Imported Upstream version 16.04
[deb_dpdk.git] / app / test / test_timer.c
diff --git a/app/test/test_timer.c b/app/test/test_timer.c
new file mode 100644 (file)
index 0000000..944e2ad
--- /dev/null
@@ -0,0 +1,633 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "test.h"
+
+/*
+ * Timer
+ * =====
+ *
+ * #. Stress test 1.
+ *
+ *    The objective of the timer stress tests is to check that there are no
+ *    race conditions in list and status management. This test launches,
+ *    resets and stops the timer very often on many cores at the same
+ *    time.
+ *
+ *    - Only one timer is used for this test.
+ *    - On each core, the rte_timer_manage() function is called from the main
+ *      loop every 3 microseconds.
+ *    - In the main loop, the timer may be reset (randomly, with a
+ *      probability of 0.5 %) 100 microseconds later on a random core, or
+ *      stopped (with a probability of 0.5 % also).
+ *    - In callback, the timer is can be reset (randomly, with a
+ *      probability of 0.5 %) 100 microseconds later on the same core or
+ *      on another core (same probability), or stopped (same
+ *      probability).
+ *
+ * # Stress test 2.
+ *
+ *    The objective of this test is similar to the first in that it attempts
+ *    to find if there are any race conditions in the timer library. However,
+ *    it is less complex in terms of operations performed and duration, as it
+ *    is designed to have a predictable outcome that can be tested.
+ *
+ *    - A set of timers is initialized for use by the test
+ *    - All cores then simultaneously are set to schedule all the timers at
+ *      the same time, so conflicts should occur.
+ *    - Then there is a delay while we wait for the timers to expire
+ *    - Then the master lcore calls timer_manage() and we check that all
+ *      timers have had their callbacks called exactly once - no more no less.
+ *    - Then we repeat the process, except after setting up the timers, we have
+ *      all cores randomly reschedule them.
+ *    - Again we check that the expected number of callbacks has occurred when
+ *      we call timer-manage.
+ *
+ * #. Basic test.
+ *
+ *    This test performs basic functional checks of the timers. The test
+ *    uses four different timers that are loaded and stopped under
+ *    specific conditions in specific contexts.
+ *
+ *    - Four timers are used for this test.
+ *    - On each core, the rte_timer_manage() function is called from main loop
+ *      every 3 microseconds.
+ *
+ *    The autotest python script checks that the behavior is correct:
+ *
+ *    - timer0
+ *
+ *      - At initialization, timer0 is loaded by the master core, on master core
+ *        in "single" mode (time = 1 second).
+ *      - In the first 19 callbacks, timer0 is reloaded on the same core,
+ *        then, it is explicitly stopped at the 20th call.
+ *      - At t=25s, timer0 is reloaded once by timer2.
+ *
+ *    - timer1
+ *
+ *      - At initialization, timer1 is loaded by the master core, on the
+ *        master core in "single" mode (time = 2 seconds).
+ *      - In the first 9 callbacks, timer1 is reloaded on another
+ *        core. After the 10th callback, timer1 is not reloaded anymore.
+ *
+ *    - timer2
+ *
+ *      - At initialization, timer2 is loaded by the master core, on the
+ *        master core in "periodical" mode (time = 1 second).
+ *      - In the callback, when t=25s, it stops timer3 and reloads timer0
+ *        on the current core.
+ *
+ *    - timer3
+ *
+ *      - At initialization, timer3 is loaded by the master core, on
+ *        another core in "periodical" mode (time = 1 second).
+ *      - It is stopped at t=25s by timer2.
