New upstream version 16.11.3
[deb_dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_virtio_net.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51 #define VHOST_LOG_PAGE  4096
52
53 /*
54  * Atomically set a bit in memory.
55  */
56 static inline void __attribute__((always_inline))
57 vhost_set_bit(unsigned int nr, volatile uint8_t *addr)
58 {
59         __sync_fetch_and_or_8(addr, (1U << nr));
60 }
61
62 static inline void __attribute__((always_inline))
63 vhost_log_page(uint8_t *log_base, uint64_t page)
64 {
65         vhost_set_bit(page % 8, &log_base[page / 8]);
66 }
67
68 static inline void __attribute__((always_inline))
69 vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
70 {
71         uint64_t page;
72
73         if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
74                    !dev->log_base || !len))
75                 return;
76
77         if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
78                 return;
79
80         /* To make sure guest memory updates are committed before logging */
81         rte_smp_wmb();
82
83         page = addr / VHOST_LOG_PAGE;
84         while (page * VHOST_LOG_PAGE < addr + len) {
85                 vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
86                 page += 1;
87         }
88 }
89
90 static inline void __attribute__((always_inline))
91 vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
92                      uint64_t offset, uint64_t len)
93 {
94         vhost_log_write(dev, vq->log_guest_addr + offset, len);
95 }
96
97 static bool
98 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
99 {
100         return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
101 }
102
103 static inline void __attribute__((always_inline))
104 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
105                           uint16_t to, uint16_t from, uint16_t size)
106 {
107         rte_memcpy(&vq->used->ring[to],
108                         &vq->shadow_used_ring[from],
109                         size * sizeof(struct vring_used_elem));
110         vhost_log_used_vring(dev, vq,
111                         offsetof(struct vring_used, ring[to]),
112                         size * sizeof(struct vring_used_elem));
113 }
114
115 static inline void __attribute__((always_inline))
116 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
117 {
118         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
119
120         if (used_idx + vq->shadow_used_idx <= vq->size) {
121                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
122                                           vq->shadow_used_idx);
123         } else {
124                 uint16_t size;
125
126                 /* update used ring interval [used_idx, vq->size] */
127                 size = vq->size - used_idx;
128                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
129
130                 /* update the left half used ring interval [0, left_size] */
131                 do_flush_shadow_used_ring(dev, vq, 0, size,
132                                           vq->shadow_used_idx - size);
133         }
134         vq->last_used_idx += vq->shadow_used_idx;
135
136         rte_smp_wmb();
137
138         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
139         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
140                 sizeof(vq->used->idx));
141 }
142
143 static inline void __attribute__((always_inline))
144 update_shadow_used_ring(struct vhost_virtqueue *vq,
145                          uint16_t desc_idx, uint16_t len)
146 {
147         uint16_t i = vq->shadow_used_idx++;
148
149         vq->shadow_used_ring[i].id  = desc_idx;
150         vq->shadow_used_ring[i].len = len;
151 }
152
153 static void
154 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
155 {
156         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
157
158         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
159                 csum_l4 |= PKT_TX_TCP_CKSUM;
160
161         if (csum_l4) {
162                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
163                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
164
165                 switch (csum_l4) {
166                 case PKT_TX_TCP_CKSUM:
167                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
168                                                 cksum));
169                         break;
170                 case PKT_TX_UDP_CKSUM:
171                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
172                                                 dgram_cksum));
173                         break;
174                 case PKT_TX_SCTP_CKSUM:
175                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
176                                                 cksum));
177                         break;
178                 }
179         }
180
181         /* IP cksum verification cannot be bypassed, then calculate here */
182         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
183                 struct ipv4_hdr *ipv4_hdr;
184
185                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
186                                                    m_buf->l2_len);
187                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
188         }
189
190         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
191                 if (m_buf->ol_flags & PKT_TX_IPV4)
192                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
193                 else
194                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
195                 net_hdr->gso_size = m_buf->tso_segsz;
196                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
197                                         + m_buf->l4_len;
198         }
199 }
200
201 static inline void
202 copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
203                     struct virtio_net_hdr_mrg_rxbuf hdr)
204 {
205         if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
206                 *(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
207         else
208                 *(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
209 }
210
211 static inline int __attribute__((always_inline))
212 copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
213                   struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
214 {
215         uint32_t desc_avail, desc_offset;
216         uint32_t mbuf_avail, mbuf_offset;
217         uint32_t cpy_len;
218         struct vring_desc *desc;
219         uint64_t desc_addr;
220         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
221         /* A counter to avoid desc dead loop chain */
222         uint16_t nr_desc = 1;
223
224         desc = &descs[desc_idx];
225         desc_addr = gpa_to_vva(dev, desc->addr);
226         /*
227          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
228          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
229          * otherwise stores offset on the stack instead of in a register.
