Imported Upstream version 16.11.1
[deb_dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_virtio_net.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51 #define VHOST_LOG_PAGE  4096
52
53 static inline void __attribute__((always_inline))
54 vhost_log_page(uint8_t *log_base, uint64_t page)
55 {
56         log_base[page / 8] |= 1 << (page % 8);
57 }
58
59 static inline void __attribute__((always_inline))
60 vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
61 {
62         uint64_t page;
63
64         if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
65                    !dev->log_base || !len))
66                 return;
67
68         if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
69                 return;
70
71         /* To make sure guest memory updates are committed before logging */
72         rte_smp_wmb();
73
74         page = addr / VHOST_LOG_PAGE;
75         while (page * VHOST_LOG_PAGE < addr + len) {
76                 vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
77                 page += 1;
78         }
79 }
80
81 static inline void __attribute__((always_inline))
82 vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
83                      uint64_t offset, uint64_t len)
84 {
85         vhost_log_write(dev, vq->log_guest_addr + offset, len);
86 }
87
88 static bool
89 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
90 {
91         return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
92 }
93
94 static inline void __attribute__((always_inline))
95 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
96                           uint16_t to, uint16_t from, uint16_t size)
97 {
98         rte_memcpy(&vq->used->ring[to],
99                         &vq->shadow_used_ring[from],
100                         size * sizeof(struct vring_used_elem));
101         vhost_log_used_vring(dev, vq,
102                         offsetof(struct vring_used, ring[to]),
103                         size * sizeof(struct vring_used_elem));
104 }
105
106 static inline void __attribute__((always_inline))
107 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
108 {
109         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
110
111         if (used_idx + vq->shadow_used_idx <= vq->size) {
112                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
113                                           vq->shadow_used_idx);
114         } else {
115                 uint16_t size;
116
117                 /* update used ring interval [used_idx, vq->size] */
118                 size = vq->size - used_idx;
119                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
120
121                 /* update the left half used ring interval [0, left_size] */
122                 do_flush_shadow_used_ring(dev, vq, 0, size,
123                                           vq->shadow_used_idx - size);
124         }
125         vq->last_used_idx += vq->shadow_used_idx;
126
127         rte_smp_wmb();
128
129         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
130         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
131                 sizeof(vq->used->idx));
132 }
133
134 static inline void __attribute__((always_inline))
135 update_shadow_used_ring(struct vhost_virtqueue *vq,
136                          uint16_t desc_idx, uint16_t len)
137 {
138         uint16_t i = vq->shadow_used_idx++;
139
140         vq->shadow_used_ring[i].id  = desc_idx;
141         vq->shadow_used_ring[i].len = len;
142 }
143
144 static void
145 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
146 {
147         if (m_buf->ol_flags & PKT_TX_L4_MASK) {
148                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
149                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
150
151                 switch (m_buf->ol_flags & PKT_TX_L4_MASK) {
152                 case PKT_TX_TCP_CKSUM:
153                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
154                                                 cksum));
155                         break;
156                 case PKT_TX_UDP_CKSUM:
157                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
158                                                 dgram_cksum));
159                         break;
160                 case PKT_TX_SCTP_CKSUM:
161                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
162                                                 cksum));
163                         break;
164                 }
165         }
166
167         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
168                 if (m_buf->ol_flags & PKT_TX_IPV4)
169                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
170                 else
171                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
172                 net_hdr->gso_size = m_buf->tso_segsz;
173                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
174                                         + m_buf->l4_len;
175         }
176 }
177
178 static inline void
179 copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
180                     struct virtio_net_hdr_mrg_rxbuf hdr)
181 {
182         if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
183                 *(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
184         else
185                 *(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
186 }
187
188 static inline int __attribute__((always_inline))
189 copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
190                   struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
191 {
192         uint32_t desc_avail, desc_offset;
193         uint32_t mbuf_avail, mbuf_offset;
194         uint32_t cpy_len;
195         struct vring_desc *desc;
196         uint64_t desc_addr;
197         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
198         /* A counter to avoid desc dead loop chain */
199         uint16_t nr_desc = 1;
200
201         desc = &descs[desc_idx];
202         desc_addr = gpa_to_vva(dev, desc->addr);
203         /*
204          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
205          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
206          * otherwise stores offset on the stack instead of in a register.
