New upstream version 16.11.5
[deb_dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_virtio_net.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47 #include <rte_spinlock.h>
48
49 #include "vhost.h"
50
51 #define MAX_PKT_BURST 32
52 #define VHOST_LOG_PAGE  4096
53
54 /*
55  * Atomically set a bit in memory.
56  */
57 static inline void __attribute__((always_inline))
58 vhost_set_bit(unsigned int nr, volatile uint8_t *addr)
59 {
60         __sync_fetch_and_or_8(addr, (1U << nr));
61 }
62
63 static inline void __attribute__((always_inline))
64 vhost_log_page(uint8_t *log_base, uint64_t page)
65 {
66         vhost_set_bit(page % 8, &log_base[page / 8]);
67 }
68
69 static inline void __attribute__((always_inline))
70 vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
71 {
72         uint64_t page;
73
74         if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
75                    !dev->log_base || !len))
76                 return;
77
78         if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
79                 return;
80
81         /* To make sure guest memory updates are committed before logging */
82         rte_smp_wmb();
83
84         page = addr / VHOST_LOG_PAGE;
85         while (page * VHOST_LOG_PAGE < addr + len) {
86                 vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
87                 page += 1;
88         }
89 }
90
91 static inline void __attribute__((always_inline))
92 vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
93                      uint64_t offset, uint64_t len)
94 {
95         vhost_log_write(dev, vq->log_guest_addr + offset, len);
96 }
97
98 static bool
99 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
100 {
101         return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
102 }
103
104 static inline void __attribute__((always_inline))
105 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
106                           uint16_t to, uint16_t from, uint16_t size)
107 {
108         rte_memcpy(&vq->used->ring[to],
109                         &vq->shadow_used_ring[from],
110                         size * sizeof(struct vring_used_elem));
111         vhost_log_used_vring(dev, vq,
112                         offsetof(struct vring_used, ring[to]),
113                         size * sizeof(struct vring_used_elem));
114 }
115
116 static inline void __attribute__((always_inline))
117 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
118 {
119         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
120
121         if (used_idx + vq->shadow_used_idx <= vq->size) {
122                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
123                                           vq->shadow_used_idx);
124         } else {
125                 uint16_t size;
126
127                 /* update used ring interval [used_idx, vq->size] */
128                 size = vq->size - used_idx;
129                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
130
131                 /* update the left half used ring interval [0, left_size] */
132                 do_flush_shadow_used_ring(dev, vq, 0, size,
133                                           vq->shadow_used_idx - size);
134         }
135         vq->last_used_idx += vq->shadow_used_idx;
136
137         rte_smp_wmb();
138
139         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
140         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
141                 sizeof(vq->used->idx));
142 }
143
144 static inline void __attribute__((always_inline))
145 update_shadow_used_ring(struct vhost_virtqueue *vq,
146                          uint16_t desc_idx, uint16_t len)
147 {
148         uint16_t i = vq->shadow_used_idx++;
149
150         vq->shadow_used_ring[i].id  = desc_idx;
151         vq->shadow_used_ring[i].len = len;
152 }
153
154 static void
155 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
156 {
157         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
158
159         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
160                 csum_l4 |= PKT_TX_TCP_CKSUM;
161
162         if (csum_l4) {
163                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
164                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
165
166                 switch (csum_l4) {
167                 case PKT_TX_TCP_CKSUM:
168                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
169                                                 cksum));
170                         break;
171                 case PKT_TX_UDP_CKSUM:
172                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
173                                                 dgram_cksum));
174                         break;
175                 case PKT_TX_SCTP_CKSUM:
176                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
177                                                 cksum));
178                         break;
179                 }
180         }
181
182         /* IP cksum verification cannot be bypassed, then calculate here */
183         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
184                 struct ipv4_hdr *ipv4_hdr;
185
186                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
187                                                    m_buf->l2_len);
188                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
189         }
190
191         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
192                 if (m_buf->ol_flags & PKT_TX_IPV4)
193                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
194                 else
195                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
196                 net_hdr->gso_size = m_buf->tso_segsz;
197                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
198                                         + m_buf->l4_len;
199         }
200 }
201
202 static inline void
203 copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
204                     struct virtio_net_hdr_mrg_rxbuf hdr)
205 {
206         if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
207                 *(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
208         else
209                 *(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
210 }
211
212 static inline int __attribute__((always_inline))
213 copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
214                   struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
215 {
216         uint32_t desc_avail, desc_offset;
217         uint32_t mbuf_avail, mbuf_offset;
218         uint32_t cpy_len;
219         struct vring_desc *desc;
220         uint64_t desc_addr;
221         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
222         /* A counter to avoid desc dead loop chain */
223         uint16_t nr_desc = 1;
224
225         desc = &descs[desc_idx];
226         desc_addr = gpa_to_vva(dev, desc->addr);
227         /*
228          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
229          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
230          * otherwise stores offset on the stack instead of in a register.
