a5f0eebaa8938c87915f03806a73d816554c4cc0
[deb_dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_vhost.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51
52 static bool
53 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
54 {
55         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
56 }
57
58 static __rte_always_inline void
59 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
60                           uint16_t to, uint16_t from, uint16_t size)
61 {
62         rte_memcpy(&vq->used->ring[to],
63                         &vq->shadow_used_ring[from],
64                         size * sizeof(struct vring_used_elem));
65         vhost_log_used_vring(dev, vq,
66                         offsetof(struct vring_used, ring[to]),
67                         size * sizeof(struct vring_used_elem));
68 }
69
70 static __rte_always_inline void
71 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
72 {
73         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
74
75         if (used_idx + vq->shadow_used_idx <= vq->size) {
76                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
77                                           vq->shadow_used_idx);
78         } else {
79                 uint16_t size;
80
81                 /* update used ring interval [used_idx, vq->size] */
82                 size = vq->size - used_idx;
83                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
84
85                 /* update the left half used ring interval [0, left_size] */
86                 do_flush_shadow_used_ring(dev, vq, 0, size,
87                                           vq->shadow_used_idx - size);
88         }
89         vq->last_used_idx += vq->shadow_used_idx;
90
91         rte_smp_wmb();
92
93         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
94         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
95                 sizeof(vq->used->idx));
96 }
97
98 static __rte_always_inline void
99 update_shadow_used_ring(struct vhost_virtqueue *vq,
100                          uint16_t desc_idx, uint16_t len)
101 {
102         uint16_t i = vq->shadow_used_idx++;
103
104         vq->shadow_used_ring[i].id  = desc_idx;
105         vq->shadow_used_ring[i].len = len;
106 }
107
108 /* avoid write operation when necessary, to lessen cache issues */
109 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
110         if ((var) != (val))                     \
111                 (var) = (val);                  \
112 } while (0)
113
114 static void
115 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
116 {
117         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
118
119         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
120                 csum_l4 |= PKT_TX_TCP_CKSUM;
121
122         if (csum_l4) {
123                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
124                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
125
126                 switch (csum_l4) {
127                 case PKT_TX_TCP_CKSUM:
128                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
129                                                 cksum));
130                         break;
131                 case PKT_TX_UDP_CKSUM:
132                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
133                                                 dgram_cksum));
134                         break;
135                 case PKT_TX_SCTP_CKSUM:
136                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
137                                                 cksum));
138                         break;
139                 }
140         } else {
141                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
142                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
143                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
144         }
145
146         /* IP cksum verification cannot be bypassed, then calculate here */
147         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
148                 struct ipv4_hdr *ipv4_hdr;
149
150                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
151                                                    m_buf->l2_len);
152                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
153         }
154
155         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
156                 if (m_buf->ol_flags & PKT_TX_IPV4)
157                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
158                 else
159                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
160                 net_hdr->gso_size = m_buf->tso_segsz;
161                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
162                                         + m_buf->l4_len;
163         } else {
164                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
165                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
166                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
167         }
168 }
169
170 static __rte_always_inline int
171 copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
172                   struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
173 {
174         uint32_t desc_avail, desc_offset;
175         uint32_t mbuf_avail, mbuf_offset;
176         uint32_t cpy_len;
177         struct vring_desc *desc;
178         uint64_t desc_addr;
179         /* A counter to avoid desc dead loop chain */
180         uint16_t nr_desc = 1;
181
182         desc = &descs[desc_idx];
183         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
184         /*
185          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
186          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
187          * otherwise stores offset on the stack instead of in a register.