207          */
208         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
209                 return -1;
210
211         rte_prefetch0((void *)(uintptr_t)desc_addr);
212
213         virtio_enqueue_offload(m, &virtio_hdr.hdr);
214         copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
215         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
216         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
217
218         desc_offset = dev->vhost_hlen;
219         desc_avail  = desc->len - dev->vhost_hlen;
220
221         mbuf_avail  = rte_pktmbuf_data_len(m);
222         mbuf_offset = 0;
223         while (mbuf_avail != 0 || m->next != NULL) {
224                 /* done with current mbuf, fetch next */
225                 if (mbuf_avail == 0) {
226                         m = m->next;
227
228                         mbuf_offset = 0;
229                         mbuf_avail  = rte_pktmbuf_data_len(m);
230                 }
231
232                 /* done with current desc buf, fetch next */
233                 if (desc_avail == 0) {
234                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
235                                 /* Room in vring buffer is not enough */
236                                 return -1;
237                         }
238                         if (unlikely(desc->next >= size || ++nr_desc > size))
239                                 return -1;
240
241                         desc = &descs[desc->next];
242                         desc_addr = gpa_to_vva(dev, desc->addr);
243                         if (unlikely(!desc_addr))
244                                 return -1;
245
246                         desc_offset = 0;
247                         desc_avail  = desc->len;
248                 }
249
250                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
251                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
252                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
253                         cpy_len);
254                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
255                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
256                              cpy_len, 0);
257
258                 mbuf_avail  -= cpy_len;
259                 mbuf_offset += cpy_len;
260                 desc_avail  -= cpy_len;
261                 desc_offset += cpy_len;
262         }
263
264         return 0;
265 }
266
267 /**
268  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
269  * be received from the physical port or from another virtio device. A packet
270  * count is returned to indicate the number of packets that are succesfully
271  * added to the RX queue. This function works when the mbuf is scattered, but
272  * it doesn't support the mergeable feature.
273  */
274 static inline uint32_t __attribute__((always_inline))
275 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
276               struct rte_mbuf **pkts, uint32_t count)
277 {
278         struct vhost_virtqueue *vq;
279         uint16_t avail_idx, free_entries, start_idx;
280         uint16_t desc_indexes[MAX_PKT_BURST];
281         struct vring_desc *descs;
282         uint16_t used_idx;
283         uint32_t i, sz;
284
285         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
286         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
287                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
288                         dev->vid, __func__, queue_id);
289                 return 0;
290         }
291
292         vq = dev->virtqueue[queue_id];
293         if (unlikely(vq->enabled == 0))
294                 return 0;
295
296         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
297         start_idx = vq->last_used_idx;
298         free_entries = avail_idx - start_idx;
299         count = RTE_MIN(count, free_entries);
300         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
301         if (count == 0)
302                 return 0;
303
304         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
305                 dev->vid, start_idx, start_idx + count);
306
307         /* Retrieve all of the desc indexes first to avoid caching issues. */
308         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
309         for (i = 0; i < count; i++) {
310                 used_idx = (start_idx + i) & (vq->size - 1);
311                 desc_indexes[i] = vq->avail->ring[used_idx];
312                 vq->used->ring[used_idx].id = desc_indexes[i];
313                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
314                                                dev->vhost_hlen;
315                 vhost_log_used_vring(dev, vq,
316                         offsetof(struct vring_used, ring[used_idx]),
317                         sizeof(vq->used->ring[used_idx]));
318         }
319
320         rte_prefetch0(&vq->desc[desc_indexes[0]]);