231          */
232         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
233                 return -1;
234
235         rte_prefetch0((void *)(uintptr_t)desc_addr);
236
237         virtio_enqueue_offload(m, &virtio_hdr.hdr);
238         copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
239         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
240         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
241
242         desc_offset = dev->vhost_hlen;
243         desc_avail  = desc->len - dev->vhost_hlen;
244
245         mbuf_avail  = rte_pktmbuf_data_len(m);
246         mbuf_offset = 0;
247         while (mbuf_avail != 0 || m->next != NULL) {
248                 /* done with current mbuf, fetch next */
249                 if (mbuf_avail == 0) {
250                         m = m->next;
251
252                         mbuf_offset = 0;
253                         mbuf_avail  = rte_pktmbuf_data_len(m);
254                 }
255
256                 /* done with current desc buf, fetch next */
257                 if (desc_avail == 0) {
258                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
259                                 /* Room in vring buffer is not enough */
260                                 return -1;
261                         }
262                         if (unlikely(desc->next >= size || ++nr_desc > size))
263                                 return -1;
264
265                         desc = &descs[desc->next];
266                         desc_addr = gpa_to_vva(dev, desc->addr);
267                         if (unlikely(!desc_addr))
268                                 return -1;
269
270                         desc_offset = 0;
271                         desc_avail  = desc->len;
272                 }
273
274                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
275                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
276                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
277                         cpy_len);
278                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
279                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
280                              cpy_len, 0);
281
282                 mbuf_avail  -= cpy_len;
283                 mbuf_offset += cpy_len;
284                 desc_avail  -= cpy_len;
285                 desc_offset += cpy_len;
286         }
287
288         return 0;
289 }
290
291 /**
292  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
293  * be received from the physical port or from another virtio device. A packet
294  * count is returned to indicate the number of packets that are succesfully
295  * added to the RX queue. This function works when the mbuf is scattered, but
296  * it doesn't support the mergeable feature.
297  */
298 static inline uint32_t __attribute__((always_inline))
299 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
300               struct rte_mbuf **pkts, uint32_t count)
301 {
302         struct vhost_virtqueue *vq;
303         uint16_t avail_idx, free_entries, start_idx;
304         uint16_t desc_indexes[MAX_PKT_BURST];
305         struct vring_desc *descs;
306         uint16_t used_idx;
307         uint32_t i, sz;
308
309         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
310         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
311                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
312                         dev->vid, __func__, queue_id);
313                 return 0;
314         }
315
316         vq = dev->virtqueue[queue_id];
317
318         rte_spinlock_lock(&vq->access_lock);
319
320         if (unlikely(vq->enabled == 0))
321                 goto out_access_unlock;
322
323         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
324         start_idx = vq->last_used_idx;
325         free_entries = avail_idx - start_idx;
326         count = RTE_MIN(count, free_entries);
327         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
328         if (count == 0)
329                 goto out_access_unlock;
330
331         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
332                 dev->vid, start_idx, start_idx + count);
333
334         /* Retrieve all of the desc indexes first to avoid caching issues. */
335         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
336         for (i = 0; i < count; i++) {
337                 used_idx = (start_idx + i) & (vq->size - 1);
338                 desc_indexes[i] = vq->avail->ring[used_idx];
339                 vq->used->ring[used_idx].id = desc_indexes[i];
340                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
341                                                dev->vhost_hlen;
342                 vhost_log_used_vring(dev, vq,
343                         offsetof(struct vring_used, ring[used_idx]),
344                         sizeof(vq->used->ring[used_idx]));
345         }
346
347         rte_prefetch0(&vq->desc[desc_indexes[0]]);