230          */
231         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
232                 return -1;
233
234         rte_prefetch0((void *)(uintptr_t)desc_addr);
235
236         virtio_enqueue_offload(m, &virtio_hdr.hdr);
237         copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
238         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
239         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
240
241         desc_offset = dev->vhost_hlen;
242         desc_avail  = desc->len - dev->vhost_hlen;
243
244         mbuf_avail  = rte_pktmbuf_data_len(m);
245         mbuf_offset = 0;
246         while (mbuf_avail != 0 || m->next != NULL) {
247                 /* done with current mbuf, fetch next */
248                 if (mbuf_avail == 0) {
249                         m = m->next;
250
251                         mbuf_offset = 0;
252                         mbuf_avail  = rte_pktmbuf_data_len(m);
253                 }
254
255                 /* done with current desc buf, fetch next */
256                 if (desc_avail == 0) {
257                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
258                                 /* Room in vring buffer is not enough */
259                                 return -1;
260                         }
261                         if (unlikely(desc->next >= size || ++nr_desc > size))
262                                 return -1;
263
264                         desc = &descs[desc->next];
265                         desc_addr = gpa_to_vva(dev, desc->addr);
266                         if (unlikely(!desc_addr))
267                                 return -1;
268
269                         desc_offset = 0;
270                         desc_avail  = desc->len;
271                 }
272
273                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
274                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
275                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
276                         cpy_len);
277                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
278                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
279                              cpy_len, 0);
280
281                 mbuf_avail  -= cpy_len;
282                 mbuf_offset += cpy_len;
283                 desc_avail  -= cpy_len;
284                 desc_offset += cpy_len;
285         }
286
287         return 0;
288 }
289
290 /**
291  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
292  * be received from the physical port or from another virtio device. A packet
293  * count is returned to indicate the number of packets that are succesfully
294  * added to the RX queue. This function works when the mbuf is scattered, but
295  * it doesn't support the mergeable feature.
296  */
297 static inline uint32_t __attribute__((always_inline))
298 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
299               struct rte_mbuf **pkts, uint32_t count)
300 {
301         struct vhost_virtqueue *vq;
302         uint16_t avail_idx, free_entries, start_idx;
303         uint16_t desc_indexes[MAX_PKT_BURST];
304         struct vring_desc *descs;
305         uint16_t used_idx;
306         uint32_t i, sz;
307
308         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
309         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
310                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
311                         dev->vid, __func__, queue_id);
312                 return 0;
313         }
314
315         vq = dev->virtqueue[queue_id];
316         if (unlikely(vq->enabled == 0))
317                 return 0;
318
319         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
320         start_idx = vq->last_used_idx;
321         free_entries = avail_idx - start_idx;
322         count = RTE_MIN(count, free_entries);
323         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
324         if (count == 0)
325                 return 0;
326
327         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
328                 dev->vid, start_idx, start_idx + count);
329
330         /* Retrieve all of the desc indexes first to avoid caching issues. */
331         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
332         for (i = 0; i < count; i++) {
333                 used_idx = (start_idx + i) & (vq->size - 1);
334                 desc_indexes[i] = vq->avail->ring[used_idx];
335                 vq->used->ring[used_idx].id = desc_indexes[i];
336                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
337                                                dev->vhost_hlen;
338                 vhost_log_used_vring(dev, vq,
339                         offsetof(struct vring_used, ring[used_idx]),
340                         sizeof(vq->used->ring[used_idx]));
341         }
342
343         rte_prefetch0(&vq->desc[desc_indexes[0]]);
