crypto_ia32: native AES-GCM implementation 03/19903/4
authorDamjan Marion <damarion@cisco.com>
Wed, 22 May 2019 14:30:01 +0000 (16:30 +0200)
committerDamjan Marion <damarion@cisco.com>
Mon, 3 Jun 2019 12:11:34 +0000 (14:11 +0200)
Change-Id: I006a150577e897731649f21908b4789e2eb485c3
Signed-off-by: Damjan Marion <damarion@cisco.com>
src/plugins/crypto_ia32/CMakeLists.txt
src/plugins/crypto_ia32/aes_gcm.c [new file with mode: 0644]
src/plugins/crypto_ia32/crypto_ia32.h
src/plugins/crypto_ia32/ghash.h [new file with mode: 0644]
src/plugins/crypto_ia32/main.c

index 850eb4d..d619076 100644 (file)
@@ -27,7 +27,7 @@ foreach(VARIANT ${VARIANTS})
   list(GET VARIANT 0 v)
   list(GET VARIANT 1 f)
   set(l crypto_ia32_${v})
-  add_library(${l} OBJECT aes_cbc.c)
+  add_library(${l} OBJECT aes_cbc.c aes_gcm.c)
   set_target_properties(${l} PROPERTIES POSITION_INDEPENDENT_CODE ON)
   target_compile_options(${l} PUBLIC ${f} -Wall -fno-common)
   target_sources(crypto_ia32_plugin PRIVATE $<TARGET_OBJECTS:${l}>)
diff --git a/src/plugins/crypto_ia32/aes_gcm.c b/src/plugins/crypto_ia32/aes_gcm.c
new file mode 100644 (file)
index 0000000..61a04c4
--- /dev/null
@@ -0,0 +1,776 @@
+/*
+ *------------------------------------------------------------------
+ * Copyright (c) 2019 Cisco and/or its affiliates.
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *------------------------------------------------------------------
+ */
+
+#include <vlib/vlib.h>
+#include <vnet/plugin/plugin.h>
+#include <vnet/crypto/crypto.h>
+#include <x86intrin.h>
+#include <crypto_ia32/crypto_ia32.h>
+#include <crypto_ia32/aesni.h>
+#include <crypto_ia32/ghash.h>
+
+#if __GNUC__ > 4  && !__clang__ && CLIB_DEBUG == 0
+#pragma GCC optimize ("O3")
+#endif
+
+typedef struct
+{
+  /* pre-calculated hash key values */
+  const __m128i Hi[8];
+  /* extracted AES key */
+  const __m128i Ke[15];
+} aes_gcm_key_data_t;
+
+static const __m128i last_byte_one = { 0, 1ULL << 56 };
+static const __m128i zero = { 0, 0 };
+
+static const u8x16 bswap_mask = {
+  15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
+};
+
+static const u8x16 byte_mask_scale = {
+  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
+};
+
+static_always_inline __m128i
+aesni_gcm_bswap (__m128i x)
+{
+  return _mm_shuffle_epi8 (x, (__m128i) bswap_mask);
+}
+
+static_always_inline __m128i
+aesni_gcm_byte_mask (__m128i x, u8 n_bytes)
+{
+  u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale);
+
+  return _mm_blendv_epi8 (zero, x, (__m128i) mask);
+}
+
+static_always_inline __m128i
+aesni_gcm_load_partial (__m128i * p, int n_bytes)
+{
+#ifdef __AVX512F__
+  return _mm_mask_loadu_epi8 (zero, (1 << n_bytes) - 1, p);
+#else
+  return aesni_gcm_byte_mask (_mm_loadu_si128 (p), n_bytes);
+#endif
+}
+
+static_always_inline void
+aesni_gcm_store_partial (void *p, __m128i r, int n_bytes)
+{
+#ifdef x__AVX512F__
+  _mm_mask_storeu_epi8 (p, (1 << n_bytes) - 1, r);
+#else
+  u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale);
+  _mm_maskmoveu_si128 (r, (__m128i) mask, p);
+#endif
+}
+
+static_always_inline void
+aesni_gcm_load (__m128i * d, __m128i * inv, int n, int n_bytes)
+{
+  for (int i = 0; i < n - 1; i++)
+    d[i] = _mm_loadu_si128 (inv + i);
+  d[n - 1] = n_bytes ? aesni_gcm_load_partial (inv + n - 1, n_bytes) :
+    _mm_loadu_si128 (inv + n - 1);
+}
+
+static_always_inline void
+aesni_gcm_store (__m128i * d, __m128i * outv, int n, int n_bytes)
+{
+  for (int i = 0; i < n - 1; i++)
+    _mm_storeu_si128 (outv + i, d[i]);
+  if (n_bytes & 0xf)
+    aesni_gcm_store_partial (outv + n - 1, d[n - 1], n_bytes);
+  else
+    _mm_storeu_si128 (outv + n - 1, d[n - 1]);
+}
+
+static_always_inline void
+aesni_gcm_enc_first_round (__m128i * r, __m128i * Y, u32 * ctr, __m128i k,
+                          int n_blocks)
+{
+  u32 i;
+
+  if (PREDICT_TRUE ((u8) ctr[0] < (256 - n_blocks)))
+    {