348         for (i = 0; i < count; i++) {
349                 uint16_t desc_idx = desc_indexes[i];
350                 int err;
351
352                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
353                         descs = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
354                                         vq->desc[desc_idx].addr);
355                         if (unlikely(!descs)) {
356                                 count = i;
357                                 break;
358                         }
359
360                         desc_idx = 0;
361                         sz = vq->desc[desc_idx].len / sizeof(*descs);
362                 } else {
363                         descs = vq->desc;
364                         sz = vq->size;
365                 }
366
367                 err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
368                 if (unlikely(err)) {
369                         used_idx = (start_idx + i) & (vq->size - 1);
370                         vq->used->ring[used_idx].len = dev->vhost_hlen;
371                         vhost_log_used_vring(dev, vq,
372                                 offsetof(struct vring_used, ring[used_idx]),
373                                 sizeof(vq->used->ring[used_idx]));
374                 }
375
376                 if (i + 1 < count)
377                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
378         }
379
380         rte_smp_wmb();
381
382         *(volatile uint16_t *)&vq->used->idx += count;
383         vq->last_used_idx += count;
384         vhost_log_used_vring(dev, vq,
385                 offsetof(struct vring_used, idx),
386                 sizeof(vq->used->idx));
387
388         /* flush used->idx update before we read avail->flags. */
389         rte_mb();
390
391         /* Kick the guest if necessary. */
392         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
393                         && (vq->callfd >= 0))
394                 eventfd_write(vq->callfd, (eventfd_t)1);
395
396 out_access_unlock:
397         rte_spinlock_unlock(&vq->access_lock);
398
399         return count;
400 }
401
402 static inline int __attribute__((always_inline))
403 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
404                          uint32_t avail_idx, uint32_t *vec_idx,
405                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
406                          uint16_t *desc_chain_len)
407 {
408         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
409         uint32_t vec_id = *vec_idx;
410         uint32_t len    = 0;
411         struct vring_desc *descs = vq->desc;
412
413         *desc_chain_head = idx;
414
415         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
416                 descs = (struct vring_desc *)(uintptr_t)
417                                         gpa_to_vva(dev, vq->desc[idx].addr);
418                 if (unlikely(!descs))
419                         return -1;
420
421                 idx = 0;
422         }
423
424         while (1) {
425                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
426                         return -1;
427
428                 len += descs[idx].len;
429                 buf_vec[vec_id].buf_addr = descs[idx].addr;
430                 buf_vec[vec_id].buf_len  = descs[idx].len;
431                 buf_vec[vec_id].desc_idx = idx;
432                 vec_id++;
433
434                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
435                         break;
436
437                 idx = descs[idx].next;
438         }
439
440         *desc_chain_len = len;
441         *vec_idx = vec_id;
442
443         return 0;
444 }
445
446 /*
447  * Returns -1 on fail, 0 on success
448  */
449 static inline int
450 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
451                                 uint32_t size, struct buf_vector *buf_vec,
452                                 uint16_t *num_buffers, uint16_t avail_head)
453 {
454         uint16_t cur_idx;
455         uint32_t vec_idx = 0;
456         uint16_t tries = 0;
457
458         uint16_t head_idx = 0;
459         uint16_t len = 0;
460
461         *num_buffers = 0;
462         cur_idx  = vq->last_avail_idx;
463
464         while (size > 0) {
465                 if (unlikely(cur_idx == avail_head))
466                         return -1;
467
468                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
469                                                 &head_idx, &len) < 0))
470                         return -1;
471                 len = RTE_MIN(len, size);
472                 update_shadow_used_ring(vq, head_idx, len);
473                 size -= len;
474
475                 cur_idx++;
476                 tries++;
477                 *num_buffers += 1;
478
479                 /*
480                  * if we tried all available ring items, and still
481                  * can't get enough buf, it means something abnormal
482                  * happened.