321         for (i = 0; i < count; i++) {
322                 uint16_t desc_idx = desc_indexes[i];
323                 int err;
324
325                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
326                         descs = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
327                                         vq->desc[desc_idx].addr);
328                         if (unlikely(!descs)) {
329                                 count = i;
330                                 break;
331                         }
332
333                         desc_idx = 0;
334                         sz = vq->desc[desc_idx].len / sizeof(*descs);
335                 } else {
336                         descs = vq->desc;
337                         sz = vq->size;
338                 }
339
340                 err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
341                 if (unlikely(err)) {
342                         used_idx = (start_idx + i) & (vq->size - 1);
343                         vq->used->ring[used_idx].len = dev->vhost_hlen;
344                         vhost_log_used_vring(dev, vq,
345                                 offsetof(struct vring_used, ring[used_idx]),
346                                 sizeof(vq->used->ring[used_idx]));
347                 }
348
349                 if (i + 1 < count)
350                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
351         }
352
353         rte_smp_wmb();
354
355         *(volatile uint16_t *)&vq->used->idx += count;
356         vq->last_used_idx += count;
357         vhost_log_used_vring(dev, vq,
358                 offsetof(struct vring_used, idx),
359                 sizeof(vq->used->idx));
360
361         /* flush used->idx update before we read avail->flags. */
362         rte_mb();
363
364         /* Kick the guest if necessary. */
365         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
366                         && (vq->callfd >= 0))
367                 eventfd_write(vq->callfd, (eventfd_t)1);
368         return count;
369 }
370
371 static inline int __attribute__((always_inline))
372 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
373                          uint32_t avail_idx, uint32_t *vec_idx,
374                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
375                          uint16_t *desc_chain_len)
376 {
377         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
378         uint32_t vec_id = *vec_idx;
379         uint32_t len    = 0;
380         struct vring_desc *descs = vq->desc;
381
382         *desc_chain_head = idx;
383
384         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
385                 descs = (struct vring_desc *)(uintptr_t)
386                                         gpa_to_vva(dev, vq->desc[idx].addr);
387                 if (unlikely(!descs))
388                         return -1;
389
390                 idx = 0;
391         }
392
393         while (1) {
394                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
395                         return -1;
396
397                 len += descs[idx].len;
398                 buf_vec[vec_id].buf_addr = descs[idx].addr;
399                 buf_vec[vec_id].buf_len  = descs[idx].len;
400                 buf_vec[vec_id].desc_idx = idx;
401                 vec_id++;
402
403                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
404                         break;
405
406                 idx = descs[idx].next;
407         }
408
409         *desc_chain_len = len;
410         *vec_idx = vec_id;
411
412         return 0;
413 }
414
415 /*
416  * Returns -1 on fail, 0 on success
417  */
418 static inline int
419 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
420                                 uint32_t size, struct buf_vector *buf_vec,
421                                 uint16_t *num_buffers, uint16_t avail_head)
422 {
423         uint16_t cur_idx;
424         uint32_t vec_idx = 0;
425         uint16_t tries = 0;
426
427         uint16_t head_idx = 0;
428         uint16_t len = 0;
429
430         *num_buffers = 0;
431         cur_idx  = vq->last_avail_idx;
432
433         while (size > 0) {
434                 if (unlikely(cur_idx == avail_head))
435                         return -1;
436
437                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
438                                                 &head_idx, &len) < 0))
439                         return -1;
440                 len = RTE_MIN(len, size);
441                 update_shadow_used_ring(vq, head_idx, len);
442                 size -= len;
443
444                 cur_idx++;
445                 tries++;
446                 *num_buffers += 1;
447
448                 /*
449                  * if we tried all available ring items, and still
450                  * can't get enough buf, it means something abnormal
451                  * happened.