344         for (i = 0; i < count; i++) {
345                 uint16_t desc_idx = desc_indexes[i];
346                 int err;
347
348                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
349                         descs = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
350                                         vq->desc[desc_idx].addr);
351                         if (unlikely(!descs)) {
352                                 count = i;
353                                 break;
354                         }
355
356                         desc_idx = 0;
357                         sz = vq->desc[desc_idx].len / sizeof(*descs);
358                 } else {
359                         descs = vq->desc;
360                         sz = vq->size;
361                 }
362
363                 err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
364                 if (unlikely(err)) {
365                         used_idx = (start_idx + i) & (vq->size - 1);
366                         vq->used->ring[used_idx].len = dev->vhost_hlen;
367                         vhost_log_used_vring(dev, vq,
368                                 offsetof(struct vring_used, ring[used_idx]),
369                                 sizeof(vq->used->ring[used_idx]));
370                 }
371
372                 if (i + 1 < count)
373                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
374         }
375
376         rte_smp_wmb();
377
378         *(volatile uint16_t *)&vq->used->idx += count;
379         vq->last_used_idx += count;
380         vhost_log_used_vring(dev, vq,
381                 offsetof(struct vring_used, idx),
382                 sizeof(vq->used->idx));
383
384         /* flush used->idx update before we read avail->flags. */
385         rte_mb();
386
387         /* Kick the guest if necessary. */
388         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
389                         && (vq->callfd >= 0))
390                 eventfd_write(vq->callfd, (eventfd_t)1);
391         return count;
392 }
393
394 static inline int __attribute__((always_inline))
395 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
396                          uint32_t avail_idx, uint32_t *vec_idx,
397                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
398                          uint16_t *desc_chain_len)
399 {
400         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
401         uint32_t vec_id = *vec_idx;
402         uint32_t len    = 0;
403         struct vring_desc *descs = vq->desc;
404
405         *desc_chain_head = idx;
406
407         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
408                 descs = (struct vring_desc *)(uintptr_t)
409                                         gpa_to_vva(dev, vq->desc[idx].addr);
410                 if (unlikely(!descs))
411                         return -1;
412
413                 idx = 0;
414         }
415
416         while (1) {
417                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
418                         return -1;
419
420                 len += descs[idx].len;
421                 buf_vec[vec_id].buf_addr = descs[idx].addr;
422                 buf_vec[vec_id].buf_len  = descs[idx].len;
423                 buf_vec[vec_id].desc_idx = idx;
424                 vec_id++;
425
426                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
427                         break;
428
429                 idx = descs[idx].next;
430         }
431
432         *desc_chain_len = len;
433         *vec_idx = vec_id;
434
435         return 0;
436 }
437
438 /*
439  * Returns -1 on fail, 0 on success
440  */
441 static inline int
442 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
443                                 uint32_t size, struct buf_vector *buf_vec,
444                                 uint16_t *num_buffers, uint16_t avail_head)
445 {
446         uint16_t cur_idx;
447         uint32_t vec_idx = 0;
448         uint16_t tries = 0;
449
450         uint16_t head_idx = 0;
451         uint16_t len = 0;
452
453         *num_buffers = 0;
454         cur_idx  = vq->last_avail_idx;
455
456         while (size > 0) {
457                 if (unlikely(cur_idx == avail_head))
458                         return -1;
459
460                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
461                                                 &head_idx, &len) < 0))
462                         return -1;
463                 len = RTE_MIN(len, size);
464                 update_shadow_used_ring(vq, head_idx, len);
465                 size -= len;
466
467                 cur_idx++;
468                 tries++;
469                 *num_buffers += 1;
470
471                 /*
472                  * if we tried all available ring items, and still
473                  * can't get enough buf, it means something abnormal
474                  * happened.
