New upstream version 18.08
[deb_dpdk.git] / drivers / net / bnx2x / bnx2x.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  */
13
14 #define BNX2X_DRIVER_VERSION "1.78.18"
15
16 #include "bnx2x.h"
17 #include "bnx2x_vfpf.h"
18 #include "ecore_sp.h"
19 #include "ecore_init.h"
20 #include "ecore_init_ops.h"
21
22 #include "rte_version.h"
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <zlib.h>
28
29 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
30 #define BNX2X_PMD_VERSION_MAJOR 1
31 #define BNX2X_PMD_VERSION_MINOR 0
32 #define BNX2X_PMD_VERSION_REVISION 6
33 #define BNX2X_PMD_VERSION_PATCH 1
34
35 static inline const char *
36 bnx2x_pmd_version(void)
37 {
38         static char version[32];
39
40         snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
41                         BNX2X_PMD_VER_PREFIX,
42                         BNX2X_DRIVER_VERSION,
43                         BNX2X_PMD_VERSION_MAJOR,
44                         BNX2X_PMD_VERSION_MINOR,
45                         BNX2X_PMD_VERSION_REVISION,
46                         BNX2X_PMD_VERSION_PATCH);
47
48         return version;
49 }
50
51 static z_stream zlib_stream;
52
53 #define EVL_VLID_MASK 0x0FFF
54
55 #define BNX2X_DEF_SB_ATT_IDX 0x0001
56 #define BNX2X_DEF_SB_IDX     0x0002
57
58 /*
59  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
60  * function HW initialization.
61  */
62 #define FLR_WAIT_USEC     10000 /* 10 msecs */
63 #define FLR_WAIT_INTERVAL 50    /* usecs */
64 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)   /* 200 */
65
66 struct pbf_pN_buf_regs {
67         int pN;
68         uint32_t init_crd;
69         uint32_t crd;
70         uint32_t crd_freed;
71 };
72
73 struct pbf_pN_cmd_regs {
74         int pN;
75         uint32_t lines_occup;
76         uint32_t lines_freed;
77 };
78
79 /* resources needed for unloading a previously loaded device */
80
81 #define BNX2X_PREV_WAIT_NEEDED 1
82 rte_spinlock_t bnx2x_prev_mtx;
83 struct bnx2x_prev_list_node {
84         LIST_ENTRY(bnx2x_prev_list_node) node;
85         uint8_t bus;
86         uint8_t slot;
87         uint8_t path;
88         uint8_t aer;
89         uint8_t undi;
90 };
91
92 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
93         = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
94
95 static int load_count[2][3] = { { 0 } };
96         /* per-path: 0-common, 1-port0, 2-port1 */
97
98 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
99                                 uint8_t cmng_type);
100 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
101 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
102                               uint8_t port);
103 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
104 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
105 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
106 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
107 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
108                                      uint8_t print);
109 static void bnx2x_int_disable(struct bnx2x_softc *sc);
110 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
111 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
112 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
113                                  struct bnx2x_fastpath *fp,
114                                  uint16_t rx_bd_prod, uint16_t rx_cq_prod);
115 static void bnx2x_link_report(struct bnx2x_softc *sc);
116 void bnx2x_link_status_update(struct bnx2x_softc *sc);
117 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
118 static void bnx2x_free_mem(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
121 static __rte_noinline
122 int bnx2x_nic_load(struct bnx2x_softc *sc);
123
124 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
125 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp);
126 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
127                          uint8_t storm, uint16_t index, uint8_t op,
128                          uint8_t update);
129
130 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
131 {
132         int res;
133
134         mb();
135         res = ((*addr) & (1UL << nr)) != 0;
136         mb();
137         return res;
138 }
139
140 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
141 {
142         __sync_fetch_and_or(addr, (1UL << nr));
143 }
144
145 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
146 {
147         __sync_fetch_and_and(addr, ~(1UL << nr));
148 }
149
150 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
151 {
152         unsigned long mask = (1UL << nr);
153         return __sync_fetch_and_and(addr, ~mask) & mask;
154 }
155
156 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
157 {
158         return __sync_val_compare_and_swap(addr, old, new);
159 }
160
161 int
162 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
163               const char *msg, uint32_t align)
164 {
165         char mz_name[RTE_MEMZONE_NAMESIZE];
166         const struct rte_memzone *z;
167
168         dma->sc = sc;
169         if (IS_PF(sc))
170                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
171                         rte_get_timer_cycles());
172         else
173                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
174                         rte_get_timer_cycles());
175
176         /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
177         z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
178                                         SOCKET_ID_ANY,
179                                         RTE_MEMZONE_IOVA_CONTIG, align);
180         if (z == NULL) {
181                 PMD_DRV_LOG(ERR, "DMA alloc failed for %s", msg);
182                 return -ENOMEM;
183         }
184         dma->paddr = (uint64_t) z->iova;
185         dma->vaddr = z->addr;
186
187         PMD_DRV_LOG(DEBUG, "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
188
189         return 0;
190 }
191
192 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
193 {
194         uint32_t lock_status;
195         uint32_t resource_bit = (1 << resource);
196         int func = SC_FUNC(sc);
197         uint32_t hw_lock_control_reg;
198         int cnt;
199
200         PMD_INIT_FUNC_TRACE();
201
202         /* validate the resource is within range */
203         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
204                 PMD_DRV_LOG(NOTICE,
205                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
206                             resource);
207                 return -1;
208         }
209
210         if (func <= 5) {
211                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
212         } else {
213                 hw_lock_control_reg =
214                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
215         }
216
217         /* validate the resource is not already taken */
218         lock_status = REG_RD(sc, hw_lock_control_reg);
219         if (lock_status & resource_bit) {
220                 PMD_DRV_LOG(NOTICE,
221                             "resource in use (status 0x%x bit 0x%x)",
222                             lock_status, resource_bit);
223                 return -1;
224         }
225
226         /* try every 5ms for 5 seconds */
227         for (cnt = 0; cnt < 1000; cnt++) {
228                 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
229                 lock_status = REG_RD(sc, hw_lock_control_reg);
230                 if (lock_status & resource_bit) {
231                         return 0;
232                 }
233                 DELAY(5000);
234         }
235
236         PMD_DRV_LOG(NOTICE, "Resource lock timeout!");
237         return -1;
238 }
239
240 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
241 {
242         uint32_t lock_status;
243         uint32_t resource_bit = (1 << resource);
244         int func = SC_FUNC(sc);
245         uint32_t hw_lock_control_reg;
246
247         PMD_INIT_FUNC_TRACE();
248
249         /* validate the resource is within range */
250         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
251                 PMD_DRV_LOG(NOTICE,
252                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
253                             resource);
254                 return -1;
255         }
256
257         if (func <= 5) {
258                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
259         } else {
260                 hw_lock_control_reg =
261                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
262         }
263
264         /* validate the resource is currently taken */
265         lock_status = REG_RD(sc, hw_lock_control_reg);
266         if (!(lock_status & resource_bit)) {
267                 PMD_DRV_LOG(NOTICE,
268                             "resource not in use (status 0x%x bit 0x%x)",
269                             lock_status, resource_bit);
270                 return -1;
271         }
272
273         REG_WR(sc, hw_lock_control_reg, resource_bit);
274         return 0;
275 }
276
277 /* copy command into DMAE command memory and set DMAE command Go */
278 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
279 {
280         uint32_t cmd_offset;
281         uint32_t i;
282
283         cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
284         for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
285                 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
286         }
287
288         REG_WR(sc, dmae_reg_go_c[idx], 1);
289 }
290
291 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
292 {
293         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
294                           DMAE_COMMAND_C_TYPE_ENABLE);
295 }
296
297 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
298 {
299         return opcode & ~DMAE_COMMAND_SRC_RESET;
300 }
301
302 uint32_t
303 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
304                 uint8_t with_comp, uint8_t comp_type)
305 {
306         uint32_t opcode = 0;
307
308         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
309                    (dst_type << DMAE_COMMAND_DST_SHIFT));
310
311         opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
312
313         opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
314
315         opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
316                    (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
317
318         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
319
320 #ifdef __BIG_ENDIAN
321         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
322 #else
323         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
324 #endif
325
326         if (with_comp) {
327                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
328         }
329
330         return opcode;
331 }
332
333 static void
334 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
335                         uint8_t src_type, uint8_t dst_type)
336 {
337         memset(dmae, 0, sizeof(struct dmae_command));
338
339         /* set the opcode */
340         dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
341                                        TRUE, DMAE_COMP_PCI);
342
343         /* fill in the completion parameters */
344         dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
345         dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
346         dmae->comp_val = DMAE_COMP_VAL;
347 }
348
349 /* issue a DMAE command over the init channel and wait for completion */
350 static int
351 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
352 {
353         uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
354         int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
355
356         /* reset completion */
357         *wb_comp = 0;
358
359         /* post the command on the channel used for initializations */
360         bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
361
362         /* wait for completion */
363         DELAY(500);
364
365         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
366                 if (!timeout ||
367                     (sc->recovery_state != BNX2X_RECOVERY_DONE &&
368                      sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
369                         PMD_DRV_LOG(INFO, "DMAE timeout!");
370                         return DMAE_TIMEOUT;
371                 }
372
373                 timeout--;
374                 DELAY(50);
375         }
376
377         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
378                 PMD_DRV_LOG(INFO, "DMAE PCI error!");
379                 return DMAE_PCI_ERROR;
380         }
381
382         return 0;
383 }
384
385 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
386 {
387         struct dmae_command dmae;
388         uint32_t *data;
389         uint32_t i;
390         int rc;
391
392         if (!sc->dmae_ready) {
393                 data = BNX2X_SP(sc, wb_data[0]);
394
395                 for (i = 0; i < len32; i++) {
396                         data[i] = REG_RD(sc, (src_addr + (i * 4)));
397                 }
398
399                 return;
400         }
401
402         /* set opcode and fixed command fields */
403         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
404
405         /* fill in addresses and len */
406         dmae.src_addr_lo = (src_addr >> 2);     /* GRC addr has dword resolution */
407         dmae.src_addr_hi = 0;
408         dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
409         dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
410         dmae.len = len32;
411
412         /* issue the command and wait for completion */
413         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
414                 rte_panic("DMAE failed (%d)", rc);
415         };
416 }
417
418 void
419 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
420                uint32_t len32)
421 {
422         struct dmae_command dmae;
423         int rc;
424
425         if (!sc->dmae_ready) {
426                 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
427                 return;
428         }
429
430         /* set opcode and fixed command fields */
431         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
432
433         /* fill in addresses and len */
434         dmae.src_addr_lo = U64_LO(dma_addr);
435         dmae.src_addr_hi = U64_HI(dma_addr);
436         dmae.dst_addr_lo = (dst_addr >> 2);     /* GRC addr has dword resolution */
437         dmae.dst_addr_hi = 0;
438         dmae.len = len32;
439
440         /* issue the command and wait for completion */
441         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
442                 rte_panic("DMAE failed (%d)", rc);
443         }
444 }
445
446 static void
447 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
448                         uint32_t addr, uint32_t len)
449 {
450         uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
451         uint32_t offset = 0;
452
453         while (len > dmae_wr_max) {
454                 bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
455                                (addr + offset), /* dst GRC address */
456                                dmae_wr_max);
457                 offset += (dmae_wr_max * 4);
458                 len -= dmae_wr_max;
459         }
460
461         bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
462                        (addr + offset), /* dst GRC address */
463                        len);
464 }
465
466 void
467 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
468                        uint32_t cid)
469 {
470         /* ustorm cxt validation */
471         cxt->ustorm_ag_context.cdu_usage =
472             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
473                                    CDU_REGION_NUMBER_UCM_AG,
474                                    ETH_CONNECTION_TYPE);
475         /* xcontext validation */
476         cxt->xstorm_ag_context.cdu_reserved =
477             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
478                                    CDU_REGION_NUMBER_XCM_AG,
479                                    ETH_CONNECTION_TYPE);
480 }
481
482 static void
483 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
484                             uint8_t sb_index, uint8_t ticks)
485 {
486         uint32_t addr =
487             (BAR_CSTRORM_INTMEM +
488              CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
489
490         REG_WR8(sc, addr, ticks);
491 }
492
493 static void
494 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
495                             uint8_t sb_index, uint8_t disable)
496 {
497         uint32_t enable_flag =
498             (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
499         uint32_t addr =
500             (BAR_CSTRORM_INTMEM +
501              CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
502         uint8_t flags;
503
504         /* clear and set */
505         flags = REG_RD8(sc, addr);
506         flags &= ~HC_INDEX_DATA_HC_ENABLED;
507         flags |= enable_flag;
508         REG_WR8(sc, addr, flags);
509 }
510
511 void
512 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
513                              uint8_t sb_index, uint8_t disable, uint16_t usec)
514 {
515         uint8_t ticks = (usec / 4);
516
517         bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
518
519         disable = (disable) ? 1 : ((usec) ? 0 : 1);
520         bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
521 }
522
523 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
524 {
525         return REG_RD(sc, reg_addr);
526 }
527
528 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
529 {
530         REG_WR(sc, reg_addr, val);
531 }
532
533 void
534 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
535                    __rte_unused const elink_log_id_t elink_log_id, ...)