188          */
189         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
190                 return -1;
191
192         rte_prefetch0((void *)(uintptr_t)desc_addr);
193
194         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
195         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
196         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
197
198         desc_offset = dev->vhost_hlen;
199         desc_avail  = desc->len - dev->vhost_hlen;
200
201         mbuf_avail  = rte_pktmbuf_data_len(m);
202         mbuf_offset = 0;
203         while (mbuf_avail != 0 || m->next != NULL) {
204                 /* done with current mbuf, fetch next */
205                 if (mbuf_avail == 0) {
206                         m = m->next;
207
208                         mbuf_offset = 0;
209                         mbuf_avail  = rte_pktmbuf_data_len(m);
210                 }
211
212                 /* done with current desc buf, fetch next */
213                 if (desc_avail == 0) {
214                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
215                                 /* Room in vring buffer is not enough */
216                                 return -1;
217                         }
218                         if (unlikely(desc->next >= size || ++nr_desc > size))
219                                 return -1;
220
221                         desc = &descs[desc->next];
222                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
223                         if (unlikely(!desc_addr))
224                                 return -1;
225
226                         desc_offset = 0;
227                         desc_avail  = desc->len;
228                 }
229
230                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
231                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
232                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
233                         cpy_len);
234                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
235                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
236                              cpy_len, 0);
237
238                 mbuf_avail  -= cpy_len;
239                 mbuf_offset += cpy_len;
240                 desc_avail  -= cpy_len;
241                 desc_offset += cpy_len;
242         }
243
244         return 0;
245 }
246
247 /**
248  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
249  * be received from the physical port or from another virtio device. A packet
250  * count is returned to indicate the number of packets that are successfully
251  * added to the RX queue. This function works when the mbuf is scattered, but
252  * it doesn't support the mergeable feature.
253  */
254 static __rte_always_inline uint32_t
255 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
256               struct rte_mbuf **pkts, uint32_t count)
257 {
258         struct vhost_virtqueue *vq;
259         uint16_t avail_idx, free_entries, start_idx;
260         uint16_t desc_indexes[MAX_PKT_BURST];
261         struct vring_desc *descs;
262         uint16_t used_idx;
263         uint32_t i, sz;
264
265         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
266         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
267                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
268                         dev->vid, __func__, queue_id);
269                 return 0;
270         }
271
272         vq = dev->virtqueue[queue_id];
273         if (unlikely(vq->enabled == 0))
274                 return 0;
275
276         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
277         start_idx = vq->last_used_idx;
278         free_entries = avail_idx - start_idx;
279         count = RTE_MIN(count, free_entries);
280         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
281         if (count == 0)
282                 return 0;
283
284         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
285                 dev->vid, start_idx, start_idx + count);
286
287         /* Retrieve all of the desc indexes first to avoid caching issues. */
288         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
289         for (i = 0; i < count; i++) {
290                 used_idx = (start_idx + i) & (vq->size - 1);
291                 desc_indexes[i] = vq->avail->ring[used_idx];
292                 vq->used->ring[used_idx].id = desc_indexes[i];
293                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
294                                                dev->vhost_hlen;
295                 vhost_log_used_vring(dev, vq,
296                         offsetof(struct vring_used, ring[used_idx]),
297                         sizeof(vq->used->ring[used_idx]));
298         }
299
300         rte_prefetch0(&vq->desc[desc_indexes[0]]);
301         for (i = 0; i < count; i++) {
302                 uint16_t desc_idx = desc_indexes[i];
303                 int err;
304
305                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
306                         descs = (struct vring_desc *)(uintptr_t)
307                                 rte_vhost_gpa_to_vva(dev->mem,
308                                         vq->desc[desc_idx].addr);
309                         if (unlikely(!descs)) {
310                                 count = i;
311                                 break;
312                         }
313
314                         desc_idx = 0;
315                         sz = vq->desc[desc_idx].len / sizeof(*descs);
316                 } else {
317                         descs = vq->desc;
318                         sz = vq->size;
319                 }
320
321                 err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
322                 if (unlikely(err)) {
323                         used_idx = (start_idx + i) & (vq->size - 1);
324                         vq->used->ring[used_idx].len = dev->vhost_hlen;
325                         vhost_log_used_vring(dev, vq,
