Imported Upstream version 16.07.2
[deb_dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_virtio_net.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51 #define VHOST_LOG_PAGE  4096
52
53 static inline void __attribute__((always_inline))
54 vhost_log_page(uint8_t *log_base, uint64_t page)
55 {
56         log_base[page / 8] |= 1 << (page % 8);
57 }
58
59 static inline void __attribute__((always_inline))
60 vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
61 {
62         uint64_t page;
63
64         if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
65                    !dev->log_base || !len))
66                 return;
67
68         if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
69                 return;
70
71         /* To make sure guest memory updates are committed before logging */
72         rte_smp_wmb();
73
74         page = addr / VHOST_LOG_PAGE;
75         while (page * VHOST_LOG_PAGE < addr + len) {
76                 vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
77                 page += 1;
78         }
79 }
80
81 static inline void __attribute__((always_inline))
82 vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
83                      uint64_t offset, uint64_t len)
84 {
85         vhost_log_write(dev, vq->log_guest_addr + offset, len);
86 }
87
88 static bool
89 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
90 {
91         return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
92 }
93
94 static inline void __attribute__((always_inline))
95 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
96                           uint16_t to, uint16_t from, uint16_t size)
97 {
98         rte_memcpy(&vq->used->ring[to],
99                         &vq->shadow_used_ring[from],
100                         size * sizeof(struct vring_used_elem));
101         vhost_log_used_vring(dev, vq,
102                         offsetof(struct vring_used, ring[to]),
103                         size * sizeof(struct vring_used_elem));
104 }
105
106 static inline void __attribute__((always_inline))
107 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
108 {
109         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
110
111         if (used_idx + vq->shadow_used_idx <= vq->size) {
112                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
113                                           vq->shadow_used_idx);
114         } else {
115                 uint16_t size;
116
117                 /* update used ring interval [used_idx, vq->size] */
118                 size = vq->size - used_idx;
119                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
120
121                 /* update the left half used ring interval [0, left_size] */
122                 do_flush_shadow_used_ring(dev, vq, 0, size,
123                                           vq->shadow_used_idx - size);
124         }
125         vq->last_used_idx += vq->shadow_used_idx;
126
127         rte_smp_wmb();
128
129         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
130         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
131                 sizeof(vq->used->idx));
132 }
133
134 static inline void __attribute__((always_inline))
135 update_shadow_used_ring(struct vhost_virtqueue *vq,
136                          uint16_t desc_idx, uint16_t len)
137 {
138         uint16_t i = vq->shadow_used_idx++;
139
140         vq->shadow_used_ring[i].id  = desc_idx;
141         vq->shadow_used_ring[i].len = len;
142 }
143
144 static void
145 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
146 {
147         if (m_buf->ol_flags & PKT_TX_L4_MASK) {
148                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
149                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
150
151                 switch (m_buf->ol_flags & PKT_TX_L4_MASK) {
152                 case PKT_TX_TCP_CKSUM:
153                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
154                                                 cksum));
155                         break;
156                 case PKT_TX_UDP_CKSUM:
157                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
158                                                 dgram_cksum));
159                         break;
160                 case PKT_TX_SCTP_CKSUM:
161                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
162                                                 cksum));
163                         break;
164                 }
165         }
166
167         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
168                 if (m_buf->ol_flags & PKT_TX_IPV4)
169                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
170                 else
171                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
172                 net_hdr->gso_size = m_buf->tso_segsz;
173                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
174                                         + m_buf->l4_len;
175         }
176 }
177
178 static inline void
179 copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
180                     struct virtio_net_hdr_mrg_rxbuf hdr)
181 {
182         if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
183                 *(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
184         else
185                 *(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
186 }
187
188 static inline int __attribute__((always_inline))
189 copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
190                   struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
191 {
192         uint32_t desc_avail, desc_offset;
193         uint32_t mbuf_avail, mbuf_offset;
194         uint32_t cpy_len;
195         struct vring_desc *desc;
196         uint64_t desc_addr;
197         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
198
199         desc = &descs[desc_idx];
200         desc_addr = gpa_to_vva(dev, desc->addr);
201         /*
202          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
203          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
204          * otherwise stores offset on the stack instead of in a register.