+      for (i = 0; i < n_blocks; i++)
+       {
+         Y[0] = _mm_add_epi32 (Y[0], last_byte_one);
+         r[i] = k ^ Y[0];
+       }
+      ctr[0] += n_blocks;
+    }
+  else
+    {
+      for (i = 0; i < n_blocks; i++)
+       {
+         Y[0] = _mm_insert_epi32 (Y[0], clib_host_to_net_u32 (++ctr[0]), 3);
+         r[i] = k ^ Y[0];
+       }
+    }
+}
+
+static_always_inline void
+aesni_gcm_enc_round (__m128i * r, __m128i k, int n_blocks)
+{
+  for (int i = 0; i < n_blocks; i++)
+    r[i] = _mm_aesenc_si128 (r[i], k);
+}
+
+static_always_inline void
+aesni_gcm_enc_last_round (__m128i * r, __m128i * d, const __m128i * k,
+                         int rounds, int n_blocks)
+{
+
+  /* additional ronuds for AES-192 and AES-256 */
+  for (int i = 10; i < rounds; i++)
+    aesni_gcm_enc_round (r, k[i], n_blocks);
+
+  for (int i = 0; i < n_blocks; i++)
+    d[i] ^= _mm_aesenclast_si128 (r[i], k[rounds]);
+}
+
+static_always_inline __m128i
+aesni_gcm_ghash_blocks (__m128i T, aes_gcm_key_data_t * kd,
+                       const __m128i * in, int n_blocks)
+{
+  ghash_data_t _gd, *gd = &_gd;
+  const __m128i *Hi = kd->Hi + n_blocks - 1;
+  ghash_mul_first (gd, aesni_gcm_bswap (_mm_loadu_si128 (in)) ^ T, Hi[0]);
+  for (int i = 1; i < n_blocks; i++)
+    ghash_mul_next (gd, aesni_gcm_bswap (_mm_loadu_si128 (in + i)), Hi[-i]);
+  ghash_reduce (gd);
+  ghash_reduce2 (gd);
+  return ghash_final (gd);
+}
+
+static_always_inline __m128i
+aesni_gcm_ghash (__m128i T, aes_gcm_key_data_t * kd, const __m128i * in,
+                u32 n_left)
+{
+
+  while (n_left >= 128)
+    {
+      T = aesni_gcm_ghash_blocks (T, kd, in, 8);
+      n_left -= 128;
+      in += 8;
+    }
+
+  if (n_left >= 64)
+    {
+      T = aesni_gcm_ghash_blocks (T, kd, in, 4);
+      n_left -= 64;
+      in += 4;
+    }
+
+  if (n_left >= 32)
+    {
+      T = aesni_gcm_ghash_blocks (T, kd, in, 2);
+      n_left -= 32;
+      in += 2;
+    }
+
+  if (n_left >= 16)
+    {
+      T = aesni_gcm_ghash_blocks (T, kd, in, 1);
+      n_left -= 16;
+      in += 1;
+    }
+
+  if (n_left)
+    {
+      __m128i r = aesni_gcm_load_partial ((__m128i *) in, n_left);
+      T = ghash_mul (aesni_gcm_bswap (r) ^ T, kd->Hi[0]);
+    }
+  return T;
+}
+
+static_always_inline __m128i
+aesni_gcm_calc (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
+               __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv,
+               int rounds, int n, int last_block_bytes, int with_ghash,
+               int is_encrypt)
+{
+  __m128i r[n];
+  ghash_data_t _gd = { }, *gd = &_gd;
+  const __m128i *k = kd->Ke;
+  int hidx = is_encrypt ? 4 : n, didx = 0;
+
+  _mm_prefetch (inv + 4, _MM_HINT_T0);
+
+  /* AES rounds 0 and 1 */
+  aesni_gcm_enc_first_round (r, Y, ctr, k[0], n);
+  aesni_gcm_enc_round (r, k[1], n);
+
+  /* load data - decrypt round */
+  if (is_encrypt == 0)
+    aesni_gcm_load (d, inv, n, last_block_bytes);
+
+  /* GHASH multiply block 1 */
+  if (with_ghash)
+    ghash_mul_first (gd, aesni_gcm_bswap (d[didx++]) ^ T, kd->Hi[--hidx]);
+
+  /* AES rounds 2 and 3 */
+  aesni_gcm_enc_round (r, k[2], n);
+  aesni_gcm_enc_round (r, k[3], n);
+
+  /* GHASH multiply block 2 */
+  if (with_ghash && hidx)
+    ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);
+
+  /* AES rounds 4 and 5 */
+  aesni_gcm_enc_round (r, k[4], n);
+  aesni_gcm_enc_round (r, k[5], n);
+
+  /* GHASH multiply block 3 */
+  if (with_ghash && hidx)
+    ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);
+
+  /* AES rounds 6 and 7 */
+  aesni_gcm_enc_round (r, k[6], n);
+  aesni_gcm_enc_round (r, k[7], n);
+
+  /* GHASH multiply block 4 */
+  if (with_ghash && hidx)
+    ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);
+
+  /* AES rounds 8 and 9 */
+  aesni_gcm_enc_round (r, k[8], n);
+  aesni_gcm_enc_round (r, k[9], n);
+
+  /* GHASH reduce 1st step */
+  if (with_ghash)