326                                 offsetof(struct vring_used, ring[used_idx]),
327                                 sizeof(vq->used->ring[used_idx]));
328                 }
329
330                 if (i + 1 < count)
331                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
332         }
333
334         rte_smp_wmb();
335
336         *(volatile uint16_t *)&vq->used->idx += count;
337         vq->last_used_idx += count;
338         vhost_log_used_vring(dev, vq,
339                 offsetof(struct vring_used, idx),
340                 sizeof(vq->used->idx));
341
342         /* flush used->idx update before we read avail->flags. */
343         rte_mb();
344
345         /* Kick the guest if necessary. */
346         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
347                         && (vq->callfd >= 0))
348                 eventfd_write(vq->callfd, (eventfd_t)1);
349         return count;
350 }
351
352 static __rte_always_inline int
353 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
354                          uint32_t avail_idx, uint32_t *vec_idx,
355                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
356                          uint16_t *desc_chain_len)
357 {
358         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
359         uint32_t vec_id = *vec_idx;
360         uint32_t len    = 0;
361         struct vring_desc *descs = vq->desc;
362
363         *desc_chain_head = idx;
364
365         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
366                 descs = (struct vring_desc *)(uintptr_t)
367                         rte_vhost_gpa_to_vva(dev->mem, vq->desc[idx].addr);
368                 if (unlikely(!descs))
369                         return -1;
370
371                 idx = 0;
372         }
373
374         while (1) {
375                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
376                         return -1;
377
378                 len += descs[idx].len;
379                 buf_vec[vec_id].buf_addr = descs[idx].addr;
380                 buf_vec[vec_id].buf_len  = descs[idx].len;
381                 buf_vec[vec_id].desc_idx = idx;
382                 vec_id++;
383
384                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
385                         break;
386
387                 idx = descs[idx].next;
388         }
389
390         *desc_chain_len = len;
391         *vec_idx = vec_id;
392
393         return 0;
394 }
395
396 /*
397  * Returns -1 on fail, 0 on success
398  */
399 static inline int
400 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
401                                 uint32_t size, struct buf_vector *buf_vec,
402                                 uint16_t *num_buffers, uint16_t avail_head)
403 {
404         uint16_t cur_idx;
405         uint32_t vec_idx = 0;
406         uint16_t tries = 0;
407
408         uint16_t head_idx = 0;
409         uint16_t len = 0;
410
411         *num_buffers = 0;
412         cur_idx  = vq->last_avail_idx;
413
414         while (size > 0) {
415                 if (unlikely(cur_idx == avail_head))
416                         return -1;
417
418                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
419                                                 &head_idx, &len) < 0))
420                         return -1;
421                 len = RTE_MIN(len, size);
422                 update_shadow_used_ring(vq, head_idx, len);
423                 size -= len;
424
425                 cur_idx++;
426                 tries++;
427                 *num_buffers += 1;
428
429                 /*
430                  * if we tried all available ring items, and still
431                  * can't get enough buf, it means something abnormal
432                  * happened.
433                  */
434                 if (unlikely(tries >= vq->size))
435                         return -1;
436         }
437
438         return 0;
439 }
440
441 static __rte_always_inline int
442 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
443                             struct buf_vector *buf_vec, uint16_t num_buffers)
444 {
445         uint32_t vec_idx = 0;
446         uint64_t desc_addr;
447         uint32_t mbuf_offset, mbuf_avail;
448         uint32_t desc_offset, desc_avail;
449         uint32_t cpy_len;
450         uint64_t hdr_addr, hdr_phys_addr;
451         struct rte_mbuf *hdr_mbuf;
452
453         if (unlikely(m == NULL))
454                 return -1;
455
456         desc_addr = rte_vhost_gpa_to_vva(dev->mem, buf_vec[vec_idx].buf_addr);
457         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
458                 return -1;
459
460         hdr_mbuf = m;
461         hdr_addr = desc_addr;
462         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
463         rte_prefetch0((void *)(uintptr_t)hdr_addr);
464
465         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
466                 dev->vid, num_buffers);
467
468         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
469         desc_offset = dev->vhost_hlen;
470
471         mbuf_avail  = rte_pktmbuf_data_len(m);
472         mbuf_offset = 0;
473         while (mbuf_avail != 0 || m->next != NULL) {
474                 /* done with current desc buf, get the next one */
475                 if (desc_avail == 0) {
476                         vec_idx++;
477                         desc_addr = rte_vhost_gpa_to_vva(dev->mem,
478                                         buf_vec[vec_idx].buf_addr);
479                         if (unlikely(!desc_addr))
480                                 return -1;
481
482                         /* Prefetch buffer address. */
483                         rte_prefetch0((void *)(uintptr_t)desc_addr);
484                         desc_offset = 0;
485                         desc_avail  = buf_vec[vec_idx].buf_len;
486                 }
487
488                 /* done with current mbuf, get the next one */
489                 if (mbuf_avail == 0) {
490                         m = m->next;
491
492                         mbuf_offset = 0;