205          */
206         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
207                 return -1;
208
209         rte_prefetch0((void *)(uintptr_t)desc_addr);
210
211         virtio_enqueue_offload(m, &virtio_hdr.hdr);
212         copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
213         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
214         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
215
216         desc_offset = dev->vhost_hlen;
217         desc_avail  = desc->len - dev->vhost_hlen;
218
219         mbuf_avail  = rte_pktmbuf_data_len(m);
220         mbuf_offset = 0;
221         while (mbuf_avail != 0 || m->next != NULL) {
222                 /* done with current mbuf, fetch next */
223                 if (mbuf_avail == 0) {
224                         m = m->next;
225
226                         mbuf_offset = 0;
227                         mbuf_avail  = rte_pktmbuf_data_len(m);
228                 }
229
230                 /* done with current desc buf, fetch next */
231                 if (desc_avail == 0) {
232                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
233                                 /* Room in vring buffer is not enough */
234                                 return -1;
235                         }
236                         if (unlikely(desc->next >= size))
237                                 return -1;
238
239                         desc = &descs[desc->next];
240                         desc_addr = gpa_to_vva(dev, desc->addr);
241                         if (unlikely(!desc_addr))
242                                 return -1;
243
244                         desc_offset = 0;
245                         desc_avail  = desc->len;
246                 }
247
248                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
249                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
250                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
251                         cpy_len);
252                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
253                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
254                              cpy_len, 0);
255
256                 mbuf_avail  -= cpy_len;
257                 mbuf_offset += cpy_len;
258                 desc_avail  -= cpy_len;
259                 desc_offset += cpy_len;
260         }
261
262         return 0;
263 }
264
265 /**
266  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
267  * be received from the physical port or from another virtio device. A packet
268  * count is returned to indicate the number of packets that are succesfully
269  * added to the RX queue. This function works when the mbuf is scattered, but
270  * it doesn't support the mergeable feature.
271  */
272 static inline uint32_t __attribute__((always_inline))
273 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
274               struct rte_mbuf **pkts, uint32_t count)
275 {
276         struct vhost_virtqueue *vq;
277         uint16_t avail_idx, free_entries, start_idx;
278         uint16_t desc_indexes[MAX_PKT_BURST];
279         struct vring_desc *descs;
280         uint16_t used_idx;
281         uint32_t i, sz;
282
283         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
284         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
285                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
286                         dev->vid, __func__, queue_id);
287                 return 0;
288         }
289
290         vq = dev->virtqueue[queue_id];
291         if (unlikely(vq->enabled == 0))
292                 return 0;
293
294         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
295         start_idx = vq->last_used_idx;
296         free_entries = avail_idx - start_idx;
297         count = RTE_MIN(count, free_entries);
298         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
299         if (count == 0)
300                 return 0;
301
302         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
303                 dev->vid, start_idx, start_idx + count);
304
305         /* Retrieve all of the desc indexes first to avoid caching issues. */
306         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
307         for (i = 0; i < count; i++) {
308                 used_idx = (start_idx + i) & (vq->size - 1);
309                 desc_indexes[i] = vq->avail->ring[used_idx];
310                 vq->used->ring[used_idx].id = desc_indexes[i];
311                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
312                                                dev->vhost_hlen;
313                 vhost_log_used_vring(dev, vq,
314                         offsetof(struct vring_used, ring[used_idx]),
315                         sizeof(vq->used->ring[used_idx]));
316         }
317
318         rte_prefetch0(&vq->desc[desc_indexes[0]]);