+ */
+
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <sys/queue.h>
+#include <math.h>
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_cycles.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_timer.h>
+#include <rte_random.h>
+#include <rte_malloc.h>
+
+#define TEST_DURATION_S 20 /* in seconds */
+#define NB_TIMER 4
+
+#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
+
+static volatile uint64_t end_time;
+static volatile int test_failed;
+
+struct mytimerinfo {
+       struct rte_timer tim;
+       unsigned id;
+       unsigned count;
+};
+
+static struct mytimerinfo mytiminfo[NB_TIMER];
+
+static void timer_basic_cb(struct rte_timer *tim, void *arg);
+
+static void
+mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
+             enum rte_timer_type type, unsigned tim_lcore,
+             rte_timer_cb_t fct)
+{
+       rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
+                            fct, timinfo);
+}
+
+/* timer callback for stress tests */
+static void
+timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
+               __attribute__((unused)) void *arg)
+{
+       long r;
+       unsigned lcore_id = rte_lcore_id();
+       uint64_t hz = rte_get_timer_hz();
+
+       if (rte_timer_pending(tim))
+               return;
+
+       r = rte_rand();
+       if ((r & 0xff) == 0) {
+               mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
+                             timer_stress_cb);
+       }
+       else if ((r & 0xff) == 1) {
+               mytimer_reset(&mytiminfo[0], hz, SINGLE,
+                             rte_get_next_lcore(lcore_id, 0, 1),
+                             timer_stress_cb);
+       }
+       else if ((r & 0xff) == 2) {
+               rte_timer_stop(&mytiminfo[0].tim);
+       }
+}
+
+static int
+timer_stress_main_loop(__attribute__((unused)) void *arg)
+{
+       uint64_t hz = rte_get_timer_hz();
+       unsigned lcore_id = rte_lcore_id();
+       uint64_t cur_time;
+       int64_t diff = 0;
+       long r;
+
+       while (diff >= 0) {
+
+               /* call the timer handler on each core */
+               rte_timer_manage();
+
+               /* simulate the processing of a packet
+                * (1 us = 2000 cycles at 2 Ghz) */
+               rte_delay_us(1);
+
+               /* randomly stop or reset timer */
+               r = rte_rand();
+               lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
+               if ((r & 0xff) == 0) {
+                       /* 100 us */
+                       mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
+                                     timer_stress_cb);
+               }
+               else if ((r & 0xff) == 1) {
+                       rte_timer_stop_sync(&mytiminfo[0].tim);
+               }
+               cur_time = rte_get_timer_cycles();
+               diff = end_time - cur_time;
+       }
+
+       lcore_id = rte_lcore_id();
+       RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
+
+       return 0;
+}
+
+/* Need to synchronize slave lcores through multiple steps. */
+enum { SLAVE_WAITING = 1, SLAVE_RUN_SIGNAL, SLAVE_RUNNING, SLAVE_FINISHED };
+static rte_atomic16_t slave_state[RTE_MAX_LCORE];
+
+static void
+master_init_slaves(void)
+{
+       unsigned i;
+
+       RTE_LCORE_FOREACH_SLAVE(i) {
+               rte_atomic16_set(&slave_state[i], SLAVE_WAITING);
+       }
+}
+
+static void
+master_start_slaves(void)
+{
+       unsigned i;
+
+       RTE_LCORE_FOREACH_SLAVE(i) {
+               rte_atomic16_set(&slave_state[i], SLAVE_RUN_SIGNAL);
+       }
+       RTE_LCORE_FOREACH_SLAVE(i) {
+               while (rte_atomic16_read(&slave_state[i]) != SLAVE_RUNNING)
+                       rte_pause();
+       }
+}
+
+static void
+master_wait_for_slaves(void)
+{
+       unsigned i;
+
+       RTE_LCORE_FOREACH_SLAVE(i) {
+               while (rte_atomic16_read(&slave_state[i]) != SLAVE_FINISHED)
+                       rte_pause();
+       }
+}
+
+static void
+slave_wait_to_start(void)
+{
+       unsigned lcore_id = rte_lcore_id();
+
+       while (rte_atomic16_read(&slave_state[lcore_id]) != SLAVE_RUN_SIGNAL)
+               rte_pause();
+       rte_atomic16_set(&slave_state[lcore_id], SLAVE_RUNNING);
+}
+
+static void
+slave_finish(void)
+{
+       unsigned lcore_id = rte_lcore_id();
+
+       rte_atomic16_set(&slave_state[lcore_id], SLAVE_FINISHED);
+}
+
+
+static volatile int cb_count = 0;
+
+/* callback for second stress test. will only be called
+ * on master lcore */
+static void
+timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
+{
+       cb_count++;
+}
+
+#define NB_STRESS2_TIMERS 8192
+
+static int
+timer_stress2_main_loop(__attribute__((unused)) void *arg)
+{
+       static struct rte_timer *timers;
+       int i, ret;
+       uint64_t delay = rte_get_timer_hz() / 4;
+       unsigned lcore_id = rte_lcore_id();
+       unsigned master = rte_get_master_lcore();
+       int32_t my_collisions = 0;
+       static rte_atomic32_t collisions;
+
+       if (lcore_id == master) {
+               cb_count = 0;
+               test_failed = 0;
+               rte_atomic32_set(&collisions, 0);
+               master_init_slaves();
+               timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
+               if (timers == NULL) {
+                       printf("Test Failed\n");
+                       printf("- Cannot allocate memory for timers\n" );
+                       test_failed = 1;