493                         mbuf_avail  = rte_pktmbuf_data_len(m);
494                 }
495
496                 if (hdr_addr) {
497                         struct virtio_net_hdr_mrg_rxbuf *hdr;
498
499                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
500                                 hdr_addr;
501                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
502                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
503
504                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
505                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
506                                      dev->vhost_hlen, 0);
507
508                         hdr_addr = 0;
509                 }
510
511                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
512                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
513                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
514                         cpy_len);
515                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
516                         cpy_len);
517                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
518                         cpy_len, 0);
519
520                 mbuf_avail  -= cpy_len;
521                 mbuf_offset += cpy_len;
522                 desc_avail  -= cpy_len;
523                 desc_offset += cpy_len;
524         }
525
526         return 0;
527 }
528
529 static __rte_always_inline uint32_t
530 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
531         struct rte_mbuf **pkts, uint32_t count)
532 {
533         struct vhost_virtqueue *vq;
534         uint32_t pkt_idx = 0;
535         uint16_t num_buffers;
536         struct buf_vector buf_vec[BUF_VECTOR_MAX];
537         uint16_t avail_head;
538
539         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
540         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
541                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
542                         dev->vid, __func__, queue_id);
543                 return 0;
544         }
545
546         vq = dev->virtqueue[queue_id];
547         if (unlikely(vq->enabled == 0))
548                 return 0;
549
550         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
551         if (count == 0)
552                 return 0;
553
554         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
555
556         vq->shadow_used_idx = 0;
557         avail_head = *((volatile uint16_t *)&vq->avail->idx);
558         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
559                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
560
561                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
562                                                 pkt_len, buf_vec, &num_buffers,
563                                                 avail_head) < 0)) {
564                         LOG_DEBUG(VHOST_DATA,
565                                 "(%d) failed to get enough desc from vring\n",
566                                 dev->vid);
567                         vq->shadow_used_idx -= num_buffers;
568                         break;
569                 }
570
571                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
572                         dev->vid, vq->last_avail_idx,
573                         vq->last_avail_idx + num_buffers);
574
575                 if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
576                                                 buf_vec, num_buffers) < 0) {
577                         vq->shadow_used_idx -= num_buffers;
578                         break;
579                 }
580
581                 vq->last_avail_idx += num_buffers;
582         }
583
584         if (likely(vq->shadow_used_idx)) {
585                 flush_shadow_used_ring(dev, vq);
586
587                 /* flush used->idx update before we read avail->flags. */
588                 rte_mb();
589
590                 /* Kick the guest if necessary. */
591                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
592                                 && (vq->callfd >= 0))
593                         eventfd_write(vq->callfd, (eventfd_t)1);
594         }
595
596         return pkt_idx;
597 }
598
599 uint16_t
600 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
601         struct rte_mbuf **pkts, uint16_t count)
602 {
603         struct virtio_net *dev = get_device(vid);
604
605         if (!dev)
606                 return 0;
607
608         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
609                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
610         else
611                 return virtio_dev_rx(dev, queue_id, pkts, count);
612 }
613
614 static inline bool
615 virtio_net_with_host_offload(struct virtio_net *dev)
616 {
617         if (dev->features &
618                         ((1ULL << VIRTIO_NET_F_CSUM) |
619                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
620                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
621                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
622                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
623                 return true;
624
625         return false;
626 }
627
628 static void
629 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
630 {
631         struct ipv4_hdr *ipv4_hdr;
632         struct ipv6_hdr *ipv6_hdr;
633         void *l3_hdr = NULL;
634         struct ether_hdr *eth_hdr;
635         uint16_t ethertype;
636
637         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
638
639         m->l2_len = sizeof(struct ether_hdr);
640         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
641
642         if (ethertype == ETHER_TYPE_VLAN) {
643                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
644
645                 m->l2_len += sizeof(struct vlan_hdr);
646                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