452                  */
453                 if (unlikely(tries >= vq->size))
454                         return -1;
455         }
456
457         return 0;
458 }
459
460 static inline int __attribute__((always_inline))
461 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
462                             struct buf_vector *buf_vec, uint16_t num_buffers)
463 {
464         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
465         uint32_t vec_idx = 0;
466         uint64_t desc_addr;
467         uint32_t mbuf_offset, mbuf_avail;
468         uint32_t desc_offset, desc_avail;
469         uint32_t cpy_len;
470         uint64_t hdr_addr, hdr_phys_addr;
471         struct rte_mbuf *hdr_mbuf;
472
473         if (unlikely(m == NULL))
474                 return -1;
475
476         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
477         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
478                 return -1;
479
480         hdr_mbuf = m;
481         hdr_addr = desc_addr;
482         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
483         rte_prefetch0((void *)(uintptr_t)hdr_addr);
484
485         virtio_hdr.num_buffers = num_buffers;
486         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
487                 dev->vid, num_buffers);
488
489         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
490         desc_offset = dev->vhost_hlen;
491
492         mbuf_avail  = rte_pktmbuf_data_len(m);
493         mbuf_offset = 0;
494         while (mbuf_avail != 0 || m->next != NULL) {
495                 /* done with current desc buf, get the next one */
496                 if (desc_avail == 0) {
497                         vec_idx++;
498                         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
499                         if (unlikely(!desc_addr))
500                                 return -1;
501
502                         /* Prefetch buffer address. */
503                         rte_prefetch0((void *)(uintptr_t)desc_addr);
504                         desc_offset = 0;
505                         desc_avail  = buf_vec[vec_idx].buf_len;
506                 }
507
508                 /* done with current mbuf, get the next one */
509                 if (mbuf_avail == 0) {
510                         m = m->next;
511
512                         mbuf_offset = 0;
513                         mbuf_avail  = rte_pktmbuf_data_len(m);
514                 }
515
516                 if (hdr_addr) {
517                         virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
518                         copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
519                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
520                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
521                                      dev->vhost_hlen, 0);
522
523                         hdr_addr = 0;
524                 }
525
526                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
527                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
528                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
529                         cpy_len);
530                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
531                         cpy_len);
532                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
533                         cpy_len, 0);
534
535                 mbuf_avail  -= cpy_len;
536                 mbuf_offset += cpy_len;
537                 desc_avail  -= cpy_len;
538                 desc_offset += cpy_len;
539         }
540
541         return 0;
542 }
543
544 static inline uint32_t __attribute__((always_inline))
545 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
546         struct rte_mbuf **pkts, uint32_t count)
547 {
548         struct vhost_virtqueue *vq;
549         uint32_t pkt_idx = 0;
550         uint16_t num_buffers;
551         struct buf_vector buf_vec[BUF_VECTOR_MAX];
552         uint16_t avail_head;
553
554         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
555         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
556                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
557                         dev->vid, __func__, queue_id);
558                 return 0;
559         }
560
561         vq = dev->virtqueue[queue_id];
562         if (unlikely(vq->enabled == 0))
563                 return 0;
564
565         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
566         if (count == 0)
567                 return 0;
568
569         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
570
571         vq->shadow_used_idx = 0;
572         avail_head = *((volatile uint16_t *)&vq->avail->idx);
573         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
574                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
575
576                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
577                                                 pkt_len, buf_vec, &num_buffers,
578                                                 avail_head) < 0)) {
579                         LOG_DEBUG(VHOST_DATA,
580                                 "(%d) failed to get enough desc from vring\n",
581                                 dev->vid);
582                         vq->shadow_used_idx -= num_buffers;
583                         break;
584                 }
585
586                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
587                         dev->vid, vq->last_avail_idx,
588                         vq->last_avail_idx + num_buffers);
589
590                 if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
591                                                 buf_vec, num_buffers) < 0) {
592                         vq->shadow_used_idx -= num_buffers;
593                         break;
594                 }
595
596                 vq->last_avail_idx += num_buffers;
597         }
598