+                       master_start_slaves();
+                       goto cleanup;
+               }
+               for (i = 0; i < NB_STRESS2_TIMERS; i++)
+                       rte_timer_init(&timers[i]);
+               master_start_slaves();
+       } else {
+               slave_wait_to_start();
+               if (test_failed)
+                       goto cleanup;
+       }
+
+       /* have all cores schedule all timers on master lcore */
+       for (i = 0; i < NB_STRESS2_TIMERS; i++) {
+               ret = rte_timer_reset(&timers[i], delay, SINGLE, master,
+                               timer_stress2_cb, NULL);
+               /* there will be collisions when multiple cores simultaneously
+                * configure the same timers */
+               if (ret != 0)
+                       my_collisions++;
+       }
+       if (my_collisions != 0)
+               rte_atomic32_add(&collisions, my_collisions);
+
+       /* wait long enough for timers to expire */
+       rte_delay_ms(500);
+
+       /* all cores rendezvous */
+       if (lcore_id == master) {
+               master_wait_for_slaves();
+       } else {
+               slave_finish();
+       }
+
+       /* now check that we get the right number of callbacks */
+       if (lcore_id == master) {
+               my_collisions = rte_atomic32_read(&collisions);
+               if (my_collisions != 0)
+                       printf("- %d timer reset collisions (OK)\n", my_collisions);
+               rte_timer_manage();
+               if (cb_count != NB_STRESS2_TIMERS) {
+                       printf("Test Failed\n");
+                       printf("- Stress test 2, part 1 failed\n");
+                       printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
+                                       cb_count);
+                       test_failed = 1;
+                       master_start_slaves();
+                       goto cleanup;
+               }
+               cb_count = 0;
+
+               /* proceed */
+               master_start_slaves();
+       } else {
+               /* proceed */
+               slave_wait_to_start();
+               if (test_failed)
+                       goto cleanup;
+       }
+
+       /* now test again, just stop and restart timers at random after init*/
+       for (i = 0; i < NB_STRESS2_TIMERS; i++)
+               rte_timer_reset(&timers[i], delay, SINGLE, master,
+                               timer_stress2_cb, NULL);
+
+       /* pick random timer to reset, stopping them first half the time */
+       for (i = 0; i < 100000; i++) {
+               int r = rand() % NB_STRESS2_TIMERS;
+               if (i % 2)
+                       rte_timer_stop(&timers[r]);
+               rte_timer_reset(&timers[r], delay, SINGLE, master,
+                               timer_stress2_cb, NULL);
+       }
+
+       /* wait long enough for timers to expire */
+       rte_delay_ms(500);
+
+       /* now check that we get the right number of callbacks */
+       if (lcore_id == master) {
+               master_wait_for_slaves();
+
+               rte_timer_manage();
+               if (cb_count != NB_STRESS2_TIMERS) {
+                       printf("Test Failed\n");
+                       printf("- Stress test 2, part 2 failed\n");
+                       printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
+                                       cb_count);
+                       test_failed = 1;
+               } else {
+                       printf("Test OK\n");
+               }
+       }
+
+cleanup:
+       if (lcore_id == master) {
+               master_wait_for_slaves();
+               if (timers != NULL) {
+                       rte_free(timers);
+                       timers = NULL;
+               }
+       } else {
+               slave_finish();
+       }
+
+       return 0;
+}
+
+/* timer callback for basic tests */
+static void
+timer_basic_cb(struct rte_timer *tim, void *arg)
+{
+       struct mytimerinfo *timinfo = arg;
+       uint64_t hz = rte_get_timer_hz();
+       unsigned lcore_id = rte_lcore_id();
+       uint64_t cur_time = rte_get_timer_cycles();
+
+       if (rte_timer_pending(tim))
+               return;
+
+       timinfo->count ++;
+
+       RTE_LOG(INFO, TESTTIMER,
+               "%"PRIu64": callback id=%u count=%u on core %u\n",
+               cur_time, timinfo->id, timinfo->count, lcore_id);
+
+       /* reload timer 0 on same core */
+       if (timinfo->id == 0 && timinfo->count < 20) {
+               mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
+               return;
+       }
+
+       /* reload timer 1 on next core */
+       if (timinfo->id == 1 && timinfo->count < 10) {
+               mytimer_reset(timinfo, hz*2, SINGLE,
+                             rte_get_next_lcore(lcore_id, 0, 1),
+                             timer_basic_cb);
+               return;
+       }
+
+       /* Explicitelly stop timer 0. Once stop() called, we can even
+        * erase the content of the structure: it is not referenced
+        * anymore by any code (in case of dynamic structure, it can
+        * be freed) */
+       if (timinfo->id == 0 && timinfo->count == 20) {
+
+               /* stop_sync() is not needed, because we know that the
+                * status of timer is only modified by this core */
+               rte_timer_stop(tim);
+               memset(tim, 0xAA, sizeof(struct rte_timer));