483                  */
484                 if (unlikely(tries >= vq->size))
485                         return -1;
486         }
487
488         return 0;
489 }
490
491 static inline int __attribute__((always_inline))
492 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
493                             struct buf_vector *buf_vec, uint16_t num_buffers)
494 {
495         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
496         uint32_t vec_idx = 0;
497         uint64_t desc_addr;
498         uint32_t mbuf_offset, mbuf_avail;
499         uint32_t desc_offset, desc_avail;
500         uint32_t cpy_len;
501         uint64_t hdr_addr, hdr_phys_addr;
502         struct rte_mbuf *hdr_mbuf;
503
504         if (unlikely(m == NULL))
505                 return -1;
506
507         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
508         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
509                 return -1;
510
511         hdr_mbuf = m;
512         hdr_addr = desc_addr;
513         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
514         rte_prefetch0((void *)(uintptr_t)hdr_addr);
515
516         virtio_hdr.num_buffers = num_buffers;
517         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
518                 dev->vid, num_buffers);
519
520         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
521         desc_offset = dev->vhost_hlen;
522
523         mbuf_avail  = rte_pktmbuf_data_len(m);
524         mbuf_offset = 0;
525         while (mbuf_avail != 0 || m->next != NULL) {
526                 /* done with current desc buf, get the next one */
527                 if (desc_avail == 0) {
528                         vec_idx++;
529                         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
530                         if (unlikely(!desc_addr))
531                                 return -1;
532
533                         /* Prefetch buffer address. */
534                         rte_prefetch0((void *)(uintptr_t)desc_addr);
535                         desc_offset = 0;
536                         desc_avail  = buf_vec[vec_idx].buf_len;
537                 }
538
539                 /* done with current mbuf, get the next one */
540                 if (mbuf_avail == 0) {
541                         m = m->next;
542
543                         mbuf_offset = 0;
544                         mbuf_avail  = rte_pktmbuf_data_len(m);
545                 }
546
547                 if (hdr_addr) {
548                         virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
549                         copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
550                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
551                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
552                                      dev->vhost_hlen, 0);
553
554                         hdr_addr = 0;
555                 }
556
557                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
558                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
559                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
560                         cpy_len);
561                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
562                         cpy_len);
563                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
564                         cpy_len, 0);
565
566                 mbuf_avail  -= cpy_len;
567                 mbuf_offset += cpy_len;
568                 desc_avail  -= cpy_len;
569                 desc_offset += cpy_len;
570         }
571
572         return 0;
573 }
574
575 static inline uint32_t __attribute__((always_inline))
576 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
577         struct rte_mbuf **pkts, uint32_t count)
578 {
579         struct vhost_virtqueue *vq;
580         uint32_t pkt_idx = 0;
581         uint16_t num_buffers;
582         struct buf_vector buf_vec[BUF_VECTOR_MAX];
583         uint16_t avail_head;
584
585         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
586         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
587                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
588                         dev->vid, __func__, queue_id);
589                 return 0;
590         }
591
592         vq = dev->virtqueue[queue_id];
593
594         rte_spinlock_lock(&vq->access_lock);
595
596         if (unlikely(vq->enabled == 0))
597                 goto out_access_unlock;
598
599         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
600         if (count == 0)
601                 goto out_access_unlock;
602
603         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
604
605         vq->shadow_used_idx = 0;
606         avail_head = *((volatile uint16_t *)&vq->avail->idx);
607         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
608                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
609
610                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
611                                                 pkt_len, buf_vec, &num_buffers,
612                                                 avail_head) < 0)) {
613                         LOG_DEBUG(VHOST_DATA,
614                                 "(%d) failed to get enough desc from vring\n",
615                                 dev->vid);
616                         vq->shadow_used_idx -= num_buffers;
617                         break;
618                 }
619
620                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
621                         dev->vid, vq->last_avail_idx,
622                         vq->last_avail_idx + num_buffers);
623
624                 if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
625                                                 buf_vec, num_buffers) < 0) {
626                         vq->shadow_used_idx -= num_buffers;
627                         break;
628                 }
629
630                 vq->last_avail_idx += num_buffers;
631         }
632
633         if (likely(vq->shadow_used_idx)) {
634                 flush_shadow_used_ring(dev, vq);
635
636                 /* flush used->idx update before we read avail->flags. */
637                 rte_mb();
638
639                 /* Kick the guest if necessary. */
640                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
641                                 && (vq->callfd >= 0))
642                         eventfd_write(vq->callfd, (eventfd_t)1);
643         }
644
645 out_access_unlock:
646         rte_spinlock_unlock(&vq->access_lock);
647
648         return pkt_idx;
649 }
650
651 uint16_t
652 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
653         struct rte_mbuf **pkts, uint16_t count)
654 {
655         struct virtio_net *dev = get_device(vid);
656
657         if (!dev)
658                 return 0;
659
660         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
661                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
662         else
663                 return virtio_dev_rx(dev, queue_id, pkts, count);
664 }
665
666 static inline bool
667 virtio_net_with_host_offload(struct virtio_net *dev)
668 {
669         if (dev->features &