536 {
537         PMD_DRV_LOG(DEBUG, "ELINK EVENT LOG (%d)", elink_log_id);
538 }
539
540 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
541 {
542         uint32_t spio_reg;
543
544         /* Only 2 SPIOs are configurable */
545         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
546                 PMD_DRV_LOG(NOTICE, "Invalid SPIO 0x%x", spio);
547                 return -1;
548         }
549
550         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
551
552         /* read SPIO and mask except the float bits */
553         spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
554
555         switch (mode) {
556         case MISC_SPIO_OUTPUT_LOW:
557                 /* clear FLOAT and set CLR */
558                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
559                 spio_reg |= (spio << MISC_SPIO_CLR_POS);
560                 break;
561
562         case MISC_SPIO_OUTPUT_HIGH:
563                 /* clear FLOAT and set SET */
564                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
565                 spio_reg |= (spio << MISC_SPIO_SET_POS);
566                 break;
567
568         case MISC_SPIO_INPUT_HI_Z:
569                 /* set FLOAT */
570                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
571                 break;
572
573         default:
574                 break;
575         }
576
577         REG_WR(sc, MISC_REG_SPIO, spio_reg);
578         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
579
580         return 0;
581 }
582
583 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
584 {
585         /* The GPIO should be swapped if swap register is set and active */
586         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
587                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
588         int gpio_shift = gpio_num;
589         if (gpio_port)
590                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
591
592         uint32_t gpio_mask = (1 << gpio_shift);
593         uint32_t gpio_reg;
594
595         if (gpio_num > MISC_REGISTERS_GPIO_3) {
596                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
597                 return -1;
598         }
599
600         /* read GPIO value */
601         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
602
603         /* get the requested pin value */
604         return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
605 }
606
607 static int
608 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
609 {
610         /* The GPIO should be swapped if swap register is set and active */
611         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
612                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
613         int gpio_shift = gpio_num;
614         if (gpio_port)
615                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
616
617         uint32_t gpio_mask = (1 << gpio_shift);
618         uint32_t gpio_reg;
619
620         if (gpio_num > MISC_REGISTERS_GPIO_3) {
621                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
622                 return -1;
623         }
624
625         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
626
627         /* read GPIO and mask except the float bits */
628         gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
629
630         switch (mode) {
631         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
632                 /* clear FLOAT and set CLR */
633                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
634                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
635                 break;
636
637         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
638                 /* clear FLOAT and set SET */
639                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
640                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
641                 break;
642
643         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
644                 /* set FLOAT */
645                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
646                 break;
647
648         default:
649                 break;
650         }
651
652         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
653         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
654
655         return 0;
656 }
657
658 static int
659 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
660 {
661         uint32_t gpio_reg;
662
663         /* any port swapping should be handled by caller */
664
665         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
666
667         /* read GPIO and mask except the float bits */
668         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
669         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
670         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
671         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
672
673         switch (mode) {
674         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
675                 /* set CLR */
676                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
677                 break;
678
679         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
680                 /* set SET */
681                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
682                 break;
683
684         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
685                 /* set FLOAT */
686                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
687                 break;
688
689         default:
690                 PMD_DRV_LOG(NOTICE, "Invalid GPIO mode assignment %d", mode);
691                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
692                 return -1;
693         }
694
695         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
696         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
697
698         return 0;
699 }
700
701 static int
702 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
703                    uint8_t port)
704 {
705         /* The GPIO should be swapped if swap register is set and active */
706         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
707                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
708         int gpio_shift = gpio_num;
709         if (gpio_port)
710                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
711
712         uint32_t gpio_mask = (1 << gpio_shift);
713         uint32_t gpio_reg;
714
715         if (gpio_num > MISC_REGISTERS_GPIO_3) {
716                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
717                 return -1;
718         }
719
720         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
721
722         /* read GPIO int */
723         gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
724
725         switch (mode) {
726         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
727                 /* clear SET and set CLR */
728                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
729                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
730                 break;
731
732         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
733                 /* clear CLR and set SET */
734                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
735                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
736                 break;
737
738         default:
739                 break;
740         }
741
742         REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
743         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
744
745         return 0;
746 }
747
748 uint32_t
749 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
750 {
751         return bnx2x_gpio_read(sc, gpio_num, port);
752 }
753
754 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,   /* 0=low 1=high */
755                             uint8_t port)
756 {
757         return bnx2x_gpio_write(sc, gpio_num, mode, port);
758 }
759
760 uint8_t
761 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
762                          uint8_t mode /* 0=low 1=high */ )
763 {
764         return bnx2x_gpio_mult_write(sc, pins, mode);
765 }
766
767 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,       /* 0=low 1=high */
768                                 uint8_t port)
769 {
770         return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
771 }
772
773 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
774 {
775         REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
776                     (SC_FUNC(sc) * sizeof(uint32_t))), 1);
777 }
778
779 /* send the MCP a request, block until there is a reply */
780 uint32_t
781 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
782 {
783         int mb_idx = SC_FW_MB_IDX(sc);
784         uint32_t seq;
785         uint32_t rc = 0;
786         uint32_t cnt = 1;
787         uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
788
789         seq = ++sc->fw_seq;
790         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
791         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
792
793         PMD_DRV_LOG(DEBUG,
794                     "wrote command 0x%08x to FW MB param 0x%08x",
795                     (command | seq), param);
796
797         /* Let the FW do it's magic. GIve it up to 5 seconds... */
798         do {
799                 DELAY(delay * 1000);
800                 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
801         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
802
803         /* is this a reply to our command? */
804         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
805                 rc &= FW_MSG_CODE_MASK;
806         } else {
807                 /* Ruh-roh! */
808                 PMD_DRV_LOG(NOTICE, "FW failed to respond!");
809                 rc = 0;
810         }
811
812         return rc;
813 }
814
815 static uint32_t
816 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
817 {
818         return elink_cb_fw_command(sc, command, param);
819 }
820
821 static void
822 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
823                            rte_iova_t mapping)
824 {
825         REG_WR(sc, addr, U64_LO(mapping));
826         REG_WR(sc, (addr + 4), U64_HI(mapping));
827 }
828
829 static void
830 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
831                       uint16_t abs_fid)
832 {
833         uint32_t addr = (XSEM_REG_FAST_MEMORY +
834                          XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
835         __storm_memset_dma_mapping(sc, addr, mapping);
836 }
837
838 static void
839 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
840 {
841         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
842                 pf_id);
843         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
844                 pf_id);
845         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
846                 pf_id);
847         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
848                 pf_id);
849 }
850
851 static void
852 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
853 {
854         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
855                 enable);
856         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
857                 enable);
858         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
859                 enable);
860         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
861                 enable);
862 }
863
864 static void
865 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
866                      uint16_t pfid)
867 {
868         uint32_t addr;
869         size_t size;
870
871         addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
872         size = sizeof(struct event_ring_data);
873         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
874 }
875
876 static void
877 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
878 {
879         uint32_t addr = (BAR_CSTRORM_INTMEM +
880                          CSTORM_EVENT_RING_PROD_OFFSET(pfid));
881         REG_WR16(sc, addr, eq_prod);
882 }
883
884 /*
885  * Post a slowpath command.
886  *
887  * A slowpath command is used to propagate a configuration change through
888  * the controller in a controlled manner, allowing each STORM processor and
889  * other H/W blocks to phase in the change.  The commands sent on the
890  * slowpath are referred to as ramrods.  Depending on the ramrod used the
891  * completion of the ramrod will occur in different ways.  Here's a
892  * breakdown of ramrods and how they complete:
893  *
894  * RAMROD_CMD_ID_ETH_PORT_SETUP
895  *   Used to setup the leading connection on a port.  Completes on the
896  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
897  *
898  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
899  *   Used to setup an additional connection on a port.  Completes on the
900  *   RCQ of the multi-queue/RSS connection being initialized.
901  *
902  * RAMROD_CMD_ID_ETH_STAT_QUERY
903  *   Used to force the storm processors to update the statistics database
904  *   in host memory.  This ramrod is send on the leading connection CID and
905  *   completes as an index increment of the CSTORM on the default status
906  *   block.
907  *
908  * RAMROD_CMD_ID_ETH_UPDATE
909  *   Used to update the state of the leading connection, usually to udpate
910  *   the RSS indirection table.  Completes on the RCQ of the leading
911  *   connection. (Not currently used under FreeBSD until OS support becomes
912  *   available.)
913  *
914  * RAMROD_CMD_ID_ETH_HALT
915  *   Used when tearing down a connection prior to driver unload.  Completes
916  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
917  *   use this on the leading connection.
918  *
919  * RAMROD_CMD_ID_ETH_SET_MAC
920  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
921  *   the RCQ of the leading connection.
922  *
923  * RAMROD_CMD_ID_ETH_CFC_DEL
924  *   Used when tearing down a conneciton prior to driver unload.  Completes
925  *   on the RCQ of the leading connection (since the current connection
926  *   has been completely removed from controller memory).
927  *
928  * RAMROD_CMD_ID_ETH_PORT_DEL
929  *   Used to tear down the leading connection prior to driver unload,
930  *   typically fp[0].  Completes as an index increment of the CSTORM on the
931  *   default status block.
932  *
933  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
934  *   Used for connection offload.  Completes on the RCQ of the multi-queue
935  *   RSS connection that is being offloaded.  (Not currently used under
936  *   FreeBSD.)
937  *
938  * There can only be one command pending per function.
939  *
940  * Returns:
941  *   0 = Success, !0 = Failure.
942  */
943
944 /* must be called under the spq lock */
945 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
946 {
947         struct eth_spe *next_spe = sc->spq_prod_bd;
948
949         if (sc->spq_prod_bd == sc->spq_last_bd) {
950                 /* wrap back to the first eth_spq */
951                 sc->spq_prod_bd = sc->spq;
952                 sc->spq_prod_idx = 0;
953         } else {
954                 sc->spq_prod_bd++;
955                 sc->spq_prod_idx++;
956         }
957
958         return next_spe;
959 }
960
961 /* must be called under the spq lock */
962 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
963 {
964         int func = SC_FUNC(sc);
965
966         /*
967          * Make sure that BD data is updated before writing the producer.
968          * BD data is written to the memory, the producer is read from the
969          * memory, thus we need a full memory barrier to ensure the ordering.
970          */
971         mb();
972
973         REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
974                  sc->spq_prod_idx);
975
976         mb();
977 }
978
979 /**
980  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
981  *
982  * @cmd:      command to check
983  * @cmd_type: command type
984  */
985 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
986 {
987         if ((cmd_type == NONE_CONNECTION_TYPE) ||
988             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
989             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
990             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
991             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
992             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
993             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
994                 return TRUE;
995         } else {
996                 return FALSE;
997         }
998 }
999
1000 /**
1001  * bnx2x_sp_post - place a single command on an SP ring
1002  *
1003  * @sc:         driver handle
1004  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1005  * @cid:        SW CID the command is related to
1006  * @data_hi:    command private data address (high 32 bits)
1007  * @data_lo:    command private data address (low 32 bits)
1008  * @cmd_type:   command type (e.g. NONE, ETH)
1009  *
1010  * SP data is handled as if it's always an address pair, thus data fields are
1011  * not swapped to little endian in upper functions. Instead this function swaps
1012  * data as if it's two uint32 fields.
