||
2128                 (port->pipe_exhaustion == 1);
2129
2130         /* Clear exception flags */
2131         port->pipe_exhaustion = 0;
2132
2133         return exceptions;
2134 }
2135
2136 int
2137 rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts)
2138 {
2139         uint32_t i, count;
2140
2141         port->pkts_out = pkts;
2142         port->n_pkts_out = 0;
2143
2144         rte_sched_port_time_resync(port);
2145
2146         /* Take each queue in the grinder one step further */
2147         for (i = 0, count = 0; ; i++)  {
2148                 count += grinder_handle(port, i & (RTE_SCHED_PORT_N_GRINDERS - 1));
2149                 if ((count == n_pkts) ||
2150                     rte_sched_port_exceptions(port, i >= RTE_SCHED_PORT_N_GRINDERS)) {
2151                         break;
2152                 }
2153         }
2154
2155         return count;
2156 }