647         }
648
649         l3_hdr = (char *)eth_hdr + m->l2_len;
650
651         switch (ethertype) {
652         case ETHER_TYPE_IPv4:
653                 ipv4_hdr = l3_hdr;
654                 *l4_proto = ipv4_hdr->next_proto_id;
655                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
656                 *l4_hdr = (char *)l3_hdr + m->l3_len;
657                 m->ol_flags |= PKT_TX_IPV4;
658                 break;
659         case ETHER_TYPE_IPv6:
660                 ipv6_hdr = l3_hdr;
661                 *l4_proto = ipv6_hdr->proto;
662                 m->l3_len = sizeof(struct ipv6_hdr);
663                 *l4_hdr = (char *)l3_hdr + m->l3_len;
664                 m->ol_flags |= PKT_TX_IPV6;
665                 break;
666         default:
667                 m->l3_len = 0;
668                 *l4_proto = 0;
669                 *l4_hdr = NULL;
670                 break;
671         }
672 }
673
674 static __rte_always_inline void
675 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
676 {
677         uint16_t l4_proto = 0;
678         void *l4_hdr = NULL;
679         struct tcp_hdr *tcp_hdr = NULL;
680
681         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
682                 return;
683
684         parse_ethernet(m, &l4_proto, &l4_hdr);
685         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
686                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
687                         switch (hdr->csum_offset) {
688                         case (offsetof(struct tcp_hdr, cksum)):
689                                 if (l4_proto == IPPROTO_TCP)
690                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
691                                 break;
692                         case (offsetof(struct udp_hdr, dgram_cksum)):
693                                 if (l4_proto == IPPROTO_UDP)
694                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
695                                 break;
696                         case (offsetof(struct sctp_hdr, cksum)):
697                                 if (l4_proto == IPPROTO_SCTP)
698                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
699                                 break;
700                         default:
701                                 break;
702                         }
703                 }
704         }
705
706         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
707                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
708                 case VIRTIO_NET_HDR_GSO_TCPV4:
709                 case VIRTIO_NET_HDR_GSO_TCPV6:
710                         tcp_hdr = l4_hdr;
711                         m->ol_flags |= PKT_TX_TCP_SEG;
712                         m->tso_segsz = hdr->gso_size;
713                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
714                         break;
715                 default:
716                         RTE_LOG(WARNING, VHOST_DATA,
717                                 "unsupported gso type %u.\n", hdr->gso_type);
718                         break;
719                 }
720         }
721 }
722
723 #define RARP_PKT_SIZE   64
724
725 static int
726 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
727 {
728         struct ether_hdr *eth_hdr;
729         struct arp_hdr  *rarp;
730
731         if (rarp_mbuf->buf_len < 64) {
732                 RTE_LOG(WARNING, VHOST_DATA,
733                         "failed to make RARP; mbuf size too small %u (< %d)\n",
734                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
735                 return -1;
736         }
737
738         /* Ethernet header. */
739         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
740         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
741         ether_addr_copy(mac, &eth_hdr->s_addr);
742         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
743
744         /* RARP header. */
745         rarp = (struct arp_hdr *)(eth_hdr + 1);
746         rarp->arp_hrd = htons(ARP_HRD_ETHER);
747         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
748         rarp->arp_hln = ETHER_ADDR_LEN;
749         rarp->arp_pln = 4;
750         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
751
752         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
753         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
754         memset(&rarp->arp_data.arp_sip, 0x00, 4);
755         memset(&rarp->arp_data.arp_tip, 0x00, 4);
756
757         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
758
759         return 0;
760 }
761
762 static __rte_always_inline void
763 put_zmbuf(struct zcopy_mbuf *zmbuf)
764 {
765         zmbuf->in_use = 0;
766 }
767
768 static __rte_always_inline int
769 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
770                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
771                   struct rte_mempool *mbuf_pool)
772 {
773         struct vring_desc *desc;
774         uint64_t desc_addr;
775         uint32_t desc_avail, desc_offset;
776         uint32_t mbuf_avail, mbuf_offset;
777         uint32_t cpy_len;
778         struct rte_mbuf *cur = m, *prev = m;
779         struct virtio_net_hdr *hdr = NULL;
780         /* A counter to avoid desc dead loop chain */
781         uint32_t nr_desc = 1;
782
783         desc = &descs[desc_idx];
784         if (unlikely((desc->len < dev->vhost_hlen)) ||
785                         (desc->flags & VRING_DESC_F_INDIRECT))
786                 return -1;
787
788         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
789         if (unlikely(!desc_addr))
790                 return -1;
791
792         if (virtio_net_with_host_offload(dev)) {
793                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
794                 rte_prefetch0(hdr);
795         }
796
797         /*
798          * A virtio driver normally uses at least 2 desc buffers
799          * for Tx: the first for storing the header, and others
800          * for storing the data.