319         for (i = 0; i < count; i++) {
320                 uint16_t desc_idx = desc_indexes[i];
321                 int err;
322
323                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
324                         descs = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
325                                         vq->desc[desc_idx].addr);
326                         if (unlikely(!descs)) {
327                                 count = i;
328                                 break;
329                         }
330
331                         desc_idx = 0;
332                         sz = vq->desc[desc_idx].len / sizeof(*descs);
333                 } else {
334                         descs = vq->desc;
335                         sz = vq->size;
336                 }
337
338                 err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
339                 if (unlikely(err)) {
340                         used_idx = (start_idx + i) & (vq->size - 1);
341                         vq->used->ring[used_idx].len = dev->vhost_hlen;
342                         vhost_log_used_vring(dev, vq,
343                                 offsetof(struct vring_used, ring[used_idx]),
344                                 sizeof(vq->used->ring[used_idx]));
345                 }
346
347                 if (i + 1 < count)
348                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
349         }
350
351         rte_smp_wmb();
352
353         *(volatile uint16_t *)&vq->used->idx += count;
354         vq->last_used_idx += count;
355         vhost_log_used_vring(dev, vq,
356                 offsetof(struct vring_used, idx),
357                 sizeof(vq->used->idx));
358
359         /* flush used->idx update before we read avail->flags. */
360         rte_mb();
361
362         /* Kick the guest if necessary. */
363         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
364                         && (vq->callfd >= 0))
365                 eventfd_write(vq->callfd, (eventfd_t)1);
366         return count;
367 }
368
369 static inline int __attribute__((always_inline))
370 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
371                          uint32_t avail_idx, uint32_t *vec_idx,
372                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
373                          uint16_t *desc_chain_len)
374 {
375         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
376         uint32_t vec_id = *vec_idx;
377         uint32_t len    = 0;
378         struct vring_desc *descs = vq->desc;
379
380         *desc_chain_head = idx;
381
382         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
383                 descs = (struct vring_desc *)(uintptr_t)
384                                         gpa_to_vva(dev, vq->desc[idx].addr);
385                 if (unlikely(!descs))
386                         return -1;
387
388                 idx = 0;
389         }
390
391         while (1) {
392                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
393                         return -1;
394
395                 len += descs[idx].len;
396                 buf_vec[vec_id].buf_addr = descs[idx].addr;
397                 buf_vec[vec_id].buf_len  = descs[idx].len;
398                 buf_vec[vec_id].desc_idx = idx;
399                 vec_id++;
400
401                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
402                         break;
403
404                 idx = descs[idx].next;
405         }
406
407         *desc_chain_len = len;
408         *vec_idx = vec_id;
409
410         return 0;
411 }
412
413 /*
414  * Returns -1 on fail, 0 on success
415  */
416 static inline int
417 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
418                                 uint32_t size, struct buf_vector *buf_vec,
419                                 uint16_t *num_buffers, uint16_t avail_head)
420 {
421         uint16_t cur_idx;
422         uint32_t vec_idx = 0;
423         uint16_t tries = 0;
424
425         uint16_t head_idx = 0;
426         uint16_t len = 0;
427
428         *num_buffers = 0;
429         cur_idx  = vq->last_avail_idx;
430
431         while (size > 0) {
432                 if (unlikely(cur_idx == avail_head))
433                         return -1;
434
435                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
436                                                 &head_idx, &len) < 0))
437                         return -1;
438                 len = RTE_MIN(len, size);
439                 update_shadow_used_ring(vq, head_idx, len);
440                 size -= len;
441
442                 cur_idx++;
443                 tries++;
444                 *num_buffers += 1;
445
446                 /*
447                  * if we tried all available ring items, and still
448                  * can't get enough buf, it means something abnormal
449                  * happened.