1013  */
1014 int
1015 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1016             uint32_t data_lo, int cmd_type)
1017 {
1018         struct eth_spe *spe;
1019         uint16_t type;
1020         int common;
1021
1022         common = bnx2x_is_contextless_ramrod(command, cmd_type);
1023
1024         if (common) {
1025                 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1026                         PMD_DRV_LOG(INFO, "EQ ring is full!");
1027                         return -1;
1028                 }
1029         } else {
1030                 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1031                         PMD_DRV_LOG(INFO, "SPQ ring is full!");
1032                         return -1;
1033                 }
1034         }
1035
1036         spe = bnx2x_sp_get_next(sc);
1037
1038         /* CID needs port number to be encoded int it */
1039         spe->hdr.conn_and_cmd_data =
1040             htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1041
1042         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1043
1044         /* TBD: Check if it works for VFs */
1045         type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1046                  SPE_HDR_FUNCTION_ID);
1047
1048         spe->hdr.type = htole16(type);
1049
1050         spe->data.update_data_addr.hi = htole32(data_hi);
1051         spe->data.update_data_addr.lo = htole32(data_lo);
1052
1053         /*
1054          * It's ok if the actual decrement is issued towards the memory
1055          * somewhere between the lock and unlock. Thus no more explict
1056          * memory barrier is needed.
1057          */
1058         if (common) {
1059                 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1060         } else {
1061                 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1062         }
1063
1064         PMD_DRV_LOG(DEBUG,
1065                     "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1066                     "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1067                     sc->spq_prod_idx,
1068                     (uint32_t) U64_HI(sc->spq_dma.paddr),
1069                     (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1070                                 (uint8_t *) sc->spq_prod_bd -
1071                                 (uint8_t *) sc->spq), command, common,
1072                     HW_CID(sc, cid), data_hi, data_lo, type,
1073                     atomic_load_acq_long(&sc->cq_spq_left),
1074                     atomic_load_acq_long(&sc->eq_spq_left));
1075
1076         bnx2x_sp_prod_update(sc);
1077
1078         return 0;
1079 }
1080
1081 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1082 {
1083         SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1084                  sc->fw_drv_pulse_wr_seq);
1085 }
1086
1087 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1088 {
1089         uint16_t hw_cons;
1090         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1091
1092         if (unlikely(!txq)) {
1093                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1094                 return 0;
1095         }
1096
1097         mb();                   /* status block fields can change */
1098         hw_cons = le16toh(*fp->tx_cons_sb);
1099         return hw_cons != txq->tx_pkt_head;
1100 }
1101
1102 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1103 {
1104         /* expand this for multi-cos if ever supported */
1105         return bnx2x_tx_queue_has_work(fp);
1106 }
1107
1108 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1109 {
1110         uint16_t rx_cq_cons_sb;
1111         struct bnx2x_rx_queue *rxq;
1112         rxq = fp->sc->rx_queues[fp->index];
1113         if (unlikely(!rxq)) {
1114                 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1115                 return 0;
1116         }
1117
1118         mb();                   /* status block fields can change */
1119         rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1120         if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1121                      MAX_RCQ_ENTRIES(rxq)))
1122                 rx_cq_cons_sb++;
1123         return rxq->rx_cq_head != rx_cq_cons_sb;
1124 }
1125
1126 static void
1127 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1128              union eth_rx_cqe *rr_cqe)
1129 {
1130         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1131         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1132         enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1133         struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1134
1135         PMD_DRV_LOG(DEBUG,
1136                     "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1137                     fp->index, cid, command, sc->state,
1138                     rr_cqe->ramrod_cqe.ramrod_type);
1139
1140         switch (command) {
1141         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1142                 PMD_DRV_LOG(DEBUG, "got UPDATE ramrod. CID %d", cid);
1143                 drv_cmd = ECORE_Q_CMD_UPDATE;
1144                 break;
1145
1146         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1147                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] setup ramrod", cid);
1148                 drv_cmd = ECORE_Q_CMD_SETUP;
1149                 break;
1150
1151         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1152                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] tx-only setup ramrod", cid);
1153                 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1154                 break;
1155
1156         case (RAMROD_CMD_ID_ETH_HALT):
1157                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] halt ramrod", cid);
1158                 drv_cmd = ECORE_Q_CMD_HALT;
1159                 break;
1160
1161         case (RAMROD_CMD_ID_ETH_TERMINATE):
1162                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] teminate ramrod", cid);
1163                 drv_cmd = ECORE_Q_CMD_TERMINATE;
1164                 break;
1165
1166         case (RAMROD_CMD_ID_ETH_EMPTY):
1167                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] empty ramrod", cid);
1168                 drv_cmd = ECORE_Q_CMD_EMPTY;
1169                 break;
1170
1171         default:
1172                 PMD_DRV_LOG(DEBUG,
1173                             "ERROR: unexpected MC reply (%d)"
1174                             "on fp[%d]", command, fp->index);
1175                 return;
1176         }
1177
1178         if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1179             q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1180                 /*
1181                  * q_obj->complete_cmd() failure means that this was
1182                  * an unexpected completion.
1183                  *
1184                  * In this case we don't want to increase the sc->spq_left
1185                  * because apparently we haven't sent this command the first
1186                  * place.
1187                  */
1188                 // rte_panic("Unexpected SP completion");
1189                 return;
1190         }
1191
1192         atomic_add_acq_long(&sc->cq_spq_left, 1);
1193
1194         PMD_DRV_LOG(DEBUG, "sc->cq_spq_left 0x%lx",
1195                     atomic_load_acq_long(&sc->cq_spq_left));
1196 }
1197
1198 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1199 {
1200         struct bnx2x_rx_queue *rxq;
1201         uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1202         uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1203
1204         rxq = sc->rx_queues[fp->index];
1205         if (!rxq) {
1206                 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1207                 return 0;
1208         }
1209
1210         /* CQ "next element" is of the size of the regular element */
1211         hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1212         if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1213                      USABLE_RCQ_ENTRIES_PER_PAGE)) {
1214                 hw_cq_cons++;
1215         }
1216
1217         bd_cons = rxq->rx_bd_head;
1218         bd_prod = rxq->rx_bd_tail;
1219         bd_prod_fw = bd_prod;
1220         sw_cq_cons = rxq->rx_cq_head;
1221         sw_cq_prod = rxq->rx_cq_tail;
1222
1223         /*
1224          * Memory barrier necessary as speculative reads of the rx
1225          * buffer can be ahead of the index in the status block
1226          */
1227         rmb();
1228
1229         while (sw_cq_cons != hw_cq_cons) {
1230                 union eth_rx_cqe *cqe;
1231                 struct eth_fast_path_rx_cqe *cqe_fp;
1232                 uint8_t cqe_fp_flags;
1233                 enum eth_rx_cqe_type cqe_fp_type;
1234
1235                 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1236                 bd_prod = RX_BD(bd_prod, rxq);
1237                 bd_cons = RX_BD(bd_cons, rxq);
1238
1239                 cqe = &rxq->cq_ring[comp_ring_cons];
1240                 cqe_fp = &cqe->fast_path_cqe;
1241                 cqe_fp_flags = cqe_fp->type_error_flags;
1242                 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1243
1244                 /* is this a slowpath msg? */
1245                 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1246                         bnx2x_sp_event(sc, fp, cqe);
1247                         goto next_cqe;
1248                 }
1249
1250                 /* is this an error packet? */
1251                 if (unlikely(cqe_fp_flags &
1252                              ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1253                         PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1254                                    cqe_fp_flags, sw_cq_cons);
1255                         goto next_rx;
1256                 }
1257
1258                 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1259
1260 next_rx:
1261                 bd_cons = NEXT_RX_BD(bd_cons);
1262                 bd_prod = NEXT_RX_BD(bd_prod);
1263                 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1264
1265 next_cqe:
1266                 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1267                 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1268
1269         }                       /* while work to do */
1270
1271         rxq->rx_bd_head = bd_cons;
1272         rxq->rx_bd_tail = bd_prod_fw;
1273         rxq->rx_cq_head = sw_cq_cons;
1274         rxq->rx_cq_tail = sw_cq_prod;
1275
1276         /* Update producers */
1277         bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1278
1279         return sw_cq_cons != hw_cq_cons;
1280 }
1281
1282 static uint16_t
1283 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1284                 uint16_t pkt_idx, uint16_t bd_idx)
1285 {
1286         struct eth_tx_start_bd *tx_start_bd =
1287             &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1288         uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1289         struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1290
1291         if (likely(tx_mbuf != NULL)) {
1292                 rte_pktmbuf_free_seg(tx_mbuf);
1293         } else {
1294                 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1295                            fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1296         }
1297
1298         txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1299         txq->nb_tx_avail += nbd;
1300
1301         while (nbd--)
1302                 bd_idx = NEXT_TX_BD(bd_idx);
1303
1304         return bd_idx;
1305 }
1306
1307 /* processes transmit completions */
1308 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1309 {
1310         uint16_t bd_cons, hw_cons, sw_cons;
1311         __rte_unused uint16_t tx_bd_avail;
1312
1313         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1314
1315         if (unlikely(!txq)) {
1316                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1317                 return 0;
1318         }
1319
1320         bd_cons = txq->tx_bd_head;
1321         hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1322         sw_cons = txq->tx_pkt_head;
1323
1324         while (sw_cons != hw_cons) {
1325                 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1326                 sw_cons++;
1327         }
1328
1329         txq->tx_pkt_head = sw_cons;
1330         txq->tx_bd_head = bd_cons;
1331
1332         tx_bd_avail = txq->nb_tx_avail;
1333
1334         PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1335                    "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1336                    fp->index, tx_bd_avail, hw_cons,
1337                    txq->tx_pkt_head, txq->tx_pkt_tail,
1338                    txq->tx_bd_head, txq->tx_bd_tail);
1339         return TRUE;
1340 }
1341
1342 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1343 {
1344         struct bnx2x_fastpath *fp;
1345         int i, count;
1346
1347         /* wait until all TX fastpath tasks have completed */
1348         for (i = 0; i < sc->num_queues; i++) {
1349                 fp = &sc->fp[i];
1350
1351                 count = 1000;
1352
1353                 while (bnx2x_has_tx_work(fp)) {
1354                         bnx2x_txeof(sc, fp);
1355
1356                         if (count == 0) {
1357                                 PMD_TX_LOG(ERR,
1358                                            "Timeout waiting for fp[%d] "
1359                                            "transmits to complete!", i);
1360                                 rte_panic("tx drain failure");
1361                                 return;
1362                         }
1363
1364                         count--;
1365                         DELAY(1000);
1366                         rmb();
1367                 }
1368         }
1369
1370         return;
1371 }
1372
1373 static int
1374 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1375                  int mac_type, uint8_t wait_for_comp)
1376 {
1377         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1378         int rc;
1379
1380         /* wait for completion of requested */
1381         if (wait_for_comp) {
1382                 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1383         }
1384
1385         /* Set the mac type of addresses we want to clear */
1386         bnx2x_set_bit(mac_type, &vlan_mac_flags);
1387
1388         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1389         if (rc < 0)
1390                 PMD_DRV_LOG(ERR, "Failed to delete MACs (%d)", rc);
1391
1392         return rc;
1393 }
1394
1395 static int
1396 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1397                         unsigned long *rx_accept_flags,
1398                         unsigned long *tx_accept_flags)
1399 {
1400         /* Clear the flags first */
1401         *rx_accept_flags = 0;
1402         *tx_accept_flags = 0;
1403
1404         switch (rx_mode) {
1405         case BNX2X_RX_MODE_NONE:
1406                 /*
1407                  * 'drop all' supersedes any accept flags that may have been
1408                  * passed to the function.
1409                  */
1410                 break;
1411
1412         case BNX2X_RX_MODE_NORMAL:
1413                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1414                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1415                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1416
1417                 /* internal switching mode */
1418                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1419                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1420                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1421
1422                 break;
1423
1424         case BNX2X_RX_MODE_ALLMULTI:
1425                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1426                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1427                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1428
1429                 /* internal switching mode */
1430                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1431                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1432                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1433
1434                 break;
1435
1436         case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1437         case BNX2X_RX_MODE_PROMISC:
1438                 /*
1439                  * According to deffinition of SI mode, iface in promisc mode
1440                  * should receive matched and unmatched (in resolution of port)
1441                  * unicast packets.