+    ghash_reduce (gd);
+
+  /* load data - encrypt round */
+  if (is_encrypt)
+    aesni_gcm_load (d, inv, n, last_block_bytes);
+
+  /* GHASH reduce 2nd step */
+  if (with_ghash)
+    ghash_reduce2 (gd);
+
+  /* AES last round(s) */
+  aesni_gcm_enc_last_round (r, d, k, rounds, n);
+
+  /* store data */
+  aesni_gcm_store (d, outv, n, last_block_bytes);
+
+  /* GHASH final step */
+  if (with_ghash)
+    T = ghash_final (gd);
+
+  return T;
+}
+
+static_always_inline __m128i
+aesni_gcm_calc_double (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
+                      __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv,
+                      int rounds, int is_encrypt)
+{
+  __m128i r[4];
+  ghash_data_t _gd, *gd = &_gd;
+  const __m128i *k = kd->Ke;
+
+  /* AES rounds 0 and 1 */
+  aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4);
+  aesni_gcm_enc_round (r, k[1], 4);
+
+  /* load 4 blocks of data - decrypt round */
+  if (is_encrypt == 0)
+    aesni_gcm_load (d, inv, 4, 0);
+
+  /* GHASH multiply block 0 */
+  ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[7]);
+
+  /* AES rounds 2 and 3 */
+  aesni_gcm_enc_round (r, k[2], 4);
+  aesni_gcm_enc_round (r, k[3], 4);
+
+  /* GHASH multiply block 1 */
+  ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[6]);
+
+  /* AES rounds 4 and 5 */
+  aesni_gcm_enc_round (r, k[4], 4);
+  aesni_gcm_enc_round (r, k[5], 4);
+
+  /* GHASH multiply block 2 */
+  ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[5]);
+
+  /* AES rounds 6 and 7 */
+  aesni_gcm_enc_round (r, k[6], 4);
+  aesni_gcm_enc_round (r, k[7], 4);
+
+  /* GHASH multiply block 3 */
+  ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[4]);
+
+  /* AES rounds 8 and 9 */
+  aesni_gcm_enc_round (r, k[8], 4);
+  aesni_gcm_enc_round (r, k[9], 4);
+
+  /* load 4 blocks of data - encrypt round */
+  if (is_encrypt)
+    aesni_gcm_load (d, inv, 4, 0);
+
+  /* AES last round(s) */
+  aesni_gcm_enc_last_round (r, d, k, rounds, 4);
+
+  /* store 4 blocks of data */
+  aesni_gcm_store (d, outv, 4, 0);
+
+  /* load next 4 blocks of data data - decrypt round */
+  if (is_encrypt == 0)
+    aesni_gcm_load (d, inv + 4, 4, 0);
+
+  /* GHASH multiply block 4 */
+  ghash_mul_next (gd, aesni_gcm_bswap (d[0]), kd->Hi[3]);
+
+  /* AES rounds 0, 1 and 2 */
+  aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4);
+  aesni_gcm_enc_round (r, k[1], 4);
+  aesni_gcm_enc_round (r, k[2], 4);
+
+  /* GHASH multiply block 5 */
+  ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[2]);
+
+  /* AES rounds 3 and 4 */
+  aesni_gcm_enc_round (r, k[3], 4);
+  aesni_gcm_enc_round (r, k[4], 4);
+
+  /* GHASH multiply block 6 */
+  ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[1]);
+
+  /* AES rounds 5 and 6 */
+  aesni_gcm_enc_round (r, k[5], 4);
+  aesni_gcm_enc_round (r, k[6], 4);
+
+  /* GHASH multiply block 7 */
+  ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[0]);
+
+  /* AES rounds 7 and 8 */
+  aesni_gcm_enc_round (r, k[7], 4);
+  aesni_gcm_enc_round (r, k[8], 4);
+
+  /* GHASH reduce 1st step */
+  ghash_reduce (gd);
+
+  /* AES round 9 */
+  aesni_gcm_enc_round (r, k[9], 4);
+
+  /* load data - encrypt round */
+  if (is_encrypt)
+    aesni_gcm_load (d, inv + 4, 4, 0);
+
+  /* GHASH reduce 2nd step */
+  ghash_reduce2 (gd);
+
+  /* AES last round(s) */
+  aesni_gcm_enc_last_round (r, d, k, rounds, 4);
+
+  /* store data */
+  aesni_gcm_store (d, outv + 4, 4, 0);
+
+  /* GHASH final step */
+  return ghash_final (gd);
+}
+
+static_always_inline __m128i
+aesni_gcm_ghash_last (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
+                     int n_blocks, int n_bytes)
+{
+  ghash_data_t _gd, *gd = &_gd;
+
+  if (n_bytes)
+    d[n_blocks - 1] = aesni_gcm_byte_mask (d[n_blocks - 1], n_bytes);
+
+  ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[n_blocks - 1]);