450                  */
451                 if (unlikely(tries >= vq->size))
452                         return -1;
453         }
454
455         return 0;
456 }
457
458 static inline int __attribute__((always_inline))
459 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
460                             struct buf_vector *buf_vec, uint16_t num_buffers)
461 {
462         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
463         uint32_t vec_idx = 0;
464         uint64_t desc_addr;
465         uint32_t mbuf_offset, mbuf_avail;
466         uint32_t desc_offset, desc_avail;
467         uint32_t cpy_len;
468         uint64_t hdr_addr, hdr_phys_addr;
469         struct rte_mbuf *hdr_mbuf;
470
471         if (unlikely(m == NULL))
472                 return -1;
473
474         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
475         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
476                 return -1;
477
478         hdr_mbuf = m;
479         hdr_addr = desc_addr;
480         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
481         rte_prefetch0((void *)(uintptr_t)hdr_addr);
482
483         virtio_hdr.num_buffers = num_buffers;
484         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
485                 dev->vid, num_buffers);
486
487         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
488         desc_offset = dev->vhost_hlen;
489
490         mbuf_avail  = rte_pktmbuf_data_len(m);
491         mbuf_offset = 0;
492         while (mbuf_avail != 0 || m->next != NULL) {
493                 /* done with current desc buf, get the next one */
494                 if (desc_avail == 0) {
495                         vec_idx++;
496                         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
497                         if (unlikely(!desc_addr))
498                                 return -1;
499
500                         /* Prefetch buffer address. */
501                         rte_prefetch0((void *)(uintptr_t)desc_addr);
502                         desc_offset = 0;
503                         desc_avail  = buf_vec[vec_idx].buf_len;
504                 }
505
506                 /* done with current mbuf, get the next one */
507                 if (mbuf_avail == 0) {
508                         m = m->next;
509
510                         mbuf_offset = 0;
511                         mbuf_avail  = rte_pktmbuf_data_len(m);
512                 }
513
514                 if (hdr_addr) {
515                         virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
516                         copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
517                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
518                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
519                                      dev->vhost_hlen, 0);
520
521                         hdr_addr = 0;
522                 }
523
524                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
525                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
526                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
527                         cpy_len);
528                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
529                         cpy_len);
530                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
531                         cpy_len, 0);
532
533                 mbuf_avail  -= cpy_len;
534                 mbuf_offset += cpy_len;
535                 desc_avail  -= cpy_len;
536                 desc_offset += cpy_len;
537         }
538
539         return 0;
540 }
541
542 static inline uint32_t __attribute__((always_inline))
543 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
544         struct rte_mbuf **pkts, uint32_t count)
545 {
546         struct vhost_virtqueue *vq;
547         uint32_t pkt_idx = 0;
548         uint16_t num_buffers;
549         struct buf_vector buf_vec[BUF_VECTOR_MAX];
550         uint16_t avail_head;
551
552         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
553         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
554                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
555                         dev->vid, __func__, queue_id);
556                 return 0;
557         }
558
559         vq = dev->virtqueue[queue_id];
560         if (unlikely(vq->enabled == 0))
561                 return 0;
562
563         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
564         if (count == 0)
565                 return 0;
566
567         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
568
569         vq->shadow_used_idx = 0;
570         avail_head = *((volatile uint16_t *)&vq->avail->idx);
571         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
572                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
573
574                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
575                                                 pkt_len, buf_vec, &num_buffers,
576                                                 avail_head) < 0)) {
577                         LOG_DEBUG(VHOST_DATA,
578                                 "(%d) failed to get enough desc from vring\n",
579                                 dev->vid);
580                         vq->shadow_used_idx -= num_buffers;
581                         break;
582                 }
583
584                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
585                         dev->vid, vq->last_avail_idx,
586                         vq->last_avail_idx + num_buffers);
587
588                 if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
589                                                 buf_vec, num_buffers) < 0) {
590                         vq->shadow_used_idx -= num_buffers;
591                         break;
592                 }
593
594                 vq->last_avail_idx += num_buffers;
595         }
596