1442                  */
1443                 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1444                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1445                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1446                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1447
1448                 /* internal switching mode */
1449                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1450                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1451
1452                 if (IS_MF_SI(sc)) {
1453                         bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1454                 } else {
1455                         bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1456                 }
1457
1458                 break;
1459
1460         default:
1461                 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1462                 return -1;
1463         }
1464
1465         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1466         if (rx_mode != BNX2X_RX_MODE_NONE) {
1467                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1468                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1469         }
1470
1471         return 0;
1472 }
1473
1474 static int
1475 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1476                   unsigned long rx_mode_flags,
1477                   unsigned long rx_accept_flags,
1478                   unsigned long tx_accept_flags, unsigned long ramrod_flags)
1479 {
1480         struct ecore_rx_mode_ramrod_params ramrod_param;
1481         int rc;
1482
1483         memset(&ramrod_param, 0, sizeof(ramrod_param));
1484
1485         /* Prepare ramrod parameters */
1486         ramrod_param.cid = 0;
1487         ramrod_param.cl_id = cl_id;
1488         ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1489         ramrod_param.func_id = SC_FUNC(sc);
1490
1491         ramrod_param.pstate = &sc->sp_state;
1492         ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1493
1494         ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1495         ramrod_param.rdata_mapping =
1496             (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1497             bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1498
1499         ramrod_param.ramrod_flags = ramrod_flags;
1500         ramrod_param.rx_mode_flags = rx_mode_flags;
1501
1502         ramrod_param.rx_accept_flags = rx_accept_flags;
1503         ramrod_param.tx_accept_flags = tx_accept_flags;
1504
1505         rc = ecore_config_rx_mode(sc, &ramrod_param);
1506         if (rc < 0) {
1507                 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1508                 return rc;
1509         }
1510
1511         return 0;
1512 }
1513
1514 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1515 {
1516         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1517         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1518         int rc;
1519
1520         rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1521                                    &tx_accept_flags);
1522         if (rc) {
1523                 return rc;
1524         }
1525
1526         bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1527         bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1528         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1529
1530         return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1531                                  rx_accept_flags, tx_accept_flags,
1532                                  ramrod_flags);
1533 }
1534
1535 /* returns the "mcp load_code" according to global load_count array */
1536 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1537 {
1538         int path = SC_PATH(sc);
1539         int port = SC_PORT(sc);
1540
1541         PMD_DRV_LOG(INFO, "NO MCP - load counts[%d]      %d, %d, %d",
1542                     path, load_count[path][0], load_count[path][1],
1543                     load_count[path][2]);
1544
1545         load_count[path][0]++;
1546         load_count[path][1 + port]++;
1547         PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d]  %d, %d, %d",
1548                     path, load_count[path][0], load_count[path][1],
1549                     load_count[path][2]);
1550         if (load_count[path][0] == 1)
1551                 return FW_MSG_CODE_DRV_LOAD_COMMON;
1552         else if (load_count[path][1 + port] == 1)
1553                 return FW_MSG_CODE_DRV_LOAD_PORT;
1554         else
1555                 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1556 }
1557
1558 /* returns the "mcp load_code" according to global load_count array */
1559 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1560 {
1561         int port = SC_PORT(sc);
1562         int path = SC_PATH(sc);
1563
1564         PMD_DRV_LOG(INFO, "NO MCP - load counts[%d]      %d, %d, %d",
1565                     path, load_count[path][0], load_count[path][1],
1566                     load_count[path][2]);
1567         load_count[path][0]--;
1568         load_count[path][1 + port]--;
1569         PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d]  %d, %d, %d",
1570                     path, load_count[path][0], load_count[path][1],
1571                     load_count[path][2]);
1572         if (load_count[path][0] == 0) {
1573                 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1574         } else if (load_count[path][1 + port] == 0) {
1575                 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1576         } else {
1577                 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1578         }
1579 }
1580
1581 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1582 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1583 {
1584         uint32_t reset_code = 0;
1585
1586         /* Select the UNLOAD request mode */
1587         if (unload_mode == UNLOAD_NORMAL) {
1588                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1589         } else {
1590                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1591         }
1592
1593         /* Send the request to the MCP */
1594         if (!BNX2X_NOMCP(sc)) {
1595                 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1596         } else {
1597                 reset_code = bnx2x_nic_unload_no_mcp(sc);
1598         }
1599
1600         return reset_code;
1601 }
1602
1603 /* send UNLOAD_DONE command to the MCP */
1604 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1605 {
1606         uint32_t reset_param =
1607             keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1608
1609         /* Report UNLOAD_DONE to MCP */
1610         if (!BNX2X_NOMCP(sc)) {
1611                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1612         }
1613 }
1614
1615 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1616 {
1617         int tout = 50;
1618
1619         if (!sc->port.pmf) {
1620                 return 0;
1621         }
1622
1623         /*
1624          * (assumption: No Attention from MCP at this stage)
1625          * PMF probably in the middle of TX disable/enable transaction
1626          * 1. Sync IRS for default SB
1627          * 2. Sync SP queue - this guarantees us that attention handling started
1628          * 3. Wait, that TX disable/enable transaction completes
1629          *
1630          * 1+2 guarantee that if DCBX attention was scheduled it already changed
1631          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1632          * received completion for the transaction the state is TX_STOPPED.
1633          * State will return to STARTED after completion of TX_STOPPED-->STARTED
1634          * transaction.
1635          */
1636
1637         while (ecore_func_get_state(sc, &sc->func_obj) !=
1638                ECORE_F_STATE_STARTED && tout--) {
1639                 DELAY(20000);
1640         }
1641
1642         if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1643                 /*
1644                  * Failed to complete the transaction in a "good way"
1645                  * Force both transactions with CLR bit.
1646                  */
1647                 struct ecore_func_state_params func_params = { NULL };
1648
1649                 PMD_DRV_LOG(NOTICE, "Unexpected function state! "
1650                             "Forcing STARTED-->TX_STOPPED-->STARTED");
1651
1652                 func_params.f_obj = &sc->func_obj;
1653                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1654
1655                 /* STARTED-->TX_STOPPED */
1656                 func_params.cmd = ECORE_F_CMD_TX_STOP;
1657                 ecore_func_state_change(sc, &func_params);
1658
1659                 /* TX_STOPPED-->STARTED */
1660                 func_params.cmd = ECORE_F_CMD_TX_START;
1661                 return ecore_func_state_change(sc, &func_params);
1662         }
1663
1664         return 0;
1665 }
1666
1667 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1668 {
1669         struct bnx2x_fastpath *fp = &sc->fp[index];
1670         struct ecore_queue_state_params q_params = { NULL };
1671         int rc;
1672
1673         PMD_DRV_LOG(DEBUG, "stopping queue %d cid %d", index, fp->index);
1674
1675         q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1676         /* We want to wait for completion in this context */
1677         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1678
1679         /* Stop the primary connection: */
1680
1681         /* ...halt the connection */
1682         q_params.cmd = ECORE_Q_CMD_HALT;
1683         rc = ecore_queue_state_change(sc, &q_params);
1684         if (rc) {
1685                 return rc;
1686         }
1687
1688         /* ...terminate the connection */
1689         q_params.cmd = ECORE_Q_CMD_TERMINATE;
1690         memset(&q_params.params.terminate, 0,
1691                sizeof(q_params.params.terminate));
1692         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1693         rc = ecore_queue_state_change(sc, &q_params);
1694         if (rc) {
1695                 return rc;
1696         }
1697
1698         /* ...delete cfc entry */
1699         q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1700         memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1701         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1702         return ecore_queue_state_change(sc, &q_params);
1703 }
1704
1705 /* wait for the outstanding SP commands */
1706 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1707 {
1708         unsigned long tmp;
1709         int tout = 5000;        /* wait for 5 secs tops */
1710
1711         while (tout--) {
1712                 mb();
1713                 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1714                         return TRUE;
1715                 }
1716
1717                 DELAY(1000);
1718         }
1719
1720         mb();
1721
1722         tmp = atomic_load_acq_long(&sc->sp_state);
1723         if (tmp & mask) {
1724                 PMD_DRV_LOG(INFO, "Filtering completion timed out: "
1725                             "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1726                 return FALSE;
1727         }
1728
1729         return FALSE;
1730 }
1731
1732 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1733 {
1734         struct ecore_func_state_params func_params = { NULL };
1735         int rc;
1736
1737         /* prepare parameters for function state transitions */
1738         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1739         func_params.f_obj = &sc->func_obj;
1740         func_params.cmd = ECORE_F_CMD_STOP;
1741
1742         /*
1743          * Try to stop the function the 'good way'. If it fails (in case
1744          * of a parity error during bnx2x_chip_cleanup()) and we are
1745          * not in a debug mode, perform a state transaction in order to
1746          * enable further HW_RESET transaction.
1747          */
1748         rc = ecore_func_state_change(sc, &func_params);
1749         if (rc) {
1750                 PMD_DRV_LOG(NOTICE, "FUNC_STOP ramrod failed. "
1751                             "Running a dry transaction");
1752                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1753                 return ecore_func_state_change(sc, &func_params);
1754         }
1755
1756         return 0;
1757 }
1758
1759 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1760 {
1761         struct ecore_func_state_params func_params = { NULL };
1762
1763         /* Prepare parameters for function state transitions */
1764         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1765
1766         func_params.f_obj = &sc->func_obj;
1767         func_params.cmd = ECORE_F_CMD_HW_RESET;
1768
1769         func_params.params.hw_init.load_phase = load_code;
1770
1771         return ecore_func_state_change(sc, &func_params);
1772 }
1773
1774 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1775 {
1776         if (disable_hw) {
1777                 /* prevent the HW from sending interrupts */
1778                 bnx2x_int_disable(sc);
1779         }
1780 }
1781
1782 static void
1783 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1784 {
1785         int port = SC_PORT(sc);
1786         struct ecore_mcast_ramrod_params rparam = { NULL };
1787         uint32_t reset_code;
1788         int i, rc = 0;
1789
1790         bnx2x_drain_tx_queues(sc);
1791
1792         /* give HW time to discard old tx messages */
1793         DELAY(1000);
1794
1795         /* Clean all ETH MACs */
1796         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1797                               FALSE);
1798         if (rc < 0) {
1799                 PMD_DRV_LOG(NOTICE, "Failed to delete all ETH MACs (%d)", rc);
1800         }
1801
1802         /* Clean up UC list  */
1803         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1804                               TRUE);
1805         if (rc < 0) {
1806                 PMD_DRV_LOG(NOTICE, "Failed to delete UC MACs list (%d)", rc);
1807         }
1808
1809         /* Disable LLH */
1810         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1811
1812         /* Set "drop all" to stop Rx */
1813
1814         /*
1815          * We need to take the if_maddr_lock() here in order to prevent
1816          * a race between the completion code and this code.
1817          */
1818
1819         if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1820                 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1821         } else {
1822                 bnx2x_set_storm_rx_mode(sc);
1823         }
1824
1825         /* Clean up multicast configuration */
1826         rparam.mcast_obj = &sc->mcast_obj;
1827         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1828         if (rc < 0) {
1829                 PMD_DRV_LOG(NOTICE,
1830                             "Failed to send DEL MCAST command (%d)", rc);
1831         }
1832
1833         /*
1834          * Send the UNLOAD_REQUEST to the MCP. This will return if
1835          * this function should perform FUNCTION, PORT, or COMMON HW
1836          * reset.
1837          */
1838         reset_code = bnx2x_send_unload_req(sc, unload_mode);
1839
1840         /*
1841          * (assumption: No Attention from MCP at this stage)
1842          * PMF probably in the middle of TX disable/enable transaction
1843          */
1844         rc = bnx2x_func_wait_started(sc);
1845         if (rc) {
1846                 PMD_DRV_LOG(NOTICE, "bnx2x_func_wait_started failed");
1847         }
1848
1849         /*
1850          * Close multi and leading connections
1851          * Completions for ramrods are collected in a synchronous way
1852          */
1853         for (i = 0; i < sc->num_queues; i++) {
1854                 if (bnx2x_stop_queue(sc, i)) {
1855                         goto unload_error;
1856                 }
1857         }
1858
1859         /*
1860          * If SP settings didn't get completed so far - something
1861          * very wrong has happen.
1862          */
1863         if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1864                 PMD_DRV_LOG(NOTICE, "Common slow path ramrods got stuck!");
1865         }
1866
1867 unload_error:
1868
1869         rc = bnx2x_func_stop(sc);
1870         if (rc) {
1871                 PMD_DRV_LOG(NOTICE, "Function stop failed!");
1872         }
1873
1874         /* disable HW interrupts */
1875         bnx2x_int_disable_sync(sc, TRUE);
1876
1877         /* Reset the chip */
1878         rc = bnx2x_reset_hw(sc, reset_code);
1879         if (rc) {
1880                 PMD_DRV_LOG(NOTICE, "Hardware reset failed");
1881         }
1882
1883         /* Report UNLOAD_DONE to MCP */
1884         bnx2x_send_unload_done(sc, keep_link);
1885 }
1886
1887 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1888 {
1889         uint32_t val;
1890
1891         PMD_DRV_LOG(DEBUG, "Disabling 'close the gates'");
1892
1893         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1894         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1895                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1896         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1897 }
1898
1899 /*
1900  * Cleans the object that have internal lists without sending
1901  * ramrods. Should be run when interrutps are disabled.