+  if (n_blocks > 1)
+    ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[n_blocks - 2]);
+  if (n_blocks > 2)
+    ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[n_blocks - 3]);
+  if (n_blocks > 3)
+    ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[n_blocks - 4]);
+  ghash_reduce (gd);
+  ghash_reduce2 (gd);
+  return ghash_final (gd);
+}
+
+
+static_always_inline __m128i
+aesni_gcm_enc (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in,
+              const u8 * out, u32 n_left, int rounds)
+{
+  __m128i *inv = (__m128i *) in, *outv = (__m128i *) out;
+  __m128i d[4];
+  u32 ctr = 1;
+
+  if (n_left == 0)
+    return T;
+
+  if (n_left < 64)
+    {
+      if (n_left > 48)
+       {
+         n_left &= 0x0f;
+         aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left,
+                         /* with_ghash */ 0, /* is_encrypt */ 1);
+         return aesni_gcm_ghash_last (T, kd, d, 4, n_left);
+       }
+      else if (n_left > 32)
+       {
+         n_left &= 0x0f;
+         aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left,
+                         /* with_ghash */ 0, /* is_encrypt */ 1);
+         return aesni_gcm_ghash_last (T, kd, d, 3, n_left);
+       }
+      else if (n_left > 16)
+       {
+         n_left &= 0x0f;
+         aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left,
+                         /* with_ghash */ 0, /* is_encrypt */ 1);
+         return aesni_gcm_ghash_last (T, kd, d, 2, n_left);
+       }
+      else
+       {
+         n_left &= 0x0f;
+         aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left,
+                         /* with_ghash */ 0, /* is_encrypt */ 1);
+         return aesni_gcm_ghash_last (T, kd, d, 1, n_left);
+       }
+    }
+
+  aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0,
+                 /* with_ghash */ 0, /* is_encrypt */ 1);
+
+  /* next */
+  n_left -= 64;
+  outv += 4;
+  inv += 4;
+
+  while (n_left >= 128)
+    {
+      T = aesni_gcm_calc_double (T, kd, d, &Y, &ctr, inv, outv, rounds,
+                                /* is_encrypt */ 1);
+
+      /* next */
+      n_left -= 128;
+      outv += 8;
+      inv += 8;
+    }
+
+  if (n_left >= 64)
+    {
+      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0,
+                         /* with_ghash */ 1, /* is_encrypt */ 1);
+
+      /* next */
+      n_left -= 64;
+      outv += 4;
+      inv += 4;
+    }
+
+  if (n_left == 0)
+    return aesni_gcm_ghash_last (T, kd, d, 4, 0);
+
+  if (n_left > 48)
+    {
+      n_left &= 0x0f;
+      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left,
+                         /* with_ghash */ 1, /* is_encrypt */ 1);
+      return aesni_gcm_ghash_last (T, kd, d, 4, n_left);
+    }
+
+  if (n_left > 32)
+    {
+      n_left &= 0x0f;
+      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left,
+                         /* with_ghash */ 1, /* is_encrypt */ 1);
+      return aesni_gcm_ghash_last (T, kd, d, 3, n_left);
+    }
+
+  if (n_left > 16)
+    {
+      n_left &= 0x0f;
+      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left,
+                         /* with_ghash */ 1, /* is_encrypt */ 1);
+      return aesni_gcm_ghash_last (T, kd, d, 2, n_left);
+    }
+
+  n_left &= 0x0f;
+  T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left,
+                     /* with_ghash */ 1, /* is_encrypt */ 1);
+  return aesni_gcm_ghash_last (T, kd, d, 1, n_left);
+}
+
+static_always_inline __m128i
+aesni_gcm_dec (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in,
+              const u8 * out, u32 n_left, int rounds)
+{
+  __m128i *inv = (__m128i *) in, *outv = (__m128i *) out;
+  __m128i d[8];
+  u32 ctr = 1;
+
+  while (n_left >= 128)
+    {
+      T = aesni_gcm_calc_double (T, kd, d, &Y, &ctr, inv, outv, rounds,
+                                /* is_encrypt */ 0);
+
+      /* next */