670                         ((1ULL << VIRTIO_NET_F_CSUM) |
671                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
672                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
673                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
674                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
675                 return true;
676
677         return false;
678 }
679
680 static void
681 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
682 {
683         struct ipv4_hdr *ipv4_hdr;
684         struct ipv6_hdr *ipv6_hdr;
685         void *l3_hdr = NULL;
686         struct ether_hdr *eth_hdr;
687         uint16_t ethertype;
688
689         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
690
691         m->l2_len = sizeof(struct ether_hdr);
692         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
693
694         if (ethertype == ETHER_TYPE_VLAN) {
695                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
696
697                 m->l2_len += sizeof(struct vlan_hdr);
698                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
699         }
700
701         l3_hdr = (char *)eth_hdr + m->l2_len;
702
703         switch (ethertype) {
704         case ETHER_TYPE_IPv4:
705                 ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
706                 *l4_proto = ipv4_hdr->next_proto_id;
707                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
708                 *l4_hdr = (char *)l3_hdr + m->l3_len;
709                 m->ol_flags |= PKT_TX_IPV4;
710                 break;
711         case ETHER_TYPE_IPv6:
712                 ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
713                 *l4_proto = ipv6_hdr->proto;
714                 m->l3_len = sizeof(struct ipv6_hdr);
715                 *l4_hdr = (char *)l3_hdr + m->l3_len;
716                 m->ol_flags |= PKT_TX_IPV6;
717                 break;
718         default:
719                 m->l3_len = 0;
720                 *l4_proto = 0;
721                 *l4_hdr = NULL;
722                 break;
723         }
724 }
725
726 static inline void __attribute__((always_inline))
727 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
728 {
729         uint16_t l4_proto = 0;
730         void *l4_hdr = NULL;
731         struct tcp_hdr *tcp_hdr = NULL;
732
733         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
734                 return;
735
736         parse_ethernet(m, &l4_proto, &l4_hdr);
737         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
738                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
739                         switch (hdr->csum_offset) {
740                         case (offsetof(struct tcp_hdr, cksum)):
741                                 if (l4_proto == IPPROTO_TCP)
742                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
743                                 break;
744                         case (offsetof(struct udp_hdr, dgram_cksum)):
745                                 if (l4_proto == IPPROTO_UDP)
746                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
747                                 break;
748                         case (offsetof(struct sctp_hdr, cksum)):
749                                 if (l4_proto == IPPROTO_SCTP)
750                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
751                                 break;
752                         default:
753                                 break;
754                         }
755                 }
756         }
757
758         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
759                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
760                 case VIRTIO_NET_HDR_GSO_TCPV4:
761                 case VIRTIO_NET_HDR_GSO_TCPV6:
762                         tcp_hdr = (struct tcp_hdr *)l4_hdr;
763                         m->ol_flags |= PKT_TX_TCP_SEG;
764                         m->tso_segsz = hdr->gso_size;
765                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
766                         break;
767                 default:
768                         RTE_LOG(WARNING, VHOST_DATA,
769                                 "unsupported gso type %u.\n", hdr->gso_type);
770                         break;
771                 }
772         }
773 }
774
775 #define RARP_PKT_SIZE   64
776
777 static int
778 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
779 {
780         struct ether_hdr *eth_hdr;
781         struct arp_hdr  *rarp;
782
783         if (rarp_mbuf->buf_len < 64) {
784                 RTE_LOG(WARNING, VHOST_DATA,
785                         "failed to make RARP; mbuf size too small %u (< %d)\n",
786                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
787                 return -1;
788         }
789
790         /* Ethernet header. */
791         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
792         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
793         ether_addr_copy(mac, &eth_hdr->s_addr);
794         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
795
796         /* RARP header. */
797         rarp = (struct arp_hdr *)(eth_hdr + 1);
798         rarp->arp_hrd = htons(ARP_HRD_ETHER);
799         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
800         rarp->arp_hln = ETHER_ADDR_LEN;
801         rarp->arp_pln = 4;
802         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
803
804         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
805         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
806         memset(&rarp->arp_data.arp_sip, 0x00, 4);
807         memset(&rarp->arp_data.arp_tip, 0x00, 4);
808
809         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
810
811         return 0;
812 }
813
814 static inline void __attribute__((always_inline))
815 put_zmbuf(struct zcopy_mbuf *zmbuf)
816 {
817         zmbuf->in_use = 0;
818 }
819
820 static inline int __attribute__((always_inline))
821 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
822                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
823                   struct rte_mempool *mbuf_pool)
824 {
825         struct vring_desc *desc;
826         uint64_t desc_addr;
827         uint32_t desc_avail, desc_offset;
828         uint32_t mbuf_avail, mbuf_offset;
829         uint32_t cpy_len;
830         struct rte_mbuf *cur = m, *prev = m;
831         struct virtio_net_hdr *hdr = NULL;
832         /* A counter to avoid desc dead loop chain */
833         uint32_t nr_desc = 1;
834
835         desc = &descs[desc_idx];
836         if (unlikely((desc->len < dev->vhost_hlen)) ||
837                         (desc->flags & VRING_DESC_F_INDIRECT))
838                 return -1;
839
840         desc_addr = gpa_to_vva(dev, desc->addr);
841         if (unlikely(!desc_addr))
842                 return -1;
843
844         if (virtio_net_with_host_offload(dev)) {
845                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
846                 rte_prefetch0(hdr);
847         }
848
849         /*
850          * A virtio driver normally uses at least 2 desc buffers
851          * for Tx: the first for storing the header, and others
852          * for storing the data.