1902  */
1903 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1904 {
1905         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1906         struct ecore_mcast_ramrod_params rparam = { NULL };
1907         struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1908         int rc;
1909
1910         /* Cleanup MACs' object first... */
1911
1912         /* Wait for completion of requested */
1913         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1914         /* Perform a dry cleanup */
1915         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1916
1917         /* Clean ETH primary MAC */
1918         bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1919         rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1920                                  &ramrod_flags);
1921         if (rc != 0) {
1922                 PMD_DRV_LOG(NOTICE, "Failed to clean ETH MACs (%d)", rc);
1923         }
1924
1925         /* Cleanup UC list */
1926         vlan_mac_flags = 0;
1927         bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1928         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1929         if (rc != 0) {
1930                 PMD_DRV_LOG(NOTICE, "Failed to clean UC list MACs (%d)", rc);
1931         }
1932
1933         /* Now clean mcast object... */
1934
1935         rparam.mcast_obj = &sc->mcast_obj;
1936         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1937
1938         /* Add a DEL command... */
1939         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1940         if (rc < 0) {
1941                 PMD_DRV_LOG(NOTICE,
1942                             "Failed to send DEL MCAST command (%d)", rc);
1943         }
1944
1945         /* now wait until all pending commands are cleared */
1946
1947         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1948         while (rc != 0) {
1949                 if (rc < 0) {
1950                         PMD_DRV_LOG(NOTICE,
1951                                     "Failed to clean MCAST object (%d)", rc);
1952                         return;
1953                 }
1954
1955                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1956         }
1957 }
1958
1959 /* stop the controller */
1960 __rte_noinline
1961 int
1962 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1963 {
1964         uint8_t global = FALSE;
1965         uint32_t val;
1966
1967         PMD_DRV_LOG(DEBUG, "Starting NIC unload...");
1968
1969         /* mark driver as unloaded in shmem2 */
1970         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
1971                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
1972                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
1973                           val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
1974         }
1975
1976         if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
1977             (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
1978                 /*
1979                  * We can get here if the driver has been unloaded
1980                  * during parity error recovery and is either waiting for a
1981                  * leader to complete or for other functions to unload and
1982                  * then ifconfig down has been issued. In this case we want to
1983                  * unload and let other functions to complete a recovery
1984                  * process.
1985                  */
1986                 sc->recovery_state = BNX2X_RECOVERY_DONE;
1987                 sc->is_leader = 0;
1988                 bnx2x_release_leader_lock(sc);
1989                 mb();
1990
1991                 PMD_DRV_LOG(NOTICE, "Can't unload in closed or error state");
1992                 return -1;
1993         }
1994
1995         /*
1996          * Nothing to do during unload if previous bnx2x_nic_load()
1997          * did not completed successfully - all resourses are released.
1998          */
1999         if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2000                 return 0;
2001         }
2002
2003         sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2004         mb();
2005
2006         sc->rx_mode = BNX2X_RX_MODE_NONE;
2007         bnx2x_set_rx_mode(sc);
2008         mb();
2009
2010         if (IS_PF(sc)) {
2011                 /* set ALWAYS_ALIVE bit in shmem */
2012                 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2013
2014                 bnx2x_drv_pulse(sc);
2015
2016                 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2017                 bnx2x_save_statistics(sc);
2018         }
2019
2020         /* wait till consumers catch up with producers in all queues */
2021         bnx2x_drain_tx_queues(sc);
2022
2023         /* if VF indicate to PF this function is going down (PF will delete sp
2024          * elements and clear initializations
2025          */
2026         if (IS_VF(sc)) {
2027                 bnx2x_vf_unload(sc);
2028         } else if (unload_mode != UNLOAD_RECOVERY) {
2029                 /* if this is a normal/close unload need to clean up chip */
2030                 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2031         } else {
2032                 /* Send the UNLOAD_REQUEST to the MCP */
2033                 bnx2x_send_unload_req(sc, unload_mode);
2034
2035                 /*
2036                  * Prevent transactions to host from the functions on the
2037                  * engine that doesn't reset global blocks in case of global
2038                  * attention once gloabl blocks are reset and gates are opened
2039                  * (the engine which leader will perform the recovery
2040                  * last).
2041                  */
2042                 if (!CHIP_IS_E1x(sc)) {
2043                         bnx2x_pf_disable(sc);
2044                 }
2045
2046                 /* disable HW interrupts */
2047                 bnx2x_int_disable_sync(sc, TRUE);
2048
2049                 /* Report UNLOAD_DONE to MCP */
2050                 bnx2x_send_unload_done(sc, FALSE);
2051         }
2052
2053         /*
2054          * At this stage no more interrupts will arrive so we may safely clean
2055          * the queue'able objects here in case they failed to get cleaned so far.
2056          */
2057         if (IS_PF(sc)) {
2058                 bnx2x_squeeze_objects(sc);
2059         }
2060
2061         /* There should be no more pending SP commands at this stage */
2062         sc->sp_state = 0;
2063
2064         sc->port.pmf = 0;
2065
2066         if (IS_PF(sc)) {
2067                 bnx2x_free_mem(sc);
2068         }
2069
2070         bnx2x_free_fw_stats_mem(sc);
2071
2072         sc->state = BNX2X_STATE_CLOSED;
2073
2074         /*
2075          * Check if there are pending parity attentions. If there are - set
2076          * RECOVERY_IN_PROGRESS.
2077          */
2078         if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2079                 bnx2x_set_reset_in_progress(sc);
2080
2081                 /* Set RESET_IS_GLOBAL if needed */
2082                 if (global) {
2083                         bnx2x_set_reset_global(sc);
2084                 }
2085         }
2086
2087         /*
2088          * The last driver must disable a "close the gate" if there is no
2089          * parity attention or "process kill" pending.
2090          */
2091         if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2092             bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2093                 bnx2x_disable_close_the_gate(sc);
2094         }
2095
2096         PMD_DRV_LOG(DEBUG, "Ended NIC unload");
2097
2098         return 0;
2099 }
2100
2101 /*
2102  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2103  * visible to the controller.
2104  *
2105  * If an mbuf is submitted to this routine and cannot be given to the
2106  * controller (e.g. it has too many fragments) then the function may free
2107  * the mbuf and return to the caller.
2108  *
2109  * Returns:
2110  *     int: Number of TX BDs used for the mbuf
2111  *
2112  *   Note the side effect that an mbuf may be freed if it causes a problem.
2113  */
2114 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2115 {
2116         struct eth_tx_start_bd *tx_start_bd;
2117         uint16_t bd_prod, pkt_prod;
2118         struct bnx2x_softc *sc;
2119         uint32_t nbds = 0;
2120
2121         sc = txq->sc;
2122         bd_prod = txq->tx_bd_tail;
2123         pkt_prod = txq->tx_pkt_tail;
2124
2125         txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2126
2127         tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2128
2129         tx_start_bd->addr =
2130             rte_cpu_to_le_64(rte_mbuf_data_iova(m0));
2131         tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2132         tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2133         tx_start_bd->general_data =
2134             (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2135
2136         tx_start_bd->nbd = rte_cpu_to_le_16(2);
2137
2138         if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2139                 tx_start_bd->vlan_or_ethertype =
2140                     rte_cpu_to_le_16(m0->vlan_tci);
2141                 tx_start_bd->bd_flags.as_bitfield |=
2142                     (X_ETH_OUTBAND_VLAN <<
2143                      ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2144         } else {
2145                 if (IS_PF(sc))
2146                         tx_start_bd->vlan_or_ethertype =
2147                             rte_cpu_to_le_16(pkt_prod);
2148                 else {
2149                         struct ether_hdr *eh =
2150                             rte_pktmbuf_mtod(m0, struct ether_hdr *);
2151
2152                         tx_start_bd->vlan_or_ethertype =
2153                             rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2154                 }
2155         }
2156
2157         bd_prod = NEXT_TX_BD(bd_prod);
2158         if (IS_VF(sc)) {
2159                 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2160                 const struct ether_hdr *eh =
2161                     rte_pktmbuf_mtod(m0, struct ether_hdr *);
2162                 uint8_t mac_type = UNICAST_ADDRESS;
2163
2164                 tx_parse_bd =
2165                     &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2166                 if (is_multicast_ether_addr(&eh->d_addr)) {
2167                         if (is_broadcast_ether_addr(&eh->d_addr))
2168                                 mac_type = BROADCAST_ADDRESS;
2169                         else
2170                                 mac_type = MULTICAST_ADDRESS;
2171                 }
2172                 tx_parse_bd->parsing_data =
2173                     (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2174
2175                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2176                            &eh->d_addr.addr_bytes[0], 2);
2177                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2178                            &eh->d_addr.addr_bytes[2], 2);
2179                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2180                            &eh->d_addr.addr_bytes[4], 2);
2181                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2182                            &eh->s_addr.addr_bytes[0], 2);
2183                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2184                            &eh->s_addr.addr_bytes[2], 2);
2185                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2186                            &eh->s_addr.addr_bytes[4], 2);
2187
2188                 tx_parse_bd->data.mac_addr.dst_hi =
2189                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2190                 tx_parse_bd->data.mac_addr.dst_mid =
2191                     rte_cpu_to_be_16(tx_parse_bd->data.
2192                                      mac_addr.dst_mid);
2193                 tx_parse_bd->data.mac_addr.dst_lo =
2194                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2195                 tx_parse_bd->data.mac_addr.src_hi =
2196                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2197                 tx_parse_bd->data.mac_addr.src_mid =
2198                     rte_cpu_to_be_16(tx_parse_bd->data.