475                  */
476                 if (unlikely(tries >= vq->size))
477                         return -1;
478         }
479
480         return 0;
481 }
482
483 static inline int __attribute__((always_inline))
484 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
485                             struct buf_vector *buf_vec, uint16_t num_buffers)
486 {
487         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
488         uint32_t vec_idx = 0;
489         uint64_t desc_addr;
490         uint32_t mbuf_offset, mbuf_avail;
491         uint32_t desc_offset, desc_avail;
492         uint32_t cpy_len;
493         uint64_t hdr_addr, hdr_phys_addr;
494         struct rte_mbuf *hdr_mbuf;
495
496         if (unlikely(m == NULL))
497                 return -1;
498
499         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
500         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
501                 return -1;
502
503         hdr_mbuf = m;
504         hdr_addr = desc_addr;
505         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
506         rte_prefetch0((void *)(uintptr_t)hdr_addr);
507
508         virtio_hdr.num_buffers = num_buffers;
509         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
510                 dev->vid, num_buffers);
511
512         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
513         desc_offset = dev->vhost_hlen;
514
515         mbuf_avail  = rte_pktmbuf_data_len(m);
516         mbuf_offset = 0;
517         while (mbuf_avail != 0 || m->next != NULL) {
518                 /* done with current desc buf, get the next one */
519                 if (desc_avail == 0) {
520                         vec_idx++;
521                         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
522                         if (unlikely(!desc_addr))
523                                 return -1;
524
525                         /* Prefetch buffer address. */
526                         rte_prefetch0((void *)(uintptr_t)desc_addr);
527                         desc_offset = 0;
528                         desc_avail  = buf_vec[vec_idx].buf_len;
529                 }
530
531                 /* done with current mbuf, get the next one */
532                 if (mbuf_avail == 0) {
533                         m = m->next;
534
535                         mbuf_offset = 0;
536                         mbuf_avail  = rte_pktmbuf_data_len(m);
537                 }
538
539                 if (hdr_addr) {
540                         virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
541                         copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
542                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
543                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
544                                      dev->vhost_hlen, 0);
545
546                         hdr_addr = 0;
547                 }
548
549                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
550                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
551                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
552                         cpy_len);
553                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
554                         cpy_len);
555                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
556                         cpy_len, 0);
557
558                 mbuf_avail  -= cpy_len;
559                 mbuf_offset += cpy_len;
560                 desc_avail  -= cpy_len;
561                 desc_offset += cpy_len;
562         }
563
564         return 0;
565 }
566
567 static inline uint32_t __attribute__((always_inline))
568 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
569         struct rte_mbuf **pkts, uint32_t count)
570 {
571         struct vhost_virtqueue *vq;
572         uint32_t pkt_idx = 0;
573         uint16_t num_buffers;
574         struct buf_vector buf_vec[BUF_VECTOR_MAX];
575         uint16_t avail_head;
576
577         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
578         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
579                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
580                         dev->vid, __func__, queue_id);
581                 return 0;
582         }
583
584         vq = dev->virtqueue[queue_id];
585         if (unlikely(vq->enabled == 0))
586                 return 0;
587
588         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
589         if (count == 0)
590                 return 0;
591
592         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
593
594         vq->shadow_used_idx = 0;
595         avail_head = *((volatile uint16_t *)&vq->avail->idx);
596         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
597                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
598
599                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
600                                                 pkt_len, buf_vec, &num_buffers,
601                                                 avail_head) < 0)) {
602                         LOG_DEBUG(VHOST_DATA,
603                                 "(%d) failed to get enough desc from vring\n",
604                                 dev->vid);
605                         vq->shadow_used_idx -= num_buffers;
606                         break;
607                 }
608
609                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
610                         dev->vid, vq->last_avail_idx,
611                         vq->last_avail_idx + num_buffers);
612
613                 if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
614                                                 buf_vec, num_buffers) < 0) {
615                         vq->shadow_used_idx -= num_buffers;
616                         break;
617                 }
618
619                 vq->last_avail_idx += num_buffers;
620         }
621
622         if (likely(vq->shadow_used_idx)) {
623                 flush_shadow_used_ring(dev, vq);
624
625                 /* flush used->idx update before we read avail->flags. */
626                 rte_mb();
627
628                 /* Kick the guest if necessary. */
629                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
630                                 && (vq->callfd >= 0))
631                         eventfd_write(vq->callfd, (eventfd_t)1);
632         }
633
634         return pkt_idx;
635 }
636
637 uint16_t
638 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
639         struct rte_mbuf **pkts, uint16_t count)
640 {
641         struct virtio_net *dev = get_device(vid);
642
643         if (!dev)
644                 return 0;
645
646         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
647                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
648         else
649                 return virtio_dev_rx(dev, queue_id, pkts, count);
650 }
651
652 static inline bool
653 virtio_net_with_host_offload(struct virtio_net *dev)
654 {
655         if (dev->features &
656                         ((1ULL << VIRTIO_NET_F_CSUM) |
657                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