853          */
854         if (likely((desc->len == dev->vhost_hlen) &&
855                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
856                 desc = &descs[desc->next];
857                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
858                         return -1;
859
860                 desc_addr = gpa_to_vva(dev, desc->addr);
861                 if (unlikely(!desc_addr))
862                         return -1;
863
864                 desc_offset = 0;
865                 desc_avail  = desc->len;
866                 nr_desc    += 1;
867         } else {
868                 desc_avail  = desc->len - dev->vhost_hlen;
869                 desc_offset = dev->vhost_hlen;
870         }
871
872         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
873
874         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
875
876         mbuf_offset = 0;
877         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
878         while (1) {
879                 uint64_t hpa;
880
881                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
882
883                 /*
884                  * A desc buf might across two host physical pages that are
885                  * not continuous. In such case (gpa_to_hpa returns 0), data
886                  * will be copied even though zero copy is enabled.
887                  */
888                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
889                                         desc->addr + desc_offset, cpy_len)))) {
890                         cur->data_len = cpy_len;
891                         cur->data_off = 0;
892                         cur->buf_addr = (void *)(uintptr_t)(desc_addr
893                                 + desc_offset);
894                         cur->buf_physaddr = hpa;
895
896                         /*
897                          * In zero copy mode, one mbuf can only reference data
898                          * for one or partial of one desc buff.
899                          */
900                         mbuf_avail = cpy_len;
901                 } else {
902                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
903                                                            mbuf_offset),
904                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
905                                 cpy_len);
906                 }
907
908                 mbuf_avail  -= cpy_len;
909                 mbuf_offset += cpy_len;
910                 desc_avail  -= cpy_len;
911                 desc_offset += cpy_len;
912
913                 /* This desc reaches to its end, get the next one */
914                 if (desc_avail == 0) {
915                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
916                                 break;
917
918                         if (unlikely(desc->next >= max_desc ||
919                                      ++nr_desc > max_desc))
920                                 return -1;
921                         desc = &descs[desc->next];
922                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
923                                 return -1;
924
925                         desc_addr = gpa_to_vva(dev, desc->addr);
926                         if (unlikely(!desc_addr))
927                                 return -1;
928
929                         rte_prefetch0((void *)(uintptr_t)desc_addr);
930
931                         desc_offset = 0;
932                         desc_avail  = desc->len;
933
934                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
935                 }
936
937                 /*
938                  * This mbuf reaches to its end, get a new one
939                  * to hold more data.