2199                                      mac_addr.src_mid);
2200                 tx_parse_bd->data.mac_addr.src_lo =
2201                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2202
2203                 PMD_TX_LOG(DEBUG,
2204                            "PBD dst %x %x %x src %x %x %x p_data %x",
2205                            tx_parse_bd->data.mac_addr.dst_hi,
2206                            tx_parse_bd->data.mac_addr.dst_mid,
2207                            tx_parse_bd->data.mac_addr.dst_lo,
2208                            tx_parse_bd->data.mac_addr.src_hi,
2209                            tx_parse_bd->data.mac_addr.src_mid,
2210                            tx_parse_bd->data.mac_addr.src_lo,
2211                            tx_parse_bd->parsing_data);
2212         }
2213
2214         PMD_TX_LOG(DEBUG,
2215                    "start bd: nbytes %d flags %x vlan %x",
2216                    tx_start_bd->nbytes,
2217                    tx_start_bd->bd_flags.as_bitfield,
2218                    tx_start_bd->vlan_or_ethertype);
2219
2220         bd_prod = NEXT_TX_BD(bd_prod);
2221         pkt_prod++;
2222
2223         if (TX_IDX(bd_prod) < 2)
2224                 nbds++;
2225
2226         txq->nb_tx_avail -= 2;
2227         txq->tx_bd_tail = bd_prod;
2228         txq->tx_pkt_tail = pkt_prod;
2229
2230         return nbds + 2;
2231 }
2232
2233 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2234 {
2235         return L2_ILT_LINES(sc);
2236 }
2237
2238 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2239 {
2240         struct ilt_client_info *ilt_client;
2241         struct ecore_ilt *ilt = sc->ilt;
2242         uint16_t line = 0;
2243
2244         PMD_INIT_FUNC_TRACE();
2245
2246         ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2247
2248         /* CDU */
2249         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2250         ilt_client->client_num = ILT_CLIENT_CDU;
2251         ilt_client->page_size = CDU_ILT_PAGE_SZ;
2252         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2253         ilt_client->start = line;
2254         line += bnx2x_cid_ilt_lines(sc);
2255
2256         if (CNIC_SUPPORT(sc)) {
2257                 line += CNIC_ILT_LINES;
2258         }
2259
2260         ilt_client->end = (line - 1);
2261
2262         /* QM */
2263         if (QM_INIT(sc->qm_cid_count)) {
2264                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2265                 ilt_client->client_num = ILT_CLIENT_QM;
2266                 ilt_client->page_size = QM_ILT_PAGE_SZ;
2267                 ilt_client->flags = 0;
2268                 ilt_client->start = line;
2269
2270                 /* 4 bytes for each cid */
2271                 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2272                                      QM_ILT_PAGE_SZ);
2273
2274                 ilt_client->end = (line - 1);
2275         }
2276
2277         if (CNIC_SUPPORT(sc)) {
2278                 /* SRC */
2279                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2280                 ilt_client->client_num = ILT_CLIENT_SRC;
2281                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2282                 ilt_client->flags = 0;
2283                 ilt_client->start = line;
2284                 line += SRC_ILT_LINES;
2285                 ilt_client->end = (line - 1);
2286
2287                 /* TM */
2288                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2289                 ilt_client->client_num = ILT_CLIENT_TM;
2290                 ilt_client->page_size = TM_ILT_PAGE_SZ;
2291                 ilt_client->flags = 0;
2292                 ilt_client->start = line;
2293                 line += TM_ILT_LINES;
2294                 ilt_client->end = (line - 1);
2295         }
2296
2297         assert((line <= ILT_MAX_LINES));
2298 }
2299
2300 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2301 {
2302         int i;
2303
2304         for (i = 0; i < sc->num_queues; i++) {
2305                 /* get the Rx buffer size for RX frames */
2306                 sc->fp[i].rx_buf_size =
2307                     (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2308         }
2309 }
2310
2311 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2312 {
2313
2314         sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2315
2316         return sc->ilt == NULL;
2317 }
2318
2319 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2320 {
2321         sc->ilt->lines = rte_calloc("",
2322                                     sizeof(struct ilt_line), ILT_MAX_LINES,
2323                                     RTE_CACHE_LINE_SIZE);
2324         return sc->ilt->lines == NULL;
2325 }
2326
2327 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2328 {
2329         rte_free(sc->ilt);
2330         sc->ilt = NULL;
2331 }
2332
2333 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2334 {
2335         if (sc->ilt->lines != NULL) {
2336                 rte_free(sc->ilt->lines);
2337                 sc->ilt->lines = NULL;
2338         }
2339 }
2340
2341 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2342 {
2343         uint32_t i;
2344
2345         for (i = 0; i < L2_ILT_LINES(sc); i++) {
2346                 sc->context[i].vcxt = NULL;
2347                 sc->context[i].size = 0;
2348         }
2349
2350         ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2351
2352         bnx2x_free_ilt_lines_mem(sc);
2353 }
2354
2355 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2356 {
2357         int context_size;
2358         int allocated;
2359         int i;
2360         char cdu_name[RTE_MEMZONE_NAMESIZE];
2361
2362         /*
2363          * Allocate memory for CDU context:
2364          * This memory is allocated separately and not in the generic ILT
2365          * functions because CDU differs in few aspects:
2366          * 1. There can be multiple entities allocating memory for context -
2367          * regular L2, CNIC, and SRIOV drivers. Each separately controls
2368          * its own ILT lines.
2369          * 2. Since CDU page-size is not a single 4KB page (which is the case
2370          * for the other ILT clients), to be efficient we want to support
2371          * allocation of sub-page-size in the last entry.
2372          * 3. Context pointers are used by the driver to pass to FW / update
2373          * the context (for the other ILT clients the pointers are used just to
2374          * free the memory during unload).
2375          */
2376         context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2377         for (i = 0, allocated = 0; allocated < context_size; i++) {
2378                 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2379                                           (context_size - allocated));
2380
2381                 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2382                 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2383                                   &sc->context[i].vcxt_dma,
2384                                   cdu_name, BNX2X_PAGE_SIZE) != 0) {
2385                         bnx2x_free_mem(sc);
2386                         return -1;
2387                 }
2388
2389                 sc->context[i].vcxt =
2390                     (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2391
2392                 allocated += sc->context[i].size;
2393         }
2394
2395         bnx2x_alloc_ilt_lines_mem(sc);
2396
2397         if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2398                 PMD_DRV_LOG(NOTICE, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2399                 bnx2x_free_mem(sc);
2400                 return -1;
2401         }
2402
2403         return 0;
2404 }
2405
2406 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2407 {
2408         sc->fw_stats_num = 0;
2409
2410         sc->fw_stats_req_size = 0;
2411         sc->fw_stats_req = NULL;
2412         sc->fw_stats_req_mapping = 0;
2413
2414         sc->fw_stats_data_size = 0;
2415         sc->fw_stats_data = NULL;
2416         sc->fw_stats_data_mapping = 0;
2417 }
2418
2419 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2420 {
2421         uint8_t num_queue_stats;
2422         int num_groups, vf_headroom = 0;
2423
2424         /* number of queues for statistics is number of eth queues */
2425         num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2426
2427         /*
2428          * Total number of FW statistics requests =
2429          *   1 for port stats + 1 for PF stats + num of queues
2430          */
2431         sc->fw_stats_num = (2 + num_queue_stats);
2432
2433         /*
2434          * Request is built from stats_query_header and an array of
2435          * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2436          * rules. The real number or requests is configured in the
2437          * stats_query_header.
2438          */
2439         num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2440         if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2441                 num_groups++;
2442
2443         sc->fw_stats_req_size =
2444             (sizeof(struct stats_query_header) +
2445              (num_groups * sizeof(struct stats_query_cmd_group)));
2446
2447         /*
2448          * Data for statistics requests + stats_counter.
2449          * stats_counter holds per-STORM counters that are incremented when
2450          * STORM has finished with the current request. Memory for FCoE
2451          * offloaded statistics are counted anyway, even if they will not be sent.
2452          * VF stats are not accounted for here as the data of VF stats is stored
2453          * in memory allocated by the VF, not here.
2454          */
2455         sc->fw_stats_data_size =
2456             (sizeof(struct stats_counter) +
2457              sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2458              /* sizeof(struct fcoe_statistics_params) + */
2459              (sizeof(struct per_queue_stats) * num_queue_stats));
2460
2461         if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2462                           &sc->fw_stats_dma, "fw_stats",
2463                           RTE_CACHE_LINE_SIZE) != 0) {
2464                 bnx2x_free_fw_stats_mem(sc);
2465                 return -1;
2466         }
2467
2468         /* set up the shortcuts */
2469
2470         sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2471         sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2472
2473         sc->fw_stats_data =
2474             (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2475                                          sc->fw_stats_req_size);
2476         sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2477                                      sc->fw_stats_req_size);
2478
2479         return 0;
2480 }
2481
2482 /*
2483  * Bits map:
2484  * 0-7  - Engine0 load counter.
2485  * 8-15 - Engine1 load counter.
2486  * 16   - Engine0 RESET_IN_PROGRESS bit.
2487  * 17   - Engine1 RESET_IN_PROGRESS bit.
2488  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2489  *        function on the engine
2490  * 19   - Engine1 ONE_IS_LOADED.
2491  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2492  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2493  *        for just the one belonging to its engine).
2494  */
2495 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2496 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2497 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2498 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2499 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2500 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2501 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2502 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2503
2504 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2505 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2506 {
2507         uint32_t val;
2508         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2509         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2510         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2511         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2512 }
2513
2514 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2515 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2516 {
2517         uint32_t val;
2518         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2519         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2520         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2521         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2522 }
2523
2524 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2525 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2526 {
2527         return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2528 }
2529
2530 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2531 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2532 {
2533         uint32_t val;
2534         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2535             BNX2X_PATH0_RST_IN_PROG_BIT;
2536
2537         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2538
2539         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2540         /* Clear the bit */
2541         val &= ~bit;
2542         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2543
2544         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2545 }
2546
2547 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2548 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2549 {
2550         uint32_t val;
2551         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2552             BNX2X_PATH0_RST_IN_PROG_BIT;
2553
2554         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2555
2556         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2557         /* Set the bit */
2558         val |= bit;
2559         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2560
2561         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2562 }
2563
2564 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2565 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2566 {
2567         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2568         uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2569             BNX2X_PATH0_RST_IN_PROG_BIT;
2570
2571         /* return false if bit is set */
2572         return (val & bit) ? FALSE : TRUE;
2573 }
2574
2575 /* get the load status for an engine, should be run under rtnl lock */
2576 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2577 {
2578         uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2579             BNX2X_PATH0_LOAD_CNT_MASK;
2580         uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2581             BNX2X_PATH0_LOAD_CNT_SHIFT;
2582         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2583
2584         val = ((val & mask) >> shift);
2585
2586         return val != 0;
2587 }
2588
2589 /* set pf load mark */
2590 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2591 {
2592         uint32_t val;
2593         uint32_t val1;
2594         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2595             BNX2X_PATH0_LOAD_CNT_MASK;
2596         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2597             BNX2X_PATH0_LOAD_CNT_SHIFT;
2598
2599         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2600
2601         PMD_INIT_FUNC_TRACE();
2602
2603         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2604
2605         /* get the current counter value */
2606         val1 = ((val & mask) >> shift);
2607
2608         /* set bit of this PF */
2609         val1 |= (1 << SC_ABS_FUNC(sc));
2610
2611         /* clear the old value */
2612         val &= ~mask;
2613
2614         /* set the new one */
2615         val |= ((val1 << shift) & mask);
2616
2617         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2618
2619         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2620 }
2621
2622 /* clear pf load mark */
2623 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2624 {
2625         uint32_t val1, val;
2626         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2627             BNX2X_PATH0_LOAD_CNT_MASK;
2628         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2629             BNX2X_PATH0_LOAD_CNT_SHIFT;
2630
2631         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2632         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2633
2634         /* get the current counter value */
2635         val1 = (val & mask) >> shift;
2636
2637         /* clear bit of that PF */
2638         val1 &= ~(1 << SC_ABS_FUNC(sc));
2639
2640         /* clear the old value */
2641         val &= ~mask;
2642
2643         /* set the new one */
2644         val |= ((val1 << shift) & mask);
2645
2646         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2647         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2648         return val1 != 0;
2649 }
2650
2651 /* send load requrest to mcp and analyze response */
2652 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2653 {
2654         PMD_INIT_FUNC_TRACE();
2655
2656         /* init fw_seq */
2657         sc->fw_seq =
2658             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2659              DRV_MSG_SEQ_NUMBER_MASK);
2660
2661         PMD_DRV_LOG(DEBUG, "initial fw_seq 0x%04x", sc->fw_seq);
2662
2663 #ifdef BNX2X_PULSE
2664         /* get the current FW pulse sequence */
2665         sc->fw_drv_pulse_wr_seq =
2666             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2667              DRV_PULSE_SEQ_MASK);
2668 #else
2669         /* set ALWAYS_ALIVE bit in shmem */
2670         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2671         bnx2x_drv_pulse(sc);
2672 #endif
2673
2674         /* load request */
2675         (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2676                                       DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2677
2678         /* if the MCP fails to respond we must abort */
2679         if (!(*load_code)) {
2680                 PMD_DRV_LOG(NOTICE, "MCP response failure!");
2681                 return -1;
2682         }
2683
2684         /* if MCP refused then must abort */
2685         if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2686                 PMD_DRV_LOG(NOTICE, "MCP refused load request");
2687                 return -1;
2688         }
2689
2690         return 0;
2691 }
2692
2693 /*
2694  * Check whether another PF has already loaded FW to chip. In virtualized
2695  * environments a pf from anoth VM may have already initialized the device
2696  * including loading FW.
2697  */
2698 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2699 {
2700         uint32_t my_fw, loaded_fw;
2701
2702         /* is another pf loaded on this engine? */
2703         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2704             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2705                 /* build my FW version dword */
2706                 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2707                          (BNX2X_5710_FW_MINOR_VERSION << 8) +
2708                          (BNX2X_5710_FW_REVISION_VERSION << 16) +
2709                          (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2710
2711                 /* read loaded FW from chip */
2712                 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2713                 PMD_DRV_LOG(DEBUG, "loaded FW 0x%08x / my FW 0x%08x",
2714                             loaded_fw, my_fw);
2715
2716                 /* abort nic load if version mismatch */
2717                 if (my_fw != loaded_fw) {
2718                         PMD_DRV_LOG(NOTICE,
2719                                     "FW 0x%08x already loaded (mine is 0x%08x)",
2720                                     loaded_fw, my_fw);
2721                         return -1;
2722                 }
2723         }
2724
2725         return 0;
2726 }
2727
2728 /* mark PMF if applicable */
2729 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2730 {
2731         uint32_t ncsi_oem_data_addr;
2732
2733         PMD_INIT_FUNC_TRACE();
2734
2735         if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2736             (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2737             (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2738                 /*
2739                  * Barrier here for ordering between the writing to sc->port.pmf here
2740                  * and reading it from the periodic task.