658                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
659                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
660                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
661                 return true;
662
663         return false;
664 }
665
666 static void
667 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
668 {
669         struct ipv4_hdr *ipv4_hdr;
670         struct ipv6_hdr *ipv6_hdr;
671         void *l3_hdr = NULL;
672         struct ether_hdr *eth_hdr;
673         uint16_t ethertype;
674
675         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
676
677         m->l2_len = sizeof(struct ether_hdr);
678         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
679
680         if (ethertype == ETHER_TYPE_VLAN) {
681                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
682
683                 m->l2_len += sizeof(struct vlan_hdr);
684                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
685         }
686
687         l3_hdr = (char *)eth_hdr + m->l2_len;
688
689         switch (ethertype) {
690         case ETHER_TYPE_IPv4:
691                 ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
692                 *l4_proto = ipv4_hdr->next_proto_id;
693                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
694                 *l4_hdr = (char *)l3_hdr + m->l3_len;
695                 m->ol_flags |= PKT_TX_IPV4;
696                 break;
697         case ETHER_TYPE_IPv6:
698                 ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
699                 *l4_proto = ipv6_hdr->proto;
700                 m->l3_len = sizeof(struct ipv6_hdr);
701                 *l4_hdr = (char *)l3_hdr + m->l3_len;
702                 m->ol_flags |= PKT_TX_IPV6;
703                 break;
704         default:
705                 m->l3_len = 0;
706                 *l4_proto = 0;
707                 *l4_hdr = NULL;
708                 break;
709         }
710 }
711
712 static inline void __attribute__((always_inline))
713 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
714 {
715         uint16_t l4_proto = 0;
716         void *l4_hdr = NULL;
717         struct tcp_hdr *tcp_hdr = NULL;
718
719         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
720                 return;
721
722         parse_ethernet(m, &l4_proto, &l4_hdr);
723         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
724                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
725                         switch (hdr->csum_offset) {
726                         case (offsetof(struct tcp_hdr, cksum)):
727                                 if (l4_proto == IPPROTO_TCP)
728                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
729                                 break;
730                         case (offsetof(struct udp_hdr, dgram_cksum)):
731                                 if (l4_proto == IPPROTO_UDP)
732                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
733                                 break;
734                         case (offsetof(struct sctp_hdr, cksum)):
735                                 if (l4_proto == IPPROTO_SCTP)
736                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
737                                 break;
738                         default:
739                                 break;
740                         }
741                 }
742         }
743
744         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
745                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
746                 case VIRTIO_NET_HDR_GSO_TCPV4:
747                 case VIRTIO_NET_HDR_GSO_TCPV6:
748                         tcp_hdr = (struct tcp_hdr *)l4_hdr;
749                         m->ol_flags |= PKT_TX_TCP_SEG;
750                         m->tso_segsz = hdr->gso_size;
751                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
752                         break;
753                 default:
754                         RTE_LOG(WARNING, VHOST_DATA,
755                                 "unsupported gso type %u.\n", hdr->gso_type);
756                         break;
757                 }
758         }
759 }
760
761 #define RARP_PKT_SIZE   64
762
763 static int
764 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
765 {
766         struct ether_hdr *eth_hdr;
767         struct arp_hdr  *rarp;
768
769         if (rarp_mbuf->buf_len < 64) {
770                 RTE_LOG(WARNING, VHOST_DATA,
771                         "failed to make RARP; mbuf size too small %u (< %d)\n",
772                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
773                 return -1;
774         }
775
776         /* Ethernet header. */
777         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
778         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
779         ether_addr_copy(mac, &eth_hdr->s_addr);
780         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
781
782         /* RARP header. */
783         rarp = (struct arp_hdr *)(eth_hdr + 1);
784         rarp->arp_hrd = htons(ARP_HRD_ETHER);
785         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
786         rarp->arp_hln = ETHER_ADDR_LEN;
787         rarp->arp_pln = 4;
788         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
789
790         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
791         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
792         memset(&rarp->arp_data.arp_sip, 0x00, 4);
793         memset(&rarp->arp_data.arp_tip, 0x00, 4);
794
795         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
796
797         return 0;
798 }
799
800 static inline void __attribute__((always_inline))
801 put_zmbuf(struct zcopy_mbuf *zmbuf)
802 {
803         zmbuf->in_use = 0;
804 }
805
806 static inline int __attribute__((always_inline))
807 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
808                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
809                   struct rte_mempool *mbuf_pool)
810 {
811         struct vring_desc *desc;
812         uint64_t desc_addr;
813         uint32_t desc_avail, desc_offset;
814         uint32_t mbuf_avail, mbuf_offset;
815         uint32_t cpy_len;
816         struct rte_mbuf *cur = m, *prev = m;
817         struct virtio_net_hdr *hdr = NULL;
818         /* A counter to avoid desc dead loop chain */
819         uint32_t nr_desc = 1;
820
821         desc = &descs[desc_idx];
822         if (unlikely((desc->len < dev->vhost_hlen)) ||
823                         (desc->flags & VRING_DESC_F_INDIRECT))
824                 return -1;
825
826         desc_addr = gpa_to_vva(dev, desc->addr);
827         if (unlikely(!desc_addr))
828                 return -1;
829
830         if (virtio_net_with_host_offload(dev)) {
831                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
832                 rte_prefetch0(hdr);
833         }
834
835         /*
836          * A virtio driver normally uses at least 2 desc buffers
837          * for Tx: the first for storing the header, and others
838          * for storing the data.