940                  */
941                 if (mbuf_avail == 0) {
942                         cur = rte_pktmbuf_alloc(mbuf_pool);
943                         if (unlikely(cur == NULL)) {
944                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
945                                         "allocate memory for mbuf.\n");
946                                 return -1;
947                         }
948                         if (unlikely(dev->dequeue_zero_copy))
949                                 rte_mbuf_refcnt_update(cur, 1);
950
951                         prev->next = cur;
952                         prev->data_len = mbuf_offset;
953                         m->nb_segs += 1;
954                         m->pkt_len += mbuf_offset;
955                         prev = cur;
956
957                         mbuf_offset = 0;
958                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
959                 }
960         }
961
962         prev->data_len = mbuf_offset;
963         m->pkt_len    += mbuf_offset;
964
965         if (hdr)
966                 vhost_dequeue_offload(hdr, m);
967
968         return 0;
969 }
970
971 static inline void __attribute__((always_inline))
972 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
973                  uint32_t used_idx, uint32_t desc_idx)
974 {
975         vq->used->ring[used_idx].id  = desc_idx;
976         vq->used->ring[used_idx].len = 0;
977         vhost_log_used_vring(dev, vq,
978                         offsetof(struct vring_used, ring[used_idx]),
979                         sizeof(vq->used->ring[used_idx]));
980 }
981
982 static inline void __attribute__((always_inline))
983 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
984                 uint32_t count)
985 {
986         if (unlikely(count == 0))
987                 return;
988
989         rte_smp_wmb();
990         rte_smp_rmb();
991
992         vq->used->idx += count;
993         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
994                         sizeof(vq->used->idx));
995
996         /* Kick guest if required. */
997         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
998                         && (vq->callfd >= 0))
999                 eventfd_write(vq->callfd, (eventfd_t)1);
1000 }
1001
1002 static inline struct zcopy_mbuf *__attribute__((always_inline))
1003 get_zmbuf(struct vhost_virtqueue *vq)
1004 {
1005         uint16_t i;
1006         uint16_t last;
1007         int tries = 0;
1008
1009         /* search [last_zmbuf_idx, zmbuf_size) */
1010         i = vq->last_zmbuf_idx;
1011         last = vq->zmbuf_size;
1012
1013 again:
1014         for (; i < last; i++) {
1015                 if (vq->zmbufs[i].in_use == 0) {
1016                         vq->last_zmbuf_idx = i + 1;
1017                         vq->zmbufs[i].in_use = 1;
1018                         return &vq->zmbufs[i];
1019                 }
1020         }
1021
1022         tries++;
1023         if (tries == 1) {
1024                 /* search [0, last_zmbuf_idx) */
1025                 i = 0;
1026                 last = vq->last_zmbuf_idx;
1027                 goto again;
1028         }
1029
1030         return NULL;
1031 }
1032
1033 static inline bool __attribute__((always_inline))
1034 mbuf_is_consumed(struct rte_mbuf *m)
1035 {
1036         while (m) {
1037                 if (rte_mbuf_refcnt_read(m) > 1)
1038                         return false;
1039                 m = m->next;
1040         }
1041
1042         return true;
1043 }
1044
1045 static inline void __attribute__((always_inline))
1046 restore_mbuf(struct rte_mbuf *m)
1047 {
1048         uint32_t mbuf_size, priv_size;
1049
1050         while (m) {
1051                 priv_size = rte_pktmbuf_priv_size(m->pool);
1052                 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1053                 /* start of buffer is after mbuf structure and priv data */
1054
1055                 m->buf_addr = (char *)m + mbuf_size;
1056                 m->buf_physaddr = rte_mempool_virt2phy(NULL, m) + mbuf_size;
1057                 m = m->next;
1058         }
1059 }
1060
1061 uint16_t
1062 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1063         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1064 {
1065         struct virtio_net *dev;
1066         struct rte_mbuf *rarp_mbuf = NULL;
1067         struct vhost_virtqueue *vq;
1068         uint32_t desc_indexes[MAX_PKT_BURST];
1069         uint32_t used_idx;
1070         uint32_t i = 0;
1071         uint16_t free_entries;
1072         uint16_t avail_idx;
1073
1074         dev = get_device(vid);
1075         if (!dev)
1076                 return 0;
1077
1078         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
1079                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1080                         dev->vid, __func__, queue_id);
1081                 return 0;
1082         }
1083
1084         vq = dev->virtqueue[queue_id];
1085
1086         if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
1087                 return 0;
1088
1089         if (unlikely(vq->enabled == 0))
1090                 goto out_access_unlock;
1091
1092         if (unlikely(dev->dequeue_zero_copy)) {
1093                 struct zcopy_mbuf *zmbuf, *next;
1094                 int nr_updated = 0;
1095
1096                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1097                      zmbuf != NULL; zmbuf = next) {
1098                         next = TAILQ_NEXT(zmbuf, next);
1099
1100                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1101                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1102                                 update_used_ring(dev, vq, used_idx,
1103                                                  zmbuf->desc_idx);
1104                                 nr_updated += 1;
1105
1106                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1107                                 restore_mbuf(zmbuf->mbuf);
1108                                 rte_pktmbuf_free(zmbuf->mbuf);
1109                                 put_zmbuf(zmbuf);
1110                                 vq->nr_zmbuf -= 1;
1111                         }
1112                 }
1113
1114                 update_used_idx(dev, vq, nr_updated);
1115         }
1116
1117         /*
1118          * Construct a RARP broadcast packet, and inject it to the "pkts"
1119          * array, to looks like that guest actually send such packet.
1120          *
1121          * Check user_send_rarp() for more information.