2741                  */
2742                 sc->port.pmf = 1;
2743                 mb();
2744         } else {
2745                 sc->port.pmf = 0;
2746         }
2747
2748         PMD_DRV_LOG(DEBUG, "pmf %d", sc->port.pmf);
2749
2750         if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2751                 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2752                         ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2753                         if (ncsi_oem_data_addr) {
2754                                 REG_WR(sc,
2755                                        (ncsi_oem_data_addr +
2756                                         offsetof(struct glob_ncsi_oem_data,
2757                                                  driver_version)), 0);
2758                         }
2759                 }
2760         }
2761 }
2762
2763 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2764 {
2765         int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2766         int abs_func;
2767         int vn;
2768
2769         if (BNX2X_NOMCP(sc)) {
2770                 return;         /* what should be the default bvalue in this case */
2771         }
2772
2773         /*
2774          * The formula for computing the absolute function number is...
2775          * For 2 port configuration (4 functions per port):
2776          *   abs_func = 2 * vn + SC_PORT + SC_PATH
2777          * For 4 port configuration (2 functions per port):
2778          *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2779          */
2780         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2781                 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2782                 if (abs_func >= E1H_FUNC_MAX) {
2783                         break;
2784                 }
2785                 sc->devinfo.mf_info.mf_config[vn] =
2786                     MFCFG_RD(sc, func_mf_config[abs_func].config);
2787         }
2788
2789         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2790             FUNC_MF_CFG_FUNC_DISABLED) {
2791                 PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
2792                 sc->flags |= BNX2X_MF_FUNC_DIS;
2793         } else {
2794                 PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
2795                 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2796         }
2797 }
2798
2799 /* acquire split MCP access lock register */
2800 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2801 {
2802         uint32_t j, val;
2803
2804         for (j = 0; j < 1000; j++) {
2805                 val = (1UL << 31);
2806                 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2807                 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2808                 if (val & (1L << 31))
2809                         break;
2810
2811                 DELAY(5000);
2812         }
2813
2814         if (!(val & (1L << 31))) {
2815                 PMD_DRV_LOG(NOTICE, "Cannot acquire MCP access lock register");
2816                 return -1;
2817         }
2818
2819         return 0;
2820 }
2821
2822 /* release split MCP access lock register */
2823 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2824 {
2825         REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2826 }
2827
2828 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2829 {
2830         int port = SC_PORT(sc);
2831         uint32_t ext_phy_config;
2832
2833         /* mark the failure */
2834         ext_phy_config =
2835             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2836
2837         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2838         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2839         SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2840                  ext_phy_config);
2841
2842         /* log the failure */
2843         PMD_DRV_LOG(INFO,
2844                     "Fan Failure has caused the driver to shutdown "
2845                     "the card to prevent permanent damage. "
2846                     "Please contact OEM Support for assistance");
2847
2848         rte_panic("Schedule task to handle fan failure");
2849 }
2850
2851 /* this function is called upon a link interrupt */
2852 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2853 {
2854         uint32_t pause_enabled = 0;
2855         struct host_port_stats *pstats;
2856         int cmng_fns;
2857
2858         /* Make sure that we are synced with the current statistics */
2859         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2860
2861         elink_link_update(&sc->link_params, &sc->link_vars);
2862
2863         if (sc->link_vars.link_up) {
2864
2865                 /* dropless flow control */
2866                 if (sc->dropless_fc) {
2867                         pause_enabled = 0;
2868
2869                         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2870                                 pause_enabled = 1;
2871                         }
2872
2873                         REG_WR(sc,
2874                                (BAR_USTRORM_INTMEM +
2875                                 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2876                                pause_enabled);
2877                 }
2878
2879                 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2880                         pstats = BNX2X_SP(sc, port_stats);
2881                         /* reset old mac stats */
2882                         memset(&(pstats->mac_stx[0]), 0,
2883                                sizeof(struct mac_stx));
2884                 }
2885
2886                 if (sc->state == BNX2X_STATE_OPEN) {
2887                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2888                 }
2889         }
2890
2891         if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2892                 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2893
2894                 if (cmng_fns != CMNG_FNS_NONE) {
2895                         bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2896                         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2897                 }
2898         }
2899
2900         bnx2x_link_report(sc);
2901
2902         if (IS_MF(sc)) {
2903                 bnx2x_link_sync_notify(sc);
2904         }
2905 }
2906
2907 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2908 {
2909         int port = SC_PORT(sc);
2910         uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2911             MISC_REG_AEU_MASK_ATTN_FUNC_0;
2912         uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2913             NIG_REG_MASK_INTERRUPT_PORT0;
2914         uint32_t aeu_mask;
2915         uint32_t nig_mask = 0;
2916         uint32_t reg_addr;
2917         uint32_t igu_acked;
2918         uint32_t cnt;
2919
2920         if (sc->attn_state & asserted) {
2921                 PMD_DRV_LOG(ERR, "IGU ERROR attn=0x%08x", asserted);
2922         }
2923
2924         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2925
2926         aeu_mask = REG_RD(sc, aeu_addr);
2927
2928         aeu_mask &= ~(asserted & 0x3ff);
2929
2930         REG_WR(sc, aeu_addr, aeu_mask);
2931
2932         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2933
2934         sc->attn_state |= asserted;
2935
2936         if (asserted & ATTN_HARD_WIRED_MASK) {
2937                 if (asserted & ATTN_NIG_FOR_FUNC) {
2938
2939                         /* save nig interrupt mask */
2940                         nig_mask = REG_RD(sc, nig_int_mask_addr);
2941
2942                         /* If nig_mask is not set, no need to call the update function */
2943                         if (nig_mask) {
2944                                 REG_WR(sc, nig_int_mask_addr, 0);
2945
2946                                 bnx2x_link_attn(sc);
2947                         }
2948
2949                         /* handle unicore attn? */
2950                 }
2951
2952                 if (asserted & ATTN_SW_TIMER_4_FUNC) {
2953                         PMD_DRV_LOG(DEBUG, "ATTN_SW_TIMER_4_FUNC!");
2954                 }
2955
2956                 if (asserted & GPIO_2_FUNC) {
2957                         PMD_DRV_LOG(DEBUG, "GPIO_2_FUNC!");
2958                 }
2959
2960                 if (asserted & GPIO_3_FUNC) {
2961                         PMD_DRV_LOG(DEBUG, "GPIO_3_FUNC!");
2962                 }
2963
2964                 if (asserted & GPIO_4_FUNC) {
2965                         PMD_DRV_LOG(DEBUG, "GPIO_4_FUNC!");
2966                 }
2967
2968                 if (port == 0) {
2969                         if (asserted & ATTN_GENERAL_ATTN_1) {
2970                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_1!");
2971                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
2972                         }
2973                         if (asserted & ATTN_GENERAL_ATTN_2) {
2974                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_2!");
2975                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
2976                         }
2977                         if (asserted & ATTN_GENERAL_ATTN_3) {
2978                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_3!");
2979                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
2980                         }
2981                 } else {
2982                         if (asserted & ATTN_GENERAL_ATTN_4) {
2983                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_4!");
2984                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
2985                         }
2986                         if (asserted & ATTN_GENERAL_ATTN_5) {
2987                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_5!");
2988                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
2989                         }
2990                         if (asserted & ATTN_GENERAL_ATTN_6) {
2991                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_6!");
2992                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
2993                         }
2994                 }
2995         }
2996         /* hardwired */
2997         if (sc->devinfo.int_block == INT_BLOCK_HC) {
2998                 reg_addr =
2999                     (HC_REG_COMMAND_REG + port * 32 +
3000                      COMMAND_REG_ATTN_BITS_SET);
3001         } else {
3002                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3003         }
3004
3005         PMD_DRV_LOG(DEBUG, "about to mask 0x%08x at %s addr 0x%08x",
3006                     asserted,
3007                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3008                     reg_addr);
3009         REG_WR(sc, reg_addr, asserted);
3010
3011         /* now set back the mask */
3012         if (asserted & ATTN_NIG_FOR_FUNC) {
3013                 /*
3014                  * Verify that IGU ack through BAR was written before restoring
3015                  * NIG mask. This loop should exit after 2-3 iterations max.
3016                  */
3017                 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3018                         cnt = 0;
3019
3020                         do {
3021                                 igu_acked =
3022                                     REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3023                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3024                                  && (++cnt < MAX_IGU_ATTN_ACK_TO));
3025
3026                         if (!igu_acked) {
3027                                 PMD_DRV_LOG(ERR,
3028                                             "Failed to verify IGU ack on time");
3029                         }
3030
3031                         mb();
3032                 }
3033
3034                 REG_WR(sc, nig_int_mask_addr, nig_mask);
3035
3036         }
3037 }
3038
3039 static void
3040 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3041                      __rte_unused const char *blk)
3042 {
3043         PMD_DRV_LOG(INFO, "%s%s", idx ? ", " : "", blk);
3044 }
3045
3046 static int
3047 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3048                               uint8_t print)
3049 {
3050         uint32_t cur_bit = 0;
3051         int i = 0;
3052
3053         for (i = 0; sig; i++) {
3054                 cur_bit = ((uint32_t) 0x1 << i);
3055                 if (sig & cur_bit) {
3056                         switch (cur_bit) {
3057                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3058                                 if (print)
3059                                         bnx2x_print_next_block(sc, par_num++,
3060                                                              "BRB");
3061                                 break;
3062                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3063                                 if (print)
3064                                         bnx2x_print_next_block(sc, par_num++,
3065                                                              "PARSER");
3066                                 break;
3067                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3068                                 if (print)
3069                                         bnx2x_print_next_block(sc, par_num++,
3070                                                              "TSDM");
3071                                 break;
3072                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3073                                 if (print)
3074                                         bnx2x_print_next_block(sc, par_num++,
3075                                                              "SEARCHER");
3076                                 break;
3077                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3078                                 if (print)
3079                                         bnx2x_print_next_block(sc, par_num++,
3080                                                              "TCM");
3081                                 break;
3082                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3083                                 if (print)
3084                                         bnx2x_print_next_block(sc, par_num++,
3085                                                              "TSEMI");
3086                                 break;
3087                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3088                                 if (print)
3089                                         bnx2x_print_next_block(sc, par_num++,
3090                                                              "XPB");
3091                                 break;
3092                         }
3093
3094                         /* Clear the bit */
3095                         sig &= ~cur_bit;
3096                 }
3097         }
3098
3099         return par_num;
3100 }
3101
3102 static int
3103 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3104                               uint8_t * global, uint8_t print)
3105 {
3106         int i = 0;
3107         uint32_t cur_bit = 0;
3108         for (i = 0; sig; i++) {
3109                 cur_bit = ((uint32_t) 0x1 << i);
3110                 if (sig & cur_bit) {
3111                         switch (cur_bit) {
3112                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3113                                 if (print)
3114                                         bnx2x_print_next_block(sc, par_num++,
3115                                                              "PBF");
3116                                 break;
3117                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3118                                 if (print)
3119                                         bnx2x_print_next_block(sc, par_num++,
3120                                                              "QM");
3121                                 break;
3122                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3123                                 if (print)
3124                                         bnx2x_print_next_block(sc, par_num++,
3125                                                              "TM");
3126                                 break;
3127                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3128                                 if (print)
3129                                         bnx2x_print_next_block(sc, par_num++,
3130                                                              "XSDM");
3131                                 break;
3132                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3133                                 if (print)
3134                                         bnx2x_print_next_block(sc, par_num++,
3135                                                              "XCM");
3136                                 break;
3137                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3138                                 if (print)
3139                                         bnx2x_print_next_block(sc, par_num++,
3140                                                              "XSEMI");
3141                                 break;
3142                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3143                                 if (print)
3144                                         bnx2x_print_next_block(sc, par_num++,
3145                                                              "DOORBELLQ");
3146                                 break;
3147                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3148                                 if (print)
3149                                         bnx2x_print_next_block(sc, par_num++,
3150                                                              "NIG");
3151                                 break;
3152                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3153                                 if (print)
3154                                         bnx2x_print_next_block(sc, par_num++,
3155                                                              "VAUX PCI CORE");
3156                                 *global = TRUE;
3157                                 break;
3158                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3159                                 if (print)
3160                                         bnx2x_print_next_block(sc, par_num++,
3161                                                              "DEBUG");
3162                                 break;
3163                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3164                                 if (print)
3165                                         bnx2x_print_next_block(sc, par_num++,
3166                                                              "USDM");
3167                                 break;
3168                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3169                                 if (print)
3170                                         bnx2x_print_next_block(sc, par_num++,
3171                                                              "UCM");
3172                                 break;
3173                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3174                                 if (print)
3175                                         bnx2x_print_next_block(sc, par_num++,
3176                                                              "USEMI");
3177                                 break;
3178                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3179                                 if (print)
3180                                         bnx2x_print_next_block(sc, par_num++,
3181                                                              "UPB");
3182                                 break;
3183                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3184                                 if (print)
3185                                         bnx2x_print_next_block(sc, par_num++,
3186                                                              "CSDM");
3187                                 break;
3188                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3189                                 if (print)
3190                                         bnx2x_print_next_block(sc, par_num++,