839          */
840         if (likely((desc->len == dev->vhost_hlen) &&
841                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
842                 desc = &descs[desc->next];
843                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
844                         return -1;
845
846                 desc_addr = gpa_to_vva(dev, desc->addr);
847                 if (unlikely(!desc_addr))
848                         return -1;
849
850                 desc_offset = 0;
851                 desc_avail  = desc->len;
852                 nr_desc    += 1;
853         } else {
854                 desc_avail  = desc->len - dev->vhost_hlen;
855                 desc_offset = dev->vhost_hlen;
856         }
857
858         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
859
860         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
861
862         mbuf_offset = 0;
863         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
864         while (1) {
865                 uint64_t hpa;
866
867                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
868
869                 /*
870                  * A desc buf might across two host physical pages that are
871                  * not continuous. In such case (gpa_to_hpa returns 0), data
872                  * will be copied even though zero copy is enabled.
873                  */
874                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
875                                         desc->addr + desc_offset, cpy_len)))) {
876                         cur->data_len = cpy_len;
877                         cur->data_off = 0;
878                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
879                         cur->buf_physaddr = hpa;
880
881                         /*
882                          * In zero copy mode, one mbuf can only reference data
883                          * for one or partial of one desc buff.
884                          */
885                         mbuf_avail = cpy_len;
886                 } else {
887                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
888                                                            mbuf_offset),
889                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
890                                 cpy_len);
891                 }
892
893                 mbuf_avail  -= cpy_len;
894                 mbuf_offset += cpy_len;
895                 desc_avail  -= cpy_len;
896                 desc_offset += cpy_len;
897
898                 /* This desc reaches to its end, get the next one */
899                 if (desc_avail == 0) {
900                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
901                                 break;
902
903                         if (unlikely(desc->next >= max_desc ||
904                                      ++nr_desc > max_desc))
905                                 return -1;
906                         desc = &descs[desc->next];
907                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
908                                 return -1;
909
910                         desc_addr = gpa_to_vva(dev, desc->addr);
911                         if (unlikely(!desc_addr))
912                                 return -1;
913
914                         rte_prefetch0((void *)(uintptr_t)desc_addr);
915
916                         desc_offset = 0;
917                         desc_avail  = desc->len;
918
919                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
920                 }
921
922                 /*
923                  * This mbuf reaches to its end, get a new one
924                  * to hold more data.