599         if (likely(vq->shadow_used_idx)) {
600                 flush_shadow_used_ring(dev, vq);
601
602                 /* flush used->idx update before we read avail->flags. */
603                 rte_mb();
604
605                 /* Kick the guest if necessary. */
606                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
607                                 && (vq->callfd >= 0))
608                         eventfd_write(vq->callfd, (eventfd_t)1);
609         }
610
611         return pkt_idx;
612 }
613
614 uint16_t
615 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
616         struct rte_mbuf **pkts, uint16_t count)
617 {
618         struct virtio_net *dev = get_device(vid);
619
620         if (!dev)
621                 return 0;
622
623         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
624                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
625         else
626                 return virtio_dev_rx(dev, queue_id, pkts, count);
627 }
628
629 static inline bool
630 virtio_net_with_host_offload(struct virtio_net *dev)
631 {
632         if (dev->features &
633                         (VIRTIO_NET_F_CSUM | VIRTIO_NET_F_HOST_ECN |
634                          VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
635                          VIRTIO_NET_F_HOST_UFO))
636                 return true;
637
638         return false;
639 }
640
641 static void
642 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
643 {
644         struct ipv4_hdr *ipv4_hdr;
645         struct ipv6_hdr *ipv6_hdr;
646         void *l3_hdr = NULL;
647         struct ether_hdr *eth_hdr;
648         uint16_t ethertype;
649
650         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
651
652         m->l2_len = sizeof(struct ether_hdr);
653         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
654
655         if (ethertype == ETHER_TYPE_VLAN) {
656                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
657
658                 m->l2_len += sizeof(struct vlan_hdr);
659                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
660         }
661
662         l3_hdr = (char *)eth_hdr + m->l2_len;
663
664         switch (ethertype) {
665         case ETHER_TYPE_IPv4:
666                 ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
667                 *l4_proto = ipv4_hdr->next_proto_id;
668                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
669                 *l4_hdr = (char *)l3_hdr + m->l3_len;
670                 m->ol_flags |= PKT_TX_IPV4;
671                 break;
672         case ETHER_TYPE_IPv6:
673                 ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
674                 *l4_proto = ipv6_hdr->proto;
675                 m->l3_len = sizeof(struct ipv6_hdr);
676                 *l4_hdr = (char *)l3_hdr + m->l3_len;
677                 m->ol_flags |= PKT_TX_IPV6;
678                 break;
679         default:
680                 m->l3_len = 0;
681                 *l4_proto = 0;
682                 *l4_hdr = NULL;
683                 break;
684         }
685 }
686
687 static inline void __attribute__((always_inline))
688 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
689 {
690         uint16_t l4_proto = 0;
691         void *l4_hdr = NULL;
692         struct tcp_hdr *tcp_hdr = NULL;
693
694         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
695                 return;
696
697         parse_ethernet(m, &l4_proto, &l4_hdr);
698         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
699                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
700                         switch (hdr->csum_offset) {
701                         case (offsetof(struct tcp_hdr, cksum)):
702                                 if (l4_proto == IPPROTO_TCP)
703                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
704                                 break;
705                         case (offsetof(struct udp_hdr, dgram_cksum)):
706                                 if (l4_proto == IPPROTO_UDP)
707                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
708                                 break;
709                         case (offsetof(struct sctp_hdr, cksum)):
710                                 if (l4_proto == IPPROTO_SCTP)
711                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
712                                 break;
713                         default:
714                                 break;
715                         }
716                 }
717         }
718
719         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
720                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
721                 case VIRTIO_NET_HDR_GSO_TCPV4:
722                 case VIRTIO_NET_HDR_GSO_TCPV6:
723                         tcp_hdr = (struct tcp_hdr *)l4_hdr;
724                         m->ol_flags |= PKT_TX_TCP_SEG;
725                         m->tso_segsz = hdr->gso_size;
726                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
727                         break;
728                 default:
729                         RTE_LOG(WARNING, VHOST_DATA,
730                                 "unsupported gso type %u.\n", hdr->gso_type);
731                         break;
732                 }
733         }
734 }
735
736 #define RARP_PKT_SIZE   64
737
738 static int
739 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
740 {
741         struct ether_hdr *eth_hdr;
742         struct arp_hdr  *rarp;
743
744         if (rarp_mbuf->buf_len < 64) {
745                 RTE_LOG(WARNING, VHOST_DATA,
746                         "failed to make RARP; mbuf size too small %u (< %d)\n",
747                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
748                 return -1;
749         }
750
751         /* Ethernet header. */
752         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
753         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