801          */
802         if (likely((desc->len == dev->vhost_hlen) &&
803                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
804                 desc = &descs[desc->next];
805                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
806                         return -1;
807
808                 desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
809                 if (unlikely(!desc_addr))
810                         return -1;
811
812                 desc_offset = 0;
813                 desc_avail  = desc->len;
814                 nr_desc    += 1;
815         } else {
816                 desc_avail  = desc->len - dev->vhost_hlen;
817                 desc_offset = dev->vhost_hlen;
818         }
819
820         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
821
822         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
823
824         mbuf_offset = 0;
825         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
826         while (1) {
827                 uint64_t hpa;
828
829                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
830
831                 /*
832                  * A desc buf might across two host physical pages that are
833                  * not continuous. In such case (gpa_to_hpa returns 0), data
834                  * will be copied even though zero copy is enabled.
835                  */
836                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
837                                         desc->addr + desc_offset, cpy_len)))) {
838                         cur->data_len = cpy_len;
839                         cur->data_off = 0;
840                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
841                         cur->buf_physaddr = hpa;
842
843                         /*
844                          * In zero copy mode, one mbuf can only reference data
845                          * for one or partial of one desc buff.
846                          */
847                         mbuf_avail = cpy_len;
848                 } else {
849                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
850                                                            mbuf_offset),
851                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
852                                 cpy_len);
853                 }
854
855                 mbuf_avail  -= cpy_len;
856                 mbuf_offset += cpy_len;
857                 desc_avail  -= cpy_len;
858                 desc_offset += cpy_len;
859
860                 /* This desc reaches to its end, get the next one */
861                 if (desc_avail == 0) {
862                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
863                                 break;
864
865                         if (unlikely(desc->next >= max_desc ||
866                                      ++nr_desc > max_desc))
867                                 return -1;
868                         desc = &descs[desc->next];
869                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
870                                 return -1;
871
872                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
873                         if (unlikely(!desc_addr))
874                                 return -1;
875
876                         rte_prefetch0((void *)(uintptr_t)desc_addr);
877
878                         desc_offset = 0;
879                         desc_avail  = desc->len;
880
881                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
882                 }
883
884                 /*
885                  * This mbuf reaches to its end, get a new one
886                  * to hold more data.