597         if (likely(vq->shadow_used_idx)) {
598                 flush_shadow_used_ring(dev, vq);
599
600                 /* flush used->idx update before we read avail->flags. */
601                 rte_mb();
602
603                 /* Kick the guest if necessary. */
604                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
605                                 && (vq->callfd >= 0))
606                         eventfd_write(vq->callfd, (eventfd_t)1);
607         }
608
609         return pkt_idx;
610 }
611
612 uint16_t
613 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
614         struct rte_mbuf **pkts, uint16_t count)
615 {
616         struct virtio_net *dev = get_device(vid);
617
618         if (!dev)
619                 return 0;
620
621         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
622                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
623         else
624                 return virtio_dev_rx(dev, queue_id, pkts, count);
625 }
626
627 static inline bool
628 virtio_net_with_host_offload(struct virtio_net *dev)
629 {
630         if (dev->features &
631                         (VIRTIO_NET_F_CSUM | VIRTIO_NET_F_HOST_ECN |
632                          VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
633                          VIRTIO_NET_F_HOST_UFO))
634                 return true;
635
636         return false;
637 }
638
639 static void
640 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
641 {
642         struct ipv4_hdr *ipv4_hdr;
643         struct ipv6_hdr *ipv6_hdr;
644         void *l3_hdr = NULL;
645         struct ether_hdr *eth_hdr;
646         uint16_t ethertype;
647
648         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
649
650         m->l2_len = sizeof(struct ether_hdr);
651         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
652
653         if (ethertype == ETHER_TYPE_VLAN) {
654                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
655
656                 m->l2_len += sizeof(struct vlan_hdr);
657                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
658         }
659
660         l3_hdr = (char *)eth_hdr + m->l2_len;
661
662         switch (ethertype) {
663         case ETHER_TYPE_IPv4:
664                 ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
665                 *l4_proto = ipv4_hdr->next_proto_id;
666                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
667                 *l4_hdr = (char *)l3_hdr + m->l3_len;
668                 m->ol_flags |= PKT_TX_IPV4;
669                 break;
670         case ETHER_TYPE_IPv6:
671                 ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
672                 *l4_proto = ipv6_hdr->proto;
673                 m->l3_len = sizeof(struct ipv6_hdr);
674                 *l4_hdr = (char *)l3_hdr + m->l3_len;
675                 m->ol_flags |= PKT_TX_IPV6;
676                 break;
677         default:
678                 m->l3_len = 0;
679                 *l4_proto = 0;
680                 break;
681         }
682 }
683
684 static inline void __attribute__((always_inline))
685 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
686 {
687         uint16_t l4_proto = 0;
688         void *l4_hdr = NULL;
689         struct tcp_hdr *tcp_hdr = NULL;
690
691         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
692                 return;
693
694         parse_ethernet(m, &l4_proto, &l4_hdr);
695         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
696                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
697                         switch (hdr->csum_offset) {
698                         case (offsetof(struct tcp_hdr, cksum)):
699                                 if (l4_proto == IPPROTO_TCP)
700                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
701                                 break;
702                         case (offsetof(struct udp_hdr, dgram_cksum)):
703                                 if (l4_proto == IPPROTO_UDP)
704                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
705                                 break;
706                         case (offsetof(struct sctp_hdr, cksum)):
707                                 if (l4_proto == IPPROTO_SCTP)
708                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
709                                 break;
710                         default:
711                                 break;
712                         }
713                 }
714         }
715
716         if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
717                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
718                 case VIRTIO_NET_HDR_GSO_TCPV4:
719                 case VIRTIO_NET_HDR_GSO_TCPV6:
720                         tcp_hdr = (struct tcp_hdr *)l4_hdr;
721                         m->ol_flags |= PKT_TX_TCP_SEG;
722                         m->tso_segsz = hdr->gso_size;
723                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
724                         break;
725                 default:
726                         RTE_LOG(WARNING, VHOST_DATA,
727                                 "unsupported gso type %u.\n", hdr->gso_type);
728                         break;
729                 }
730         }
731 }
732
733 #define RARP_PKT_SIZE   64
734
735 static int
736 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
737 {
738         struct ether_hdr *eth_hdr;
739         struct arp_hdr  *rarp;
740
741         if (rarp_mbuf->buf_len < 64) {
742                 RTE_LOG(WARNING, VHOST_DATA,
743                         "failed to make RARP; mbuf size too small %u (< %d)\n",
744                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
745                 return -1;
746         }
747
748         /* Ethernet header. */
749         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
750         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