754         ether_addr_copy(mac, &eth_hdr->s_addr);
755         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
756
757         /* RARP header. */
758         rarp = (struct arp_hdr *)(eth_hdr + 1);
759         rarp->arp_hrd = htons(ARP_HRD_ETHER);
760         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
761         rarp->arp_hln = ETHER_ADDR_LEN;
762         rarp->arp_pln = 4;
763         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
764
765         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
766         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
767         memset(&rarp->arp_data.arp_sip, 0x00, 4);
768         memset(&rarp->arp_data.arp_tip, 0x00, 4);
769
770         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
771
772         return 0;
773 }
774
775 static inline void __attribute__((always_inline))
776 put_zmbuf(struct zcopy_mbuf *zmbuf)
777 {
778         zmbuf->in_use = 0;
779 }
780
781 static inline int __attribute__((always_inline))
782 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
783                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
784                   struct rte_mempool *mbuf_pool)
785 {
786         struct vring_desc *desc;
787         uint64_t desc_addr;
788         uint32_t desc_avail, desc_offset;
789         uint32_t mbuf_avail, mbuf_offset;
790         uint32_t cpy_len;
791         struct rte_mbuf *cur = m, *prev = m;
792         struct virtio_net_hdr *hdr = NULL;
793         /* A counter to avoid desc dead loop chain */
794         uint32_t nr_desc = 1;
795
796         desc = &descs[desc_idx];
797         if (unlikely((desc->len < dev->vhost_hlen)) ||
798                         (desc->flags & VRING_DESC_F_INDIRECT))
799                 return -1;
800
801         desc_addr = gpa_to_vva(dev, desc->addr);
802         if (unlikely(!desc_addr))
803                 return -1;
804
805         if (virtio_net_with_host_offload(dev)) {
806                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
807                 rte_prefetch0(hdr);
808         }
809
810         /*
811          * A virtio driver normally uses at least 2 desc buffers
812          * for Tx: the first for storing the header, and others
813          * for storing the data.
814          */
815         if (likely((desc->len == dev->vhost_hlen) &&
816                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
817                 desc = &descs[desc->next];
818                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
819                         return -1;
820
821                 desc_addr = gpa_to_vva(dev, desc->addr);
822                 if (unlikely(!desc_addr))
823                         return -1;
824
825                 desc_offset = 0;
826                 desc_avail  = desc->len;
827                 nr_desc    += 1;
828         } else {
829                 desc_avail  = desc->len - dev->vhost_hlen;
830                 desc_offset = dev->vhost_hlen;
831         }
832
833         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
834
835         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
836
837         mbuf_offset = 0;
838         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
839         while (1) {
840                 uint64_t hpa;
841
842                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
843
844                 /*
845                  * A desc buf might across two host physical pages that are
846                  * not continuous. In such case (gpa_to_hpa returns 0), data
847                  * will be copied even though zero copy is enabled.
848                  */
849                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
850                                         desc->addr + desc_offset, cpy_len)))) {
851                         cur->data_len = cpy_len;
852                         cur->data_off = 0;
853                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
854                         cur->buf_physaddr = hpa;
855
856                         /*
857                          * In zero copy mode, one mbuf can only reference data
858                          * for one or partial of one desc buff.
859                          */
860                         mbuf_avail = cpy_len;
861                 } else {
862                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
863                                                            mbuf_offset),
864                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
865                                 cpy_len);
866                 }
867
868                 mbuf_avail  -= cpy_len;
869                 mbuf_offset += cpy_len;
870                 desc_avail  -= cpy_len;
871                 desc_offset += cpy_len;
872
873                 /* This desc reaches to its end, get the next one */
874                 if (desc_avail == 0) {
875                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
876                                 break;
877
878                         if (unlikely(desc->next >= max_desc ||
879                                      ++nr_desc > max_desc))
880                                 return -1;
881                         desc = &descs[desc->next];
882                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
883                                 return -1;
884
885                         desc_addr = gpa_to_vva(dev, desc->addr);
886                         if (unlikely(!desc_addr))
887                                 return -1;
888
889                         rte_prefetch0((void *)(uintptr_t)desc_addr);
890
891                         desc_offset = 0;
892                         desc_avail  = desc->len;
893
894                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
895                 }
896
897                 /*
898                  * This mbuf reaches to its end, get a new one
899                  * to hold more data.