1122          *
1123          * broadcast_rarp shares a cacheline in the virtio_net structure
1124          * with some fields that are accessed during enqueue and
1125          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1126          * result in false sharing between enqueue and dequeue.
1127          *
1128          * Prevent unnecessary false sharing by reading broadcast_rarp first
1129          * and only performing cmpset if the read indicates it is likely to
1130          * be set.
1131          */
1132
1133         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1134                         rte_atomic16_cmpset((volatile uint16_t *)
1135                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1136
1137                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1138                 if (rarp_mbuf == NULL) {
1139                         RTE_LOG(ERR, VHOST_DATA,
1140                                 "Failed to allocate memory for mbuf.\n");
1141                         goto out_access_unlock;
1142                 }
1143
1144                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1145                         rte_pktmbuf_free(rarp_mbuf);
1146                         rarp_mbuf = NULL;
1147                 } else {
1148                         count -= 1;
1149                 }
1150         }
1151
1152         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1153                         vq->last_avail_idx;
1154         if (free_entries == 0)
1155                 goto out_access_unlock;
1156
1157         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1158
1159         /* Prefetch available and used ring */
1160         avail_idx = vq->last_avail_idx & (vq->size - 1);
1161         used_idx  = vq->last_used_idx  & (vq->size - 1);
1162         rte_prefetch0(&vq->avail->ring[avail_idx]);
1163         rte_prefetch0(&vq->used->ring[used_idx]);
1164
1165         count = RTE_MIN(count, MAX_PKT_BURST);
1166         count = RTE_MIN(count, free_entries);
1167         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1168                         dev->vid, count);
1169
1170         /* Retrieve all of the head indexes first to avoid caching issues. */
1171         for (i = 0; i < count; i++) {
1172                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1173                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1174                 desc_indexes[i] = vq->avail->ring[avail_idx];
1175
1176                 if (likely(dev->dequeue_zero_copy == 0))
1177                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1178         }
1179
1180         /* Prefetch descriptor index. */
1181         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1182         for (i = 0; i < count; i++) {
1183                 struct vring_desc *desc;
1184                 uint16_t sz, idx;
1185                 int err;
1186
1187                 if (likely(i + 1 < count))
1188                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1189
1190                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1191                         desc = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
1192                                         vq->desc[desc_indexes[i]].addr);
1193                         if (unlikely(!desc))
1194                                 break;
1195
1196                         rte_prefetch0(desc);
1197                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1198                         idx = 0;
1199                 } else {
1200                         desc = vq->desc;
1201                         sz = vq->size;
1202                         idx = desc_indexes[i];
1203                 }
1204
1205                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1206                 if (unlikely(pkts[i] == NULL)) {
1207                         RTE_LOG(ERR, VHOST_DATA,
1208                                 "Failed to allocate memory for mbuf.\n");
1209                         break;
1210                 }
1211
1212                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1213                 if (unlikely(err)) {
1214                         rte_pktmbuf_free(pkts[i]);
1215                         break;
1216                 }
1217
1218                 if (unlikely(dev->dequeue_zero_copy)) {
1219                         struct zcopy_mbuf *zmbuf;
1220
1221                         zmbuf = get_zmbuf(vq);
1222                         if (!zmbuf) {
1223                                 rte_pktmbuf_free(pkts[i]);
1224                                 break;
1225                         }
1226                         zmbuf->mbuf = pkts[i];
1227                         zmbuf->desc_idx = desc_indexes[i];
1228
1229                         /*
1230                          * Pin lock the mbuf; we will check later to see
1231                          * whether the mbuf is freed (when we are the last
1232                          * user) or not. If that's the case, we then could
1233                          * update the used ring safely.
1234                          */
1235                         rte_mbuf_refcnt_update(pkts[i], 1);
1236
1237                         vq->nr_zmbuf += 1;
1238                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1239                 }
1240         }
1241         vq->last_avail_idx += i;
1242
1243         if (likely(dev->dequeue_zero_copy == 0)) {
1244                 vq->last_used_idx += i;
1245                 update_used_idx(dev, vq, i);
1246         }
1247
1248 out_access_unlock:
1249         rte_spinlock_unlock(&vq->access_lock);
1250
1251         if (unlikely(rarp_mbuf != NULL)) {
1252                 /*
1253                  * Inject it to the head of "pkts" array, so that switch's mac
1254                  * learning table will get updated first.
1255                  */
1256                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1257                 pkts[0] = rarp_mbuf;
1258                 i += 1;
1259         }
1260
1261         return i;
1262 }