751         ether_addr_copy(mac, &eth_hdr->s_addr);
752         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
753
754         /* RARP header. */
755         rarp = (struct arp_hdr *)(eth_hdr + 1);
756         rarp->arp_hrd = htons(ARP_HRD_ETHER);
757         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
758         rarp->arp_hln = ETHER_ADDR_LEN;
759         rarp->arp_pln = 4;
760         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
761
762         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
763         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
764         memset(&rarp->arp_data.arp_sip, 0x00, 4);
765         memset(&rarp->arp_data.arp_tip, 0x00, 4);
766
767         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
768
769         return 0;
770 }
771
772 static inline void __attribute__((always_inline))
773 put_zmbuf(struct zcopy_mbuf *zmbuf)
774 {
775         zmbuf->in_use = 0;
776 }
777
778 static inline int __attribute__((always_inline))
779 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
780                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
781                   struct rte_mempool *mbuf_pool)
782 {
783         struct vring_desc *desc;
784         uint64_t desc_addr;
785         uint32_t desc_avail, desc_offset;
786         uint32_t mbuf_avail, mbuf_offset;
787         uint32_t cpy_len;
788         struct rte_mbuf *cur = m, *prev = m;
789         struct virtio_net_hdr *hdr = NULL;
790         /* A counter to avoid desc dead loop chain */
791         uint32_t nr_desc = 1;
792
793         desc = &descs[desc_idx];
794         if (unlikely((desc->len < dev->vhost_hlen)) ||
795                         (desc->flags & VRING_DESC_F_INDIRECT))
796                 return -1;
797
798         desc_addr = gpa_to_vva(dev, desc->addr);
799         if (unlikely(!desc_addr))
800                 return -1;
801
802         if (virtio_net_with_host_offload(dev)) {
803                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
804                 rte_prefetch0(hdr);
805         }
806
807         /*
808          * A virtio driver normally uses at least 2 desc buffers
809          * for Tx: the first for storing the header, and others
810          * for storing the data.
811          */
812         if (likely((desc->len == dev->vhost_hlen) &&
813                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
814                 desc = &descs[desc->next];
815                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
816                         return -1;
817
818                 desc_addr = gpa_to_vva(dev, desc->addr);
819                 if (unlikely(!desc_addr))
820                         return -1;
821
822                 desc_offset = 0;
823                 desc_avail  = desc->len;
824                 nr_desc    += 1;
825         } else {
826                 desc_avail  = desc->len - dev->vhost_hlen;
827                 desc_offset = dev->vhost_hlen;
828         }
829
830         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
831
832         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
833
834         mbuf_offset = 0;
835         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
836         while (1) {
837                 uint64_t hpa;
838
839                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
840
841                 /*
842                  * A desc buf might across two host physical pages that are
843                  * not continuous. In such case (gpa_to_hpa returns 0), data
844                  * will be copied even though zero copy is enabled.
845                  */
846                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
847                                         desc->addr + desc_offset, cpy_len)))) {
848                         cur->data_len = cpy_len;
849                         cur->data_off = 0;
850                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
851                         cur->buf_physaddr = hpa;
852
853                         /*
854                          * In zero copy mode, one mbuf can only reference data
855                          * for one or partial of one desc buff.
856                          */
857                         mbuf_avail = cpy_len;
858                 } else {
859                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
860                                                            mbuf_offset),
861                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
862                                 cpy_len);
863                 }
864
865                 mbuf_avail  -= cpy_len;
866                 mbuf_offset += cpy_len;
867                 desc_avail  -= cpy_len;
868                 desc_offset += cpy_len;
869
870                 /* This desc reaches to its end, get the next one */
871                 if (desc_avail == 0) {
872                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
873                                 break;
874
875                         if (unlikely(desc->next >= max_desc ||
876                                      ++nr_desc > max_desc))
877                                 return -1;
878                         desc = &descs[desc->next];
879                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
880                                 return -1;
881
882                         desc_addr = gpa_to_vva(dev, desc->addr);
883                         if (unlikely(!desc_addr))
884                                 return -1;
885
886                         rte_prefetch0((void *)(uintptr_t)desc_addr);
887
888                         desc_offset = 0;
889                         desc_avail  = desc->len;
890
891                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
892                 }
893
894                 /*
895                  * This mbuf reaches to its end, get a new one
896                  * to hold more data.