900                  */
901                 if (mbuf_avail == 0) {
902                         cur = rte_pktmbuf_alloc(mbuf_pool);
903                         if (unlikely(cur == NULL)) {
904                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
905                                         "allocate memory for mbuf.\n");
906                                 return -1;
907                         }
908
909                         prev->next = cur;
910                         prev->data_len = mbuf_offset;
911                         m->nb_segs += 1;
912                         m->pkt_len += mbuf_offset;
913                         prev = cur;
914
915                         mbuf_offset = 0;
916                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
917                 }
918         }
919
920         prev->data_len = mbuf_offset;
921         m->pkt_len    += mbuf_offset;
922
923         if (hdr)
924                 vhost_dequeue_offload(hdr, m);
925
926         return 0;
927 }
928
929 static inline void __attribute__((always_inline))
930 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
931                  uint32_t used_idx, uint32_t desc_idx)
932 {
933         vq->used->ring[used_idx].id  = desc_idx;
934         vq->used->ring[used_idx].len = 0;
935         vhost_log_used_vring(dev, vq,
936                         offsetof(struct vring_used, ring[used_idx]),
937                         sizeof(vq->used->ring[used_idx]));
938 }
939
940 static inline void __attribute__((always_inline))
941 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
942                 uint32_t count)
943 {
944         if (unlikely(count == 0))
945                 return;
946
947         rte_smp_wmb();
948         rte_smp_rmb();
949
950         vq->used->idx += count;
951         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
952                         sizeof(vq->used->idx));
953
954         /* Kick guest if required. */
955         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
956                         && (vq->callfd >= 0))
957                 eventfd_write(vq->callfd, (eventfd_t)1);
958 }
959
960 static inline struct zcopy_mbuf *__attribute__((always_inline))
961 get_zmbuf(struct vhost_virtqueue *vq)
962 {
963         uint16_t i;
964         uint16_t last;
965         int tries = 0;
966
967         /* search [last_zmbuf_idx, zmbuf_size) */
968         i = vq->last_zmbuf_idx;
969         last = vq->zmbuf_size;
970
971 again:
972         for (; i < last; i++) {
973                 if (vq->zmbufs[i].in_use == 0) {
974                         vq->last_zmbuf_idx = i + 1;
975                         vq->zmbufs[i].in_use = 1;
976                         return &vq->zmbufs[i];
977                 }
978         }
979
980         tries++;
981         if (tries == 1) {
982                 /* search [0, last_zmbuf_idx) */
983                 i = 0;
984                 last = vq->last_zmbuf_idx;
985                 goto again;
986         }
987
988         return NULL;
989 }
990
991 static inline bool __attribute__((always_inline))
992 mbuf_is_consumed(struct rte_mbuf *m)
993 {
994         while (m) {
995                 if (rte_mbuf_refcnt_read(m) > 1)
996                         return false;
997                 m = m->next;
998         }
999
1000         return true;
1001 }
1002
1003 uint16_t
1004 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1005         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1006 {
1007         struct virtio_net *dev;
1008         struct rte_mbuf *rarp_mbuf = NULL;
1009         struct vhost_virtqueue *vq;
1010         uint32_t desc_indexes[MAX_PKT_BURST];
1011         uint32_t used_idx;
1012         uint32_t i = 0;
1013         uint16_t free_entries;
1014         uint16_t avail_idx;
1015
1016         dev = get_device(vid);
1017         if (!dev)
1018                 return 0;
1019
1020         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
1021                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1022                         dev->vid, __func__, queue_id);
1023                 return 0;
1024         }
1025
1026         vq = dev->virtqueue[queue_id];
1027         if (unlikely(vq->enabled == 0))
1028                 return 0;
1029
1030         if (unlikely(dev->dequeue_zero_copy)) {
1031                 struct zcopy_mbuf *zmbuf, *next;
1032                 int nr_updated = 0;
1033
1034                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1035                      zmbuf != NULL; zmbuf = next) {
1036                         next = TAILQ_NEXT(zmbuf, next);
1037
1038                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1039                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1040                                 update_used_ring(dev, vq, used_idx,
1041                                                  zmbuf->desc_idx);
1042                                 nr_updated += 1;
1043
1044                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1045                                 rte_pktmbuf_free(zmbuf->mbuf);
1046                                 put_zmbuf(zmbuf);
1047                                 vq->nr_zmbuf -= 1;
1048                         }
1049                 }
1050
1051                 update_used_idx(dev, vq, nr_updated);
1052         }
1053
1054         /*
1055          * Construct a RARP broadcast packet, and inject it to the "pkts"
1056          * array, to looks like that guest actually send such packet.