925                  */
926                 if (mbuf_avail == 0) {
927                         cur = rte_pktmbuf_alloc(mbuf_pool);
928                         if (unlikely(cur == NULL)) {
929                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
930                                         "allocate memory for mbuf.\n");
931                                 return -1;
932                         }
933                         if (unlikely(dev->dequeue_zero_copy))
934                                 rte_mbuf_refcnt_update(cur, 1);
935
936                         prev->next = cur;
937                         prev->data_len = mbuf_offset;
938                         m->nb_segs += 1;
939                         m->pkt_len += mbuf_offset;
940                         prev = cur;
941
942                         mbuf_offset = 0;
943                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
944                 }
945         }
946
947         prev->data_len = mbuf_offset;
948         m->pkt_len    += mbuf_offset;
949
950         if (hdr)
951                 vhost_dequeue_offload(hdr, m);
952
953         return 0;
954 }
955
956 static inline void __attribute__((always_inline))
957 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
958                  uint32_t used_idx, uint32_t desc_idx)
959 {
960         vq->used->ring[used_idx].id  = desc_idx;
961         vq->used->ring[used_idx].len = 0;
962         vhost_log_used_vring(dev, vq,
963                         offsetof(struct vring_used, ring[used_idx]),
964                         sizeof(vq->used->ring[used_idx]));
965 }
966
967 static inline void __attribute__((always_inline))
968 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
969                 uint32_t count)
970 {
971         if (unlikely(count == 0))
972                 return;
973
974         rte_smp_wmb();
975         rte_smp_rmb();
976
977         vq->used->idx += count;
978         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
979                         sizeof(vq->used->idx));
980
981         /* Kick guest if required. */
982         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
983                         && (vq->callfd >= 0))
984                 eventfd_write(vq->callfd, (eventfd_t)1);
985 }
986
987 static inline struct zcopy_mbuf *__attribute__((always_inline))
988 get_zmbuf(struct vhost_virtqueue *vq)
989 {
990         uint16_t i;
991         uint16_t last;
992         int tries = 0;
993
994         /* search [last_zmbuf_idx, zmbuf_size) */
995         i = vq->last_zmbuf_idx;
996         last = vq->zmbuf_size;
997
998 again:
999         for (; i < last; i++) {
1000                 if (vq->zmbufs[i].in_use == 0) {
1001                         vq->last_zmbuf_idx = i + 1;
1002                         vq->zmbufs[i].in_use = 1;
1003                         return &vq->zmbufs[i];
1004                 }
1005         }
1006
1007         tries++;
1008         if (tries == 1) {
1009                 /* search [0, last_zmbuf_idx) */
1010                 i = 0;
1011                 last = vq->last_zmbuf_idx;
1012                 goto again;
1013         }
1014
1015         return NULL;
1016 }
1017
1018 static inline bool __attribute__((always_inline))
1019 mbuf_is_consumed(struct rte_mbuf *m)
1020 {
1021         while (m) {
1022                 if (rte_mbuf_refcnt_read(m) > 1)
1023                         return false;
1024                 m = m->next;
1025         }
1026
1027         return true;
1028 }
1029
1030 uint16_t
1031 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1032         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1033 {
1034         struct virtio_net *dev;
1035         struct rte_mbuf *rarp_mbuf = NULL;
1036         struct vhost_virtqueue *vq;
1037         uint32_t desc_indexes[MAX_PKT_BURST];
1038         uint32_t used_idx;
1039         uint32_t i = 0;
1040         uint16_t free_entries;
1041         uint16_t avail_idx;
1042
1043         dev = get_device(vid);
1044         if (!dev)
1045                 return 0;
1046
1047         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
1048                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1049                         dev->vid, __func__, queue_id);
1050                 return 0;
1051         }
1052
1053         vq = dev->virtqueue[queue_id];
1054         if (unlikely(vq->enabled == 0))
1055                 return 0;
1056
1057         if (unlikely(dev->dequeue_zero_copy)) {
1058                 struct zcopy_mbuf *zmbuf, *next;
1059                 int nr_updated = 0;
1060
1061                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1062                      zmbuf != NULL; zmbuf = next) {
1063                         next = TAILQ_NEXT(zmbuf, next);
1064
1065                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1066                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1067                                 update_used_ring(dev, vq, used_idx,
1068                                                  zmbuf->desc_idx);
1069                                 nr_updated += 1;
1070
1071                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1072                                 rte_pktmbuf_free(zmbuf->mbuf);
1073                                 put_zmbuf(zmbuf);
1074                                 vq->nr_zmbuf -= 1;
1075                         }
1076                 }
1077
1078                 update_used_idx(dev, vq, nr_updated);
1079         }
1080
1081         /*
1082          * Construct a RARP broadcast packet, and inject it to the "pkts"
1083          * array, to looks like that guest actually send such packet.
1084          *
1085          * Check user_send_rarp() for more information.
1086          *
1087          * broadcast_rarp shares a cacheline in the virtio_net structure
1088          * with some fields that are accessed during enqueue and
1089          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1090          * result in false sharing between enqueue and dequeue.