+      n_left -= 128;
+      outv += 8;
+      inv += 8;
+    }
+
+  if (n_left >= 64)
+    {
+      T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0, 1, 0);
+
+      /* next */
+      n_left -= 64;
+      outv += 4;
+      inv += 4;
+    }
+
+  if (n_left == 0)
+    return T;
+
+  if (n_left > 48)
+    return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4,
+                          n_left - 48,
+                          /* with_ghash */ 1, /* is_encrypt */ 0);
+
+  if (n_left > 32)
+    return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3,
+                          n_left - 32,
+                          /* with_ghash */ 1, /* is_encrypt */ 0);
+
+  if (n_left > 16)
+    return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2,
+                          n_left - 16,
+                          /* with_ghash */ 1, /* is_encrypt */ 0);
+
+  return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left,
+                        /* with_ghash */ 1, /* is_encrypt */ 0);
+}
+
+static_always_inline int
+aes_gcm (const u8 * in, u8 * out, const u8 * addt, const u8 * iv, u8 * tag,
+        u32 data_bytes, u32 aad_bytes, u8 tag_len, aes_gcm_key_data_t * kd,
+        int aes_rounds, int is_encrypt)
+{
+  int i;
+  __m128i r, Y0, T = { };
+  ghash_data_t _gd, *gd = &_gd;
+
+  _mm_prefetch (iv, _MM_HINT_T0);
+  _mm_prefetch (in, _MM_HINT_T0);
+  _mm_prefetch (in + CLIB_CACHE_LINE_BYTES, _MM_HINT_T0);
+
+  /* calculate ghash for AAD - optimized for ipsec common cases */
+  if (aad_bytes == 8)
+    T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 8);
+  else if (aad_bytes == 12)
+    T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 12);
+  else
+    T = aesni_gcm_ghash (T, kd, (__m128i *) addt, aad_bytes);
+
+  /* initalize counter */
+  Y0 = _mm_loadu_si128 ((__m128i *) iv);
+  Y0 = _mm_insert_epi32 (Y0, clib_host_to_net_u32 (1), 3);
+
+  /* ghash and encrypt/edcrypt  */
+  if (is_encrypt)
+    T = aesni_gcm_enc (T, kd, Y0, in, out, data_bytes, aes_rounds);
+  else
+    T = aesni_gcm_dec (T, kd, Y0, in, out, data_bytes, aes_rounds);
+
+  _mm_prefetch (tag, _MM_HINT_T0);
+
+  /* Finalize ghash */
+  r[0] = data_bytes;
+  r[1] = aad_bytes;
+
+  /* bytes to bits */
+  r <<= 3;
+
+  /* interleaved computation of final ghash and E(Y0, k) */
+  ghash_mul_first (gd, r ^ T, kd->Hi[0]);
+  r = kd->Ke[0] ^ Y0;
+  for (i = 1; i < 5; i += 1)
+    r = _mm_aesenc_si128 (r, kd->Ke[i]);
+  ghash_reduce (gd);
+  ghash_reduce2 (gd);
+  for (; i < 9; i += 1)
+    r = _mm_aesenc_si128 (r, kd->Ke[i]);
+  T = ghash_final (gd);
+  for (; i < aes_rounds; i += 1)
+    r = _mm_aesenc_si128 (r, kd->Ke[i]);
+  r = _mm_aesenclast_si128 (r, kd->Ke[aes_rounds]);
+  T = aesni_gcm_bswap (T) ^ r;
+
+  /* tag_len 16 -> 0 */
+  tag_len &= 0xf;
+
+  if (is_encrypt)
+    {
+      /* store tag */
+      if (tag_len)
+       aesni_gcm_store_partial ((__m128i *) tag, T, (1 << tag_len) - 1);
+      else
+       _mm_storeu_si128 ((__m128i *) tag, T);
+    }
+  else
+    {
+      /* check tag */
+      u16 tag_mask = tag_len ? (1 << tag_len) - 1 : 0xffff;
+      r = _mm_loadu_si128 ((__m128i *) tag);
+      if (_mm_movemask_epi8 (r == T) != tag_mask)
+       return 0;
+    }
+  return 1;
+}
+
+static_always_inline u32
+aesni_ops_enc_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[],
+                      u32 n_ops, aesni_key_size_t ks)
+{
+  crypto_ia32_main_t *cm = &crypto_ia32_main;
+  vnet_crypto_op_t *op = ops[0];
+  aes_gcm_key_data_t *kd;
+  u32 n_left = n_ops;
+
+
+next:
+  kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index];
+  aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len, op->aad_len,
+          op->tag_len, kd, AESNI_KEY_ROUNDS (ks), /* is_encrypt */ 1);
+  op->status = VNET_CRYPTO_OP_STATUS_COMPLETED;
+
+  if (--n_left)
+    {
+      op += 1;
+      goto next;
+    }
+
+  return n_ops;