897                  */
898                 if (mbuf_avail == 0) {
899                         cur = rte_pktmbuf_alloc(mbuf_pool);
900                         if (unlikely(cur == NULL)) {
901                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
902                                         "allocate memory for mbuf.\n");
903                                 return -1;
904                         }
905
906                         prev->next = cur;
907                         prev->data_len = mbuf_offset;
908                         m->nb_segs += 1;
909                         m->pkt_len += mbuf_offset;
910                         prev = cur;
911
912                         mbuf_offset = 0;
913                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
914                 }
915         }
916
917         prev->data_len = mbuf_offset;
918         m->pkt_len    += mbuf_offset;
919
920         if (hdr)
921                 vhost_dequeue_offload(hdr, m);
922
923         return 0;
924 }
925
926 static inline void __attribute__((always_inline))
927 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
928                  uint32_t used_idx, uint32_t desc_idx)
929 {
930         vq->used->ring[used_idx].id  = desc_idx;
931         vq->used->ring[used_idx].len = 0;
932         vhost_log_used_vring(dev, vq,
933                         offsetof(struct vring_used, ring[used_idx]),
934                         sizeof(vq->used->ring[used_idx]));
935 }
936
937 static inline void __attribute__((always_inline))
938 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
939                 uint32_t count)
940 {
941         if (unlikely(count == 0))
942                 return;
943
944         rte_smp_wmb();
945         rte_smp_rmb();
946
947         vq->used->idx += count;
948         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
949                         sizeof(vq->used->idx));
950
951         /* Kick guest if required. */
952         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
953                         && (vq->callfd >= 0))
954                 eventfd_write(vq->callfd, (eventfd_t)1);
955 }
956
957 static inline struct zcopy_mbuf *__attribute__((always_inline))
958 get_zmbuf(struct vhost_virtqueue *vq)
959 {
960         uint16_t i;
961         uint16_t last;
962         int tries = 0;
963
964         /* search [last_zmbuf_idx, zmbuf_size) */
965         i = vq->last_zmbuf_idx;
966         last = vq->zmbuf_size;
967
968 again:
969         for (; i < last; i++) {
970                 if (vq->zmbufs[i].in_use == 0) {
971                         vq->last_zmbuf_idx = i + 1;
972                         vq->zmbufs[i].in_use = 1;
973                         return &vq->zmbufs[i];
974                 }
975         }
976
977         tries++;
978         if (tries == 1) {
979                 /* search [0, last_zmbuf_idx) */
980                 i = 0;
981                 last = vq->last_zmbuf_idx;
982                 goto again;
983         }
984
985         return NULL;
986 }
987
988 static inline bool __attribute__((always_inline))
989 mbuf_is_consumed(struct rte_mbuf *m)
990 {
991         while (m) {
992                 if (rte_mbuf_refcnt_read(m) > 1)
993                         return false;
994                 m = m->next;
995         }
996
997         return true;
998 }
999
1000 uint16_t
1001 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1002         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1003 {
1004         struct virtio_net *dev;
1005         struct rte_mbuf *rarp_mbuf = NULL;
1006         struct vhost_virtqueue *vq;
1007         uint32_t desc_indexes[MAX_PKT_BURST];
1008         uint32_t used_idx;
1009         uint32_t i = 0;
1010         uint16_t free_entries;
1011         uint16_t avail_idx;
1012
1013         dev = get_device(vid);
1014         if (!dev)
1015                 return 0;
1016
1017         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
1018                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1019                         dev->vid, __func__, queue_id);
1020                 return 0;
1021         }
1022
1023         vq = dev->virtqueue[queue_id];
1024         if (unlikely(vq->enabled == 0))
1025                 return 0;
1026
1027         if (unlikely(dev->dequeue_zero_copy)) {
1028                 struct zcopy_mbuf *zmbuf, *next;
1029                 int nr_updated = 0;
1030
1031                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1032                      zmbuf != NULL; zmbuf = next) {
1033                         next = TAILQ_NEXT(zmbuf, next);
1034
1035                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1036                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1037                                 update_used_ring(dev, vq, used_idx,
1038                                                  zmbuf->desc_idx);
1039                                 nr_updated += 1;
1040
1041                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1042                                 rte_pktmbuf_free(zmbuf->mbuf);
1043                                 put_zmbuf(zmbuf);
1044                                 vq->nr_zmbuf -= 1;
1045                         }
1046                 }
1047
1048                 update_used_idx(dev, vq, nr_updated);
1049         }
1050
1051         /*
1052          * Construct a RARP broadcast packet, and inject it to the "pkts"
1053          * array, to looks like that guest actually send such packet.