1091          *
1092          * Prevent unnecessary false sharing by reading broadcast_rarp first
1093          * and only performing cmpset if the read indicates it is likely to
1094          * be set.
1095          */
1096
1097         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1098                         rte_atomic16_cmpset((volatile uint16_t *)
1099                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1100
1101                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1102                 if (rarp_mbuf == NULL) {
1103                         RTE_LOG(ERR, VHOST_DATA,
1104                                 "Failed to allocate memory for mbuf.\n");
1105                         return 0;
1106                 }
1107
1108                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1109                         rte_pktmbuf_free(rarp_mbuf);
1110                         rarp_mbuf = NULL;
1111                 } else {
1112                         count -= 1;
1113                 }
1114         }
1115
1116         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1117                         vq->last_avail_idx;
1118         if (free_entries == 0)
1119                 goto out;
1120
1121         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1122
1123         /* Prefetch available and used ring */
1124         avail_idx = vq->last_avail_idx & (vq->size - 1);
1125         used_idx  = vq->last_used_idx  & (vq->size - 1);
1126         rte_prefetch0(&vq->avail->ring[avail_idx]);
1127         rte_prefetch0(&vq->used->ring[used_idx]);
1128
1129         count = RTE_MIN(count, MAX_PKT_BURST);
1130         count = RTE_MIN(count, free_entries);
1131         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1132                         dev->vid, count);
1133
1134         /* Retrieve all of the head indexes first to avoid caching issues. */
1135         for (i = 0; i < count; i++) {
1136                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1137                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1138                 desc_indexes[i] = vq->avail->ring[avail_idx];
1139
1140                 if (likely(dev->dequeue_zero_copy == 0))
1141                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1142         }
1143
1144         /* Prefetch descriptor index. */
1145         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1146         for (i = 0; i < count; i++) {
1147                 struct vring_desc *desc;
1148                 uint16_t sz, idx;
1149                 int err;
1150
1151                 if (likely(i + 1 < count))
1152                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1153
1154                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1155                         desc = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
1156                                         vq->desc[desc_indexes[i]].addr);
1157                         if (unlikely(!desc))
1158                                 break;
1159
1160                         rte_prefetch0(desc);
1161                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1162                         idx = 0;
1163                 } else {
1164                         desc = vq->desc;
1165                         sz = vq->size;
1166                         idx = desc_indexes[i];
1167                 }
1168
1169                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1170                 if (unlikely(pkts[i] == NULL)) {
1171                         RTE_LOG(ERR, VHOST_DATA,
1172                                 "Failed to allocate memory for mbuf.\n");
1173                         break;
1174                 }
1175
1176                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1177                 if (unlikely(err)) {
1178                         rte_pktmbuf_free(pkts[i]);
1179                         break;
1180                 }
1181
1182                 if (unlikely(dev->dequeue_zero_copy)) {
1183                         struct zcopy_mbuf *zmbuf;
1184
1185                         zmbuf = get_zmbuf(vq);
1186                         if (!zmbuf) {
1187                                 rte_pktmbuf_free(pkts[i]);
1188                                 break;
1189                         }
1190                         zmbuf->mbuf = pkts[i];
1191                         zmbuf->desc_idx = desc_indexes[i];
1192
1193                         /*
1194                          * Pin lock the mbuf; we will check later to see
1195                          * whether the mbuf is freed (when we are the last
1196                          * user) or not. If that's the case, we then could
1197                          * update the used ring safely.
1198                          */
1199                         rte_mbuf_refcnt_update(pkts[i], 1);
1200
1201                         vq->nr_zmbuf += 1;
1202                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1203                 }
1204         }
1205         vq->last_avail_idx += i;
1206
1207         if (likely(dev->dequeue_zero_copy == 0)) {
1208                 vq->last_used_idx += i;
1209                 update_used_idx(dev, vq, i);
1210         }
1211
1212 out:
1213         if (unlikely(rarp_mbuf != NULL)) {
1214                 /*
1215                  * Inject it to the head of "pkts" array, so that switch's mac
1216                  * learning table will get updated first.
1217                  */
1218                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1219                 pkts[0] = rarp_mbuf;
1220                 i += 1;
1221         }
1222
1223         return i;
1224 }