+}
+
+static_always_inline u32
+aesni_ops_dec_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[],
+                      u32 n_ops, aesni_key_size_t ks)
+{
+  crypto_ia32_main_t *cm = &crypto_ia32_main;
+  vnet_crypto_op_t *op = ops[0];
+  aes_gcm_key_data_t *kd;
+  u32 n_left = n_ops;
+  int rv;
+
+next:
+  kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index];
+  rv = aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len,
+               op->aad_len, op->tag_len, kd, AESNI_KEY_ROUNDS (ks),
+               /* is_encrypt */ 0);
+
+  if (rv)
+    {
+      op->status = VNET_CRYPTO_OP_STATUS_COMPLETED;
+    }
+  else
+    {
+      op->status = VNET_CRYPTO_OP_STATUS_FAIL_BAD_HMAC;
+      n_ops--;
+    }
+
+  if (--n_left)
+    {
+      op += 1;
+      goto next;
+    }
+
+  return n_ops;
+}
+
+static_always_inline void *
+aesni_gcm_key_exp (vnet_crypto_key_t * key, aesni_key_size_t ks)
+{
+  aes_gcm_key_data_t *kd;
+  __m128i H;
+  int i;
+
+  kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES);
+
+  /* expand AES key */
+  aes_key_expand ((__m128i *) kd->Ke, key->data, ks);
+
+  /* pre-calculate H */
+  H = kd->Ke[0];
+  for (i = 1; i < AESNI_KEY_ROUNDS (ks); i += 1)
+    H = _mm_aesenc_si128 (H, kd->Ke[i]);
+  H = _mm_aesenclast_si128 (H, kd->Ke[i]);
+  H = aesni_gcm_bswap (H);
+  ghash_precompute (H, (__m128i *) kd->Hi, 8);
+  return kd;
+}
+
+#define foreach_aesni_gcm_handler_type _(128) _(192) _(256)
+
+#define _(x) \
+static u32 aesni_ops_dec_aes_gcm_##x                                         \
+(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops)                      \
+{ return aesni_ops_dec_aes_gcm (vm, ops, n_ops, AESNI_KEY_##x); }            \
+static u32 aesni_ops_enc_aes_gcm_##x                                         \
+(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops)                      \
+{ return aesni_ops_enc_aes_gcm (vm, ops, n_ops, AESNI_KEY_##x); }            \
+static void * aesni_gcm_key_exp_##x (vnet_crypto_key_t *key)                 \
+{ return aesni_gcm_key_exp (key, AESNI_KEY_##x); }
+
+foreach_aesni_gcm_handler_type;
+#undef _
+
+clib_error_t *
+#ifdef __AVX512F__
+crypto_ia32_aesni_gcm_init_avx512 (vlib_main_t * vm)
+#elif __AVX2__
+crypto_ia32_aesni_gcm_init_avx2 (vlib_main_t * vm)
+#else
+crypto_ia32_aesni_gcm_init_sse42 (vlib_main_t * vm)
+#endif
+{
+  crypto_ia32_main_t *cm = &crypto_ia32_main;
+
+#define _(x) \
+  vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \
+                                   VNET_CRYPTO_OP_AES_##x##_GCM_ENC, \
+                                   aesni_ops_enc_aes_gcm_##x); \
+  vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \
+                                   VNET_CRYPTO_OP_AES_##x##_GCM_DEC, \
+                                   aesni_ops_dec_aes_gcm_##x); \
+  cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_GCM] = aesni_gcm_key_exp_##x;
+  foreach_aesni_gcm_handler_type;
+#undef _
+  return 0;
+}
+
+/*
+ * fd.io coding-style-patch-verification: ON
+ *
+ * Local Variables:
+ * eval: (c-set-style "gnu")
+ * End:
+ */
index 7acf074..f80a0d0 100644 (file)
@@ -39,6 +39,9 @@ clib_error_t *crypto_ia32_aesni_cbc_init_sse42 (vlib_main_t * vm);
 clib_error_t *crypto_ia32_aesni_cbc_init_avx2 (vlib_main_t * vm);
 clib_error_t *crypto_ia32_aesni_cbc_init_avx512 (vlib_main_t * vm);
 
+clib_error_t *crypto_ia32_aesni_gcm_init_sse42 (vlib_main_t * vm);
+clib_error_t *crypto_ia32_aesni_gcm_init_avx2 (vlib_main_t * vm);
+clib_error_t *crypto_ia32_aesni_gcm_init_avx512 (vlib_main_t * vm);
 #endif /* __crypto_ia32_h__ */
 
 /*
diff --git a/src/plugins/crypto_ia32/ghash.h b/src/plugins/crypto_ia32/ghash.h
new file mode 100644 (file)
index 0000000..0b2f629
--- /dev/null
@@ -0,0 +1,253 @@
+/*
+ *------------------------------------------------------------------
+ * Copyright (c) 2019 Cisco and/or its affiliates.