1054          *
1055          * Check user_send_rarp() for more information.
1056          */
1057         if (unlikely(rte_atomic16_cmpset((volatile uint16_t *)
1058                                          &dev->broadcast_rarp.cnt, 1, 0))) {
1059                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1060                 if (rarp_mbuf == NULL) {
1061                         RTE_LOG(ERR, VHOST_DATA,
1062                                 "Failed to allocate memory for mbuf.\n");
1063                         return 0;
1064                 }
1065
1066                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1067                         rte_pktmbuf_free(rarp_mbuf);
1068                         rarp_mbuf = NULL;
1069                 } else {
1070                         count -= 1;
1071                 }
1072         }
1073
1074         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1075                         vq->last_avail_idx;
1076         if (free_entries == 0)
1077                 goto out;
1078
1079         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1080
1081         /* Prefetch available and used ring */
1082         avail_idx = vq->last_avail_idx & (vq->size - 1);
1083         used_idx  = vq->last_used_idx  & (vq->size - 1);
1084         rte_prefetch0(&vq->avail->ring[avail_idx]);
1085         rte_prefetch0(&vq->used->ring[used_idx]);
1086
1087         count = RTE_MIN(count, MAX_PKT_BURST);
1088         count = RTE_MIN(count, free_entries);
1089         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1090                         dev->vid, count);
1091
1092         /* Retrieve all of the head indexes first to avoid caching issues. */
1093         for (i = 0; i < count; i++) {
1094                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1095                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1096                 desc_indexes[i] = vq->avail->ring[avail_idx];
1097
1098                 if (likely(dev->dequeue_zero_copy == 0))
1099                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1100         }
1101
1102         /* Prefetch descriptor index. */
1103         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1104         for (i = 0; i < count; i++) {
1105                 struct vring_desc *desc;
1106                 uint16_t sz, idx;
1107                 int err;
1108
1109                 if (likely(i + 1 < count))
1110                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1111
1112                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1113                         desc = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
1114                                         vq->desc[desc_indexes[i]].addr);
1115                         if (unlikely(!desc))
1116                                 break;
1117
1118                         rte_prefetch0(desc);
1119                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1120                         idx = 0;
1121                 } else {
1122                         desc = vq->desc;
1123                         sz = vq->size;
1124                         idx = desc_indexes[i];
1125                 }
1126
1127                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1128                 if (unlikely(pkts[i] == NULL)) {
1129                         RTE_LOG(ERR, VHOST_DATA,
1130                                 "Failed to allocate memory for mbuf.\n");
1131                         break;
1132                 }
1133
1134                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1135                 if (unlikely(err)) {
1136                         rte_pktmbuf_free(pkts[i]);
1137                         break;
1138                 }
1139
1140                 if (unlikely(dev->dequeue_zero_copy)) {
1141                         struct zcopy_mbuf *zmbuf;
1142
1143                         zmbuf = get_zmbuf(vq);
1144                         if (!zmbuf) {
1145                                 rte_pktmbuf_free(pkts[i]);
1146                                 break;
1147                         }
1148                         zmbuf->mbuf = pkts[i];
1149                         zmbuf->desc_idx = desc_indexes[i];
1150
1151                         /*
1152                          * Pin lock the mbuf; we will check later to see
1153                          * whether the mbuf is freed (when we are the last
1154                          * user) or not. If that's the case, we then could
1155                          * update the used ring safely.
1156                          */
1157                         rte_mbuf_refcnt_update(pkts[i], 1);
1158
1159                         vq->nr_zmbuf += 1;
1160                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1161                 }
1162         }
1163         vq->last_avail_idx += i;
1164
1165         if (likely(dev->dequeue_zero_copy == 0)) {
1166                 vq->last_used_idx += i;
1167                 update_used_idx(dev, vq, i);
1168         }
1169
1170 out:
1171         if (unlikely(rarp_mbuf != NULL)) {
1172                 /*
1173                  * Inject it to the head of "pkts" array, so that switch's mac
1174                  * learning table will get updated first.
1175                  */
1176                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1177                 pkts[0] = rarp_mbuf;
1178                 i += 1;
1179         }
1180
1181         return i;
1182 }