887                  */
888                 if (mbuf_avail == 0) {
889                         cur = rte_pktmbuf_alloc(mbuf_pool);
890                         if (unlikely(cur == NULL)) {
891                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
892                                         "allocate memory for mbuf.\n");
893                                 return -1;
894                         }
895                         if (unlikely(dev->dequeue_zero_copy))
896                                 rte_mbuf_refcnt_update(cur, 1);
897
898                         prev->next = cur;
899                         prev->data_len = mbuf_offset;
900                         m->nb_segs += 1;
901                         m->pkt_len += mbuf_offset;
902                         prev = cur;
903
904                         mbuf_offset = 0;
905                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
906                 }
907         }
908
909         prev->data_len = mbuf_offset;
910         m->pkt_len    += mbuf_offset;
911
912         if (hdr)
913                 vhost_dequeue_offload(hdr, m);
914
915         return 0;
916 }
917
918 static __rte_always_inline void
919 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
920                  uint32_t used_idx, uint32_t desc_idx)
921 {
922         vq->used->ring[used_idx].id  = desc_idx;
923         vq->used->ring[used_idx].len = 0;
924         vhost_log_used_vring(dev, vq,
925                         offsetof(struct vring_used, ring[used_idx]),
926                         sizeof(vq->used->ring[used_idx]));
927 }
928
929 static __rte_always_inline void
930 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
931                 uint32_t count)
932 {
933         if (unlikely(count == 0))
934                 return;
935
936         rte_smp_wmb();
937         rte_smp_rmb();
938
939         vq->used->idx += count;
940         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
941                         sizeof(vq->used->idx));
942
943         /* Kick guest if required. */
944         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
945                         && (vq->callfd >= 0))
946                 eventfd_write(vq->callfd, (eventfd_t)1);
947 }
948
949 static __rte_always_inline struct zcopy_mbuf *
950 get_zmbuf(struct vhost_virtqueue *vq)
951 {
952         uint16_t i;
953         uint16_t last;
954         int tries = 0;
955
956         /* search [last_zmbuf_idx, zmbuf_size) */
957         i = vq->last_zmbuf_idx;
958         last = vq->zmbuf_size;
959
960 again:
961         for (; i < last; i++) {
962                 if (vq->zmbufs[i].in_use == 0) {
963                         vq->last_zmbuf_idx = i + 1;
964                         vq->zmbufs[i].in_use = 1;
965                         return &vq->zmbufs[i];
966                 }
967         }
968
969         tries++;
970         if (tries == 1) {
971                 /* search [0, last_zmbuf_idx) */
972                 i = 0;
973                 last = vq->last_zmbuf_idx;
974                 goto again;
975         }
976
977         return NULL;
978 }
979
980 static __rte_always_inline bool
981 mbuf_is_consumed(struct rte_mbuf *m)
982 {
983         while (m) {
984                 if (rte_mbuf_refcnt_read(m) > 1)
985                         return false;
986                 m = m->next;
987         }
988
989         return true;
990 }
991
992 uint16_t
993 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
994         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
995 {
996         struct virtio_net *dev;
997         struct rte_mbuf *rarp_mbuf = NULL;
998         struct vhost_virtqueue *vq;
999         uint32_t desc_indexes[MAX_PKT_BURST];
1000         uint32_t used_idx;
1001         uint32_t i = 0;
1002         uint16_t free_entries;
1003         uint16_t avail_idx;
1004
1005         dev = get_device(vid);
1006         if (!dev)
1007                 return 0;
1008
1009         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1010                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1011                         dev->vid, __func__, queue_id);
1012                 return 0;
1013         }
1014
1015         vq = dev->virtqueue[queue_id];
1016         if (unlikely(vq->enabled == 0))
1017                 return 0;
1018
1019         if (unlikely(dev->dequeue_zero_copy)) {
1020                 struct zcopy_mbuf *zmbuf, *next;
1021                 int nr_updated = 0;
1022
1023                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1024                      zmbuf != NULL; zmbuf = next) {
1025                         next = TAILQ_NEXT(zmbuf, next);
1026
1027                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1028                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1029                                 update_used_ring(dev, vq, used_idx,
1030                                                  zmbuf->desc_idx);
1031                                 nr_updated += 1;
1032
1033                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1034                                 rte_pktmbuf_free(zmbuf->mbuf);
1035                                 put_zmbuf(zmbuf);
1036                                 vq->nr_zmbuf -= 1;
1037                         }
1038                 }
1039
1040                 update_used_idx(dev, vq, nr_updated);
1041         }
1042
1043         /*
1044          * Construct a RARP broadcast packet, and inject it to the "pkts"
1045          * array, to looks like that guest actually send such packet.
1046          *
1047          * Check user_send_rarp() for more information.
1048          *
1049          * broadcast_rarp shares a cacheline in the virtio_net structure
1050          * with some fields that are accessed during enqueue and
1051          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1052          * result in false sharing between enqueue and dequeue.
1053          *
1054          * Prevent unnecessary false sharing by reading broadcast_rarp first
1055          * and only performing cmpset if the read indicates it is likely to
1056          * be set.