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *------------------------------------------------------------------
+ */
+
+/*
+ *------------------------------------------------------------------
+ *  Copyright(c) 2018, Intel Corporation All rights reserved.
+ *
+ *  Redistribution and use in source and binary forms, with or without
+ *  modification, are permitted provided that the following conditions
+ *  are met:
+ *    * Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *    * Redistributions in binary form must reproduce the above copyright
+ *      notice, this list of conditions and the following disclaimer in
+ *      the documentation and/or other materials provided with the
+ *      distribution.
+ *    * Neither the name of Intel Corporation nor the names of its
+ *      contributors may be used to endorse or promote products derived
+ *      from this software without specific prior written permission.
+ *
+ *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE,
+ *  DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *------------------------------------------------------------------
+ */
+
+/*
+ * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk,
+ *                   Vinodh Gopal, James Guilford, Tomasz Kantecki
+ *
+ * References:
+ * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on
+ *     Intel Architecture Processors. August, 2010
+ * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on
+ *     Intel Architecture Processors. October, 2012.
+ * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git
+ *
+ * Definitions:
+ *  GF    Galois Extension Field GF(2^128) - finite field where elements are
+ *        represented as polynomials with coefficients in GF(2) with the
+ *        highest degree of 127. Polynomials are represented as 128-bit binary
+ *        numbers where each bit represents one coefficient.
+ *        e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011.
+ *  H     hash key (128 bit)
+ *  POLY  irreducible polynomial x^127 + x^7 + x^2 + x + 1
+ *  RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1
+ *  +     addition in GF, which equals to XOR operation
+ *  *     multiplication in GF
+ *
+ * GF multiplication consists of 2 steps:
+ *  - carry-less multiplication of two 128-bit operands into 256-bit result
+ *  - reduction of 256-bit result into 128-bit with modulo POLY
+ *
+ * GHash is calculated on 128-bit blocks of data according to the following
+ * formula:
+ *    GH = (GH + data) * hash_key
+ *
+ * To avoid bit-reflection of data, this code uses GF multipication
+ * with reversed polynomial:
+ *   a * b * x^-127 mod RPOLY
+ *
+ * To improve computation speed table Hi is precomputed with powers of H',
+ * where H' is calculated as H<<1 mod RPOLY.
+ * This allows us to improve performance by deferring reduction. For example
+ * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do:
+ *
+ * __i128 Hi[4];
+ * ghash_precompute (H, Hi, 4);
+ *
+ * ghash_data_t _gd, *gd = &_gd;
+ * ghash_mul_first (gd, GH ^ b0, Hi[3]);
+ * ghash_mul_next (gd, b1, Hi[2]);
+ * ghash_mul_next (gd, b2, Hi[1]);
+ * ghash_mul_next (gd, b3, Hi[0]);
+ * ghash_reduce (gd);
+ * ghash_reduce2 (gd);
+ * GH = ghash_final (gd);
+ *
+ * Reduction step is split into 3 functions so it can be better interleaved
+ * with other code, (i.e. with AES computation).
+ */
+
+#ifndef __ghash_h__
+#define __ghash_h__
+
+/* on AVX-512 systems we can save a clock cycle by using ternary logic
+   instruction to calculate a XOR b XOR c */
+static_always_inline __m128i
+ghash_xor3 (__m128i a, __m128i b, __m128i c)
+{
+#if defined (__AVX512F__)
+  return _mm_ternarylogic_epi32 (a, b, c, 0x96);
+#endif
+  return a ^ b ^ c;
+}
+
+typedef struct
+{
+  __m128i mid, hi, lo, tmp_lo, tmp_hi;
+  int pending;
+} ghash_data_t;
+
+static const __m128i ghash_poly = { 1, 0xC200000000000000 };
+static const __m128i ghash_poly2 = { 0x1C2000000, 0xC200000000000000 };
+
+static_always_inline void