1057          *
1058          * Check user_send_rarp() for more information.
1059          */
1060         if (unlikely(rte_atomic16_cmpset((volatile uint16_t *)
1061                                          &dev->broadcast_rarp.cnt, 1, 0))) {
1062                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1063                 if (rarp_mbuf == NULL) {
1064                         RTE_LOG(ERR, VHOST_DATA,
1065                                 "Failed to allocate memory for mbuf.\n");
1066                         return 0;
1067                 }
1068
1069                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1070                         rte_pktmbuf_free(rarp_mbuf);
1071                         rarp_mbuf = NULL;
1072                 } else {
1073                         count -= 1;
1074                 }
1075         }
1076
1077         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1078                         vq->last_avail_idx;
1079         if (free_entries == 0)
1080                 goto out;
1081
1082         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1083
1084         /* Prefetch available and used ring */
1085         avail_idx = vq->last_avail_idx & (vq->size - 1);
1086         used_idx  = vq->last_used_idx  & (vq->size - 1);
1087         rte_prefetch0(&vq->avail->ring[avail_idx]);
1088         rte_prefetch0(&vq->used->ring[used_idx]);
1089
1090         count = RTE_MIN(count, MAX_PKT_BURST);
1091         count = RTE_MIN(count, free_entries);
1092         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1093                         dev->vid, count);
1094
1095         /* Retrieve all of the head indexes first to avoid caching issues. */
1096         for (i = 0; i < count; i++) {
1097                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1098                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1099                 desc_indexes[i] = vq->avail->ring[avail_idx];
1100
1101                 if (likely(dev->dequeue_zero_copy == 0))
1102                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1103         }
1104
1105         /* Prefetch descriptor index. */
1106         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1107         for (i = 0; i < count; i++) {
1108                 struct vring_desc *desc;
1109                 uint16_t sz, idx;
1110                 int err;
1111
1112                 if (likely(i + 1 < count))
1113                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1114
1115                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1116                         desc = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
1117                                         vq->desc[desc_indexes[i]].addr);
1118                         if (unlikely(!desc))
1119                                 break;
1120
1121                         rte_prefetch0(desc);
1122                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1123                         idx = 0;
1124                 } else {
1125                         desc = vq->desc;
1126                         sz = vq->size;
1127                         idx = desc_indexes[i];
1128                 }
1129
1130                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1131                 if (unlikely(pkts[i] == NULL)) {
1132                         RTE_LOG(ERR, VHOST_DATA,
1133                                 "Failed to allocate memory for mbuf.\n");
1134                         break;
1135                 }
1136
1137                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1138                 if (unlikely(err)) {
1139                         rte_pktmbuf_free(pkts[i]);
1140                         break;
1141                 }
1142
1143                 if (unlikely(dev->dequeue_zero_copy)) {
1144                         struct zcopy_mbuf *zmbuf;
1145
1146                         zmbuf = get_zmbuf(vq);
1147                         if (!zmbuf) {
1148                                 rte_pktmbuf_free(pkts[i]);
1149                                 break;
1150                         }
1151                         zmbuf->mbuf = pkts[i];
1152                         zmbuf->desc_idx = desc_indexes[i];
1153
1154                         /*
1155                          * Pin lock the mbuf; we will check later to see
1156                          * whether the mbuf is freed (when we are the last
1157                          * user) or not. If that's the case, we then could
1158                          * update the used ring safely.
1159                          */
1160                         rte_mbuf_refcnt_update(pkts[i], 1);
1161
1162                         vq->nr_zmbuf += 1;
1163                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1164                 }
1165         }
1166         vq->last_avail_idx += i;
1167
1168         if (likely(dev->dequeue_zero_copy == 0)) {
1169                 vq->last_used_idx += i;
1170                 update_used_idx(dev, vq, i);
1171         }
1172
1173 out:
1174         if (unlikely(rarp_mbuf != NULL)) {
1175                 /*
1176                  * Inject it to the head of "pkts" array, so that switch's mac
1177                  * learning table will get updated first.
1178                  */
1179                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1180                 pkts[0] = rarp_mbuf;
1181                 i += 1;
1182         }
1183
1184         return i;
1185 }