1057          */
1058
1059         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1060                         rte_atomic16_cmpset((volatile uint16_t *)
1061                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1062
1063                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1064                 if (rarp_mbuf == NULL) {
1065                         RTE_LOG(ERR, VHOST_DATA,
1066                                 "Failed to allocate memory for mbuf.\n");
1067                         return 0;
1068                 }
1069
1070                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1071                         rte_pktmbuf_free(rarp_mbuf);
1072                         rarp_mbuf = NULL;
1073                 } else {
1074                         count -= 1;
1075                 }
1076         }
1077
1078         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1079                         vq->last_avail_idx;
1080         if (free_entries == 0)
1081                 goto out;
1082
1083         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1084
1085         /* Prefetch available and used ring */
1086         avail_idx = vq->last_avail_idx & (vq->size - 1);
1087         used_idx  = vq->last_used_idx  & (vq->size - 1);
1088         rte_prefetch0(&vq->avail->ring[avail_idx]);
1089         rte_prefetch0(&vq->used->ring[used_idx]);
1090
1091         count = RTE_MIN(count, MAX_PKT_BURST);
1092         count = RTE_MIN(count, free_entries);
1093         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1094                         dev->vid, count);
1095
1096         /* Retrieve all of the head indexes first to avoid caching issues. */
1097         for (i = 0; i < count; i++) {
1098                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1099                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1100                 desc_indexes[i] = vq->avail->ring[avail_idx];
1101
1102                 if (likely(dev->dequeue_zero_copy == 0))
1103                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1104         }
1105
1106         /* Prefetch descriptor index. */
1107         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1108         for (i = 0; i < count; i++) {
1109                 struct vring_desc *desc;
1110                 uint16_t sz, idx;
1111                 int err;
1112
1113                 if (likely(i + 1 < count))
1114                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1115
1116                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1117                         desc = (struct vring_desc *)(uintptr_t)
1118                                 rte_vhost_gpa_to_vva(dev->mem,
1119                                         vq->desc[desc_indexes[i]].addr);
1120                         if (unlikely(!desc))
1121                                 break;
1122
1123                         rte_prefetch0(desc);
1124                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1125                         idx = 0;
1126                 } else {
1127                         desc = vq->desc;
1128                         sz = vq->size;
1129                         idx = desc_indexes[i];
1130                 }
1131
1132                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1133                 if (unlikely(pkts[i] == NULL)) {
1134                         RTE_LOG(ERR, VHOST_DATA,
1135                                 "Failed to allocate memory for mbuf.\n");
1136                         break;
1137                 }
1138
1139                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1140                 if (unlikely(err)) {
1141                         rte_pktmbuf_free(pkts[i]);
1142                         break;
1143                 }
1144
1145                 if (unlikely(dev->dequeue_zero_copy)) {
1146                         struct zcopy_mbuf *zmbuf;
1147
1148                         zmbuf = get_zmbuf(vq);
1149                         if (!zmbuf) {
1150                                 rte_pktmbuf_free(pkts[i]);
1151                                 break;
1152                         }
1153                         zmbuf->mbuf = pkts[i];
1154                         zmbuf->desc_idx = desc_indexes[i];
1155
1156                         /*
1157                          * Pin lock the mbuf; we will check later to see
1158                          * whether the mbuf is freed (when we are the last
1159                          * user) or not. If that's the case, we then could
1160                          * update the used ring safely.
1161                          */
1162                         rte_mbuf_refcnt_update(pkts[i], 1);
1163
1164                         vq->nr_zmbuf += 1;
1165                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1166                 }
1167         }
1168         vq->last_avail_idx += i;
1169
1170         if (likely(dev->dequeue_zero_copy == 0)) {
1171                 vq->last_used_idx += i;
1172                 update_used_idx(dev, vq, i);
1173         }
1174
1175 out:
1176         if (unlikely(rarp_mbuf != NULL)) {
1177                 /*
1178                  * Inject it to the head of "pkts" array, so that switch's mac
1179                  * learning table will get updated first.
1180                  */
1181                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1182                 pkts[0] = rarp_mbuf;
1183                 i += 1;
1184         }
1185
1186         return i;
1187 }