+               return;
+       }
+
+       /* stop timer3, and restart a new timer0 (it was removed 5
+        * seconds ago) for a single shot */
+       if (timinfo->id == 2 && timinfo->count == 25) {
+               rte_timer_stop_sync(&mytiminfo[3].tim);
+
+               /* need to reinit because structure was erased with 0xAA */
+               rte_timer_init(&mytiminfo[0].tim);
+               mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
+                             timer_basic_cb);
+       }
+}
+
+static int
+timer_basic_main_loop(__attribute__((unused)) void *arg)
+{
+       uint64_t hz = rte_get_timer_hz();
+       unsigned lcore_id = rte_lcore_id();
+       uint64_t cur_time;
+       int64_t diff = 0;
+
+       /* launch all timers on core 0 */
+       if (lcore_id == rte_get_master_lcore()) {
+               mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
+                             timer_basic_cb);
+               mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
+                             timer_basic_cb);
+               mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
+                             timer_basic_cb);
+               mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
+                             rte_get_next_lcore(lcore_id, 0, 1),
+                             timer_basic_cb);
+       }
+
+       while (diff >= 0) {
+
+               /* call the timer handler on each core */
+               rte_timer_manage();
+
+               /* simulate the processing of a packet
+                * (3 us = 6000 cycles at 2 Ghz) */
+               rte_delay_us(3);
+
+               cur_time = rte_get_timer_cycles();
+               diff = end_time - cur_time;
+       }
+       RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
+
+       return 0;
+}
+
+static int
+timer_sanity_check(void)
+{
+#ifdef RTE_LIBEAL_USE_HPET
+       if (eal_timer_source != EAL_TIMER_HPET) {
+               printf("Not using HPET, can't sanity check timer sources\n");
+               return 0;
+       }
+
+       const uint64_t t_hz = rte_get_tsc_hz();
+       const uint64_t h_hz = rte_get_hpet_hz();
+       printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
+
+       const uint64_t tsc_start = rte_get_tsc_cycles();
+       const uint64_t hpet_start = rte_get_hpet_cycles();
+       rte_delay_ms(100); /* delay 1/10 second */
+       const uint64_t tsc_end = rte_get_tsc_cycles();
+       const uint64_t hpet_end = rte_get_hpet_cycles();
+       printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
+                       tsc_end-tsc_start, hpet_end-hpet_start);
+
+       const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
+       const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
+       /* get the percentage that the times differ by */
+       const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
+       printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
+
+       printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
+                       time_diff);
+       if (time_diff > 0.1) {
+               printf("Error times differ by >0.1%%");
+               return -1;
+       }
+#endif
+       return 0;
+}
+
+static int
+test_timer(void)
+{
+       unsigned i;
+       uint64_t cur_time;
+       uint64_t hz;
+
+       /* sanity check our timer sources and timer config values */
+       if (timer_sanity_check() < 0) {
+               printf("Timer sanity checks failed\n");
+               return TEST_FAILED;
+       }
+
+       if (rte_lcore_count() < 2) {
+               printf("not enough lcores for this test\n");
+               return TEST_FAILED;
+       }
+
+       /* init timer */
+       for (i=0; i<NB_TIMER; i++) {
+               memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
+               mytiminfo[i].id = i;
+               rte_timer_init(&mytiminfo[i].tim);
+       }
+
+       /* calculate the "end of test" time */
+       cur_time = rte_get_timer_cycles();
+       hz = rte_get_timer_hz();
+       end_time = cur_time + (hz * TEST_DURATION_S);
+
+       /* start other cores */
+       printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
+       rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
+       rte_eal_mp_wait_lcore();
+
+       /* stop timer 0 used for stress test */
+       rte_timer_stop_sync(&mytiminfo[0].tim);
+
+       /* run a second, slightly different set of stress tests */
+       printf("\nStart timer stress tests 2\n");
+       test_failed = 0;
+       rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
+       rte_eal_mp_wait_lcore();
+       if (test_failed)
+               return TEST_FAILED;
+
+       /* calculate the "end of test" time */
+       cur_time = rte_get_timer_cycles();
+       hz = rte_get_timer_hz();
+       end_time = cur_time + (hz * TEST_DURATION_S);
+
+       /* start other cores */
+       printf("\nStart timer basic tests (%d seconds)\n", TEST_DURATION_S);
+       rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
+       rte_eal_mp_wait_lcore();
+
+       /* stop all timers */
+       for (i=0; i<NB_TIMER; i++) {
+               rte_timer_stop_sync(&mytiminfo[i].tim);
+       }
+
+       rte_timer_dump_stats(stdout);
+
+       return TEST_SUCCESS;
+}
+
+static struct test_command timer_cmd = {
+       .command = "timer_autotest",
+       .callback = test_timer,
+};
+REGISTER_TEST_COMMAND(timer_cmd);