+ghash_mul_first (ghash_data_t * gd, __m128i a, __m128i b)
+{
+  /* a1 * b1 */
+  gd->hi = _mm_clmulepi64_si128 (a, b, 0x11);
+  /* a0 * b0 */
+  gd->lo = _mm_clmulepi64_si128 (a, b, 0x00);
+  /* a0 * b1 ^ a1 * b0 */
+  gd->mid = (_mm_clmulepi64_si128 (a, b, 0x01) ^
+            _mm_clmulepi64_si128 (a, b, 0x10));
+
+  /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that
+     there is no pending data in tmp_lo and tmp_hi */
+  gd->pending = 0;
+}
+
+static_always_inline void
+ghash_mul_next (ghash_data_t * gd, __m128i a, __m128i b)
+{
+  /* a1 * b1 */
+  __m128i hi = _mm_clmulepi64_si128 (a, b, 0x11);
+  /* a0 * b0 */
+  __m128i lo = _mm_clmulepi64_si128 (a, b, 0x00);
+
+  /* this branch will be optimized out by the compiler, and it allows us to
+     reduce number of XOR operations by using ternary logic */
+  if (gd->pending)
+    {
+      /* there is peding data from previous invocation so we can XOR */
+      gd->hi = ghash_xor3 (gd->hi, gd->tmp_hi, hi);
+      gd->lo = ghash_xor3 (gd->lo, gd->tmp_lo, lo);
+      gd->pending = 0;
+    }
+  else
+    {
+      /* there is no peding data from previous invocation so we postpone XOR */
+      gd->tmp_hi = hi;
+      gd->tmp_lo = lo;
+      gd->pending = 1;
+    }
+
+  /* gd->mid ^= a0 * b1 ^ a1 * b0  */
+  gd->mid = ghash_xor3 (gd->mid,
+                       _mm_clmulepi64_si128 (a, b, 0x01),
+                       _mm_clmulepi64_si128 (a, b, 0x10));
+}
+
+static_always_inline void
+ghash_reduce (ghash_data_t * gd)
+{
+  __m128i r;
+
+  /* Final combination:
+     gd->lo ^= gd->mid << 64
+     gd->hi ^= gd->mid >> 64 */
+  __m128i midl = _mm_slli_si128 (gd->mid, 8);
+  __m128i midr = _mm_srli_si128 (gd->mid, 8);
+
+  if (gd->pending)
+    {
+      gd->lo = ghash_xor3 (gd->lo, gd->tmp_lo, midl);
+      gd->hi = ghash_xor3 (gd->hi, gd->tmp_hi, midr);
+    }
+  else
+    {
+      gd->lo ^= midl;
+      gd->hi ^= midr;
+    }
+
+  r = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x01);
+  gd->lo ^= _mm_slli_si128 (r, 8);
+}
+
+static_always_inline void
+ghash_reduce2 (ghash_data_t * gd)
+{
+  gd->tmp_lo = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x00);
+  gd->tmp_hi = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x10);
+}
+
+static_always_inline __m128i
+ghash_final (ghash_data_t * gd)
+{
+  return ghash_xor3 (gd->hi, _mm_srli_si128 (gd->tmp_lo, 4),
+                    _mm_slli_si128 (gd->tmp_hi, 4));
+}
+
+static_always_inline __m128i
+ghash_mul (__m128i a, __m128i b)
+{
+  ghash_data_t _gd, *gd = &_gd;
+  ghash_mul_first (gd, a, b);
+  ghash_reduce (gd);
+  ghash_reduce2 (gd);
+  return ghash_final (gd);
+}
+
+static_always_inline void
+ghash_precompute (__m128i H, __m128i * Hi, int count)
+{
+  __m128i r;
+  /* calcullate H<<1 mod poly from the hash key */
+  r = _mm_srli_epi64 (H, 63);
+  H = _mm_slli_epi64 (H, 1);
+  H |= _mm_slli_si128 (r, 8);
+  r = _mm_srli_si128 (r, 8);
+  r = _mm_shuffle_epi32 (r, 0x24);
+  /* *INDENT-OFF* */
+  r = _mm_cmpeq_epi32 (r, (__m128i) (u32x4) {1, 0, 0, 1});
+  /* *INDENT-ON* */
+  Hi[0] = H ^ (r & ghash_poly);
+
+  /* calculate H^(i + 1) */
+  for (int i = 1; i < count; i++)
+    Hi[i] = ghash_mul (Hi[0], Hi[i - 1]);
+}
+
+#endif /* __ghash_h__ */
+
+/*
+ * fd.io coding-style-patch-verification: ON
+ *
+ * Local Variables:
+ * eval: (c-set-style "gnu")
+ * End:
+ */
index b31c901..cca5fb4 100644 (file)
@@ -86,6 +86,19 @@ crypto_ia32_init (vlib_main_t * vm)
   if (error)
     goto error;
 
+  if (clib_cpu_supports_pclmulqdq ())
+    {
+      if (clib_cpu_supports_avx512f ())
+       error = crypto_ia32_aesni_gcm_init_avx512 (vm);
+      else if (clib_cpu_supports_avx2 ())
+       error = crypto_ia32_aesni_gcm_init_avx2 (vm);
+      else
+       error = crypto_ia32_aesni_gcm_init_sse42 (vm);
+
+      if (error)
+       goto error;
+    }
+
   vnet_crypto_register_key_handler (vm, cm->crypto_engine_index,
                                    crypto_ia32_key_handler);