3191                                                              "CCM");
3192                                 break;
3193                         }
3194
3195                         /* Clear the bit */
3196                         sig &= ~cur_bit;
3197                 }
3198         }
3199
3200         return par_num;
3201 }
3202
3203 static int
3204 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3205                               uint8_t print)
3206 {
3207         uint32_t cur_bit = 0;
3208         int i = 0;
3209
3210         for (i = 0; sig; i++) {
3211                 cur_bit = ((uint32_t) 0x1 << i);
3212                 if (sig & cur_bit) {
3213                         switch (cur_bit) {
3214                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3215                                 if (print)
3216                                         bnx2x_print_next_block(sc, par_num++,
3217                                                              "CSEMI");
3218                                 break;
3219                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3220                                 if (print)
3221                                         bnx2x_print_next_block(sc, par_num++,
3222                                                              "PXP");
3223                                 break;
3224                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3225                                 if (print)
3226                                         bnx2x_print_next_block(sc, par_num++,
3227                                                              "PXPPCICLOCKCLIENT");
3228                                 break;
3229                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3230                                 if (print)
3231                                         bnx2x_print_next_block(sc, par_num++,
3232                                                              "CFC");
3233                                 break;
3234                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3235                                 if (print)
3236                                         bnx2x_print_next_block(sc, par_num++,
3237                                                              "CDU");
3238                                 break;
3239                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3240                                 if (print)
3241                                         bnx2x_print_next_block(sc, par_num++,
3242                                                              "DMAE");
3243                                 break;
3244                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3245                                 if (print)
3246                                         bnx2x_print_next_block(sc, par_num++,
3247                                                              "IGU");
3248                                 break;
3249                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3250                                 if (print)
3251                                         bnx2x_print_next_block(sc, par_num++,
3252                                                              "MISC");
3253                                 break;
3254                         }
3255
3256                         /* Clear the bit */
3257                         sig &= ~cur_bit;
3258                 }
3259         }
3260
3261         return par_num;
3262 }
3263
3264 static int
3265 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3266                               uint8_t * global, uint8_t print)
3267 {
3268         uint32_t cur_bit = 0;
3269         int i = 0;
3270
3271         for (i = 0; sig; i++) {
3272                 cur_bit = ((uint32_t) 0x1 << i);
3273                 if (sig & cur_bit) {
3274                         switch (cur_bit) {
3275                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3276                                 if (print)
3277                                         bnx2x_print_next_block(sc, par_num++,
3278                                                              "MCP ROM");
3279                                 *global = TRUE;
3280                                 break;
3281                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3282                                 if (print)
3283                                         bnx2x_print_next_block(sc, par_num++,
3284                                                              "MCP UMP RX");
3285                                 *global = TRUE;
3286                                 break;
3287                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3288                                 if (print)
3289                                         bnx2x_print_next_block(sc, par_num++,
3290                                                              "MCP UMP TX");
3291                                 *global = TRUE;
3292                                 break;
3293                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3294                                 if (print)
3295                                         bnx2x_print_next_block(sc, par_num++,
3296                                                              "MCP SCPAD");
3297                                 *global = TRUE;
3298                                 break;
3299                         }
3300
3301                         /* Clear the bit */
3302                         sig &= ~cur_bit;
3303                 }
3304         }
3305
3306         return par_num;
3307 }
3308
3309 static int
3310 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3311                               uint8_t print)
3312 {
3313         uint32_t cur_bit = 0;
3314         int i = 0;
3315
3316         for (i = 0; sig; i++) {
3317                 cur_bit = ((uint32_t) 0x1 << i);
3318                 if (sig & cur_bit) {
3319                         switch (cur_bit) {
3320                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3321                                 if (print)
3322                                         bnx2x_print_next_block(sc, par_num++,
3323                                                              "PGLUE_B");
3324                                 break;
3325                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3326                                 if (print)
3327                                         bnx2x_print_next_block(sc, par_num++,
3328                                                              "ATC");
3329                                 break;
3330                         }
3331
3332                         /* Clear the bit */
3333                         sig &= ~cur_bit;
3334                 }
3335         }
3336
3337         return par_num;
3338 }
3339
3340 static uint8_t
3341 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3342                 uint32_t * sig)
3343 {
3344         int par_num = 0;
3345
3346         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3347             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3348             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3349             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3350             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3351                 PMD_DRV_LOG(ERR,
3352                             "Parity error: HW block parity attention:"
3353                             "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3354                             (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3355                             (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3356                             (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3357                             (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3358                             (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3359
3360                 if (print)
3361                         PMD_DRV_LOG(INFO, "Parity errors detected in blocks: ");
3362
3363                 par_num =
3364                     bnx2x_check_blocks_with_parity0(sc, sig[0] &
3365                                                   HW_PRTY_ASSERT_SET_0,
3366                                                   par_num, print);
3367                 par_num =
3368                     bnx2x_check_blocks_with_parity1(sc, sig[1] &
3369                                                   HW_PRTY_ASSERT_SET_1,
3370                                                   par_num, global, print);
3371                 par_num =
3372                     bnx2x_check_blocks_with_parity2(sc, sig[2] &
3373                                                   HW_PRTY_ASSERT_SET_2,
3374                                                   par_num, print);
3375                 par_num =
3376                     bnx2x_check_blocks_with_parity3(sc, sig[3] &
3377                                                   HW_PRTY_ASSERT_SET_3,
3378                                                   par_num, global, print);
3379                 par_num =
3380                     bnx2x_check_blocks_with_parity4(sc, sig[4] &
3381                                                   HW_PRTY_ASSERT_SET_4,
3382                                                   par_num, print);
3383
3384                 if (print)
3385                         PMD_DRV_LOG(INFO, "");
3386
3387                 return TRUE;
3388         }
3389
3390         return FALSE;
3391 }
3392
3393 static uint8_t
3394 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3395 {
3396         struct attn_route attn = { {0} };
3397         int port = SC_PORT(sc);
3398
3399         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3400         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3401         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3402         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3403
3404         if (!CHIP_IS_E1x(sc))
3405                 attn.sig[4] =
3406                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3407
3408         return bnx2x_parity_attn(sc, global, print, attn.sig);
3409 }
3410
3411 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3412 {
3413         uint32_t val;
3414
3415         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3416                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3417                 PMD_DRV_LOG(INFO, "ERROR: PGLUE hw attention 0x%08x", val);
3418                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3419                         PMD_DRV_LOG(INFO,
3420                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3421                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3422                         PMD_DRV_LOG(INFO,
3423                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3424                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3425                         PMD_DRV_LOG(INFO,
3426                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3427                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3428                         PMD_DRV_LOG(INFO,
3429                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3430                 if (val &
3431                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3432                         PMD_DRV_LOG(INFO,
3433                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3434                 if (val &
3435                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3436                         PMD_DRV_LOG(INFO,
3437                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3438                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3439                         PMD_DRV_LOG(INFO,
3440                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3441                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3442                         PMD_DRV_LOG(INFO,
3443                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3444                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3445                         PMD_DRV_LOG(INFO,
3446                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3447         }
3448
3449         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3450                 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3451                 PMD_DRV_LOG(INFO, "ERROR: ATC hw attention 0x%08x", val);
3452                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3453                         PMD_DRV_LOG(INFO,
3454                                     "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3455                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3456                         PMD_DRV_LOG(INFO,
3457                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3458                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3459                         PMD_DRV_LOG(INFO,
3460                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3461                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3462                         PMD_DRV_LOG(INFO,
3463                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3464                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3465                         PMD_DRV_LOG(INFO,
3466                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3467                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3468                         PMD_DRV_LOG(INFO,
3469                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3470         }
3471
3472         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3473                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3474                 PMD_DRV_LOG(INFO,
3475                             "ERROR: FATAL parity attention set4 0x%08x",
3476                             (uint32_t) (attn &
3477                                         (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3478                                          |
3479                                          AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3480         }
3481 }
3482
3483 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3484 {
3485         int port = SC_PORT(sc);
3486
3487         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3488 }
3489
3490 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3491 {
3492         int port = SC_PORT(sc);
3493
3494         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3495 }
3496
3497 /*
3498  * called due to MCP event (on pmf):
3499  *   reread new bandwidth configuration
3500  *   configure FW
3501  *   notify others function about the change
3502  */
3503 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3504 {
3505         if (sc->link_vars.link_up) {
3506                 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3507                 bnx2x_link_sync_notify(sc);
3508         }
3509
3510         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3511 }
3512
3513 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3514 {
3515         bnx2x_config_mf_bw(sc);
3516         bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3517 }
3518
3519 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3520 {
3521         bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3522 }
3523
3524 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3525
3526 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3527 {
3528         struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3529
3530         strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3531                 ETH_STAT_INFO_VERSION_LEN);
3532
3533         sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3534                                               DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3535                                               ether_stat->mac_local + MAC_PAD,
3536                                               MAC_PAD, ETH_ALEN);
3537
3538         ether_stat->mtu_size = sc->mtu;
3539
3540         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3541         ether_stat->promiscuous_mode = 0;       // (flags & PROMISC) ? 1 : 0;
3542
3543         ether_stat->txq_size = sc->tx_ring_size;
3544         ether_stat->rxq_size = sc->rx_ring_size;
3545 }
3546
3547 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3548 {
3549         enum drv_info_opcode op_code;
3550         uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3551
3552         /* if drv_info version supported by MFW doesn't match - send NACK */
3553         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3554                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3555                 return;
3556         }
3557
3558         op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3559                    DRV_INFO_CONTROL_OP_CODE_SHIFT);
3560
3561         memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3562
3563         switch (op_code) {
3564         case ETH_STATS_OPCODE:
3565                 bnx2x_drv_info_ether_stat(sc);
3566                 break;
3567         case FCOE_STATS_OPCODE:
3568         case ISCSI_STATS_OPCODE:
3569         default:
3570                 /* if op code isn't supported - send NACK */
3571                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3572                 return;
3573         }
3574
3575         /*
3576          * If we got drv_info attn from MFW then these fields are defined in
3577          * shmem2 for sure
3578          */
3579         SHMEM2_WR(sc, drv_info_host_addr_lo,
3580                   U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3581         SHMEM2_WR(sc, drv_info_host_addr_hi,
3582                   U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3583
3584         bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3585 }
3586
3587 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3588 {
3589         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3590 /*
3591  * This is the only place besides the function initialization
3592  * where the sc->flags can change so it is done without any
3593  * locks
3594  */
3595                 if (sc->devinfo.
3596                     mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3597                         PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
3598                         sc->flags |= BNX2X_MF_FUNC_DIS;
3599                         bnx2x_e1h_disable(sc);
3600                 } else {
3601                         PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
3602                         sc->flags &= ~BNX2X_MF_FUNC_DIS;
3603                         bnx2x_e1h_enable(sc);
3604                 }
3605                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3606         }
3607
3608         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3609                 bnx2x_config_mf_bw(sc);
3610                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3611         }
3612
3613         /* Report results to MCP */
3614         if (dcc_event)
3615                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3616         else
3617                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3618 }
3619
3620 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3621 {
3622         int port = SC_PORT(sc);
3623         uint32_t val;
3624
3625         sc->port.pmf = 1;
3626
3627         /*
3628          * We need the mb() to ensure the ordering between the writing to
3629          * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3630          */
3631         mb();
3632
3633         /* enable nig attention */
3634         val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3635         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3636                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3637                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3638         } else if (!CHIP_IS_E1x(sc)) {
3639                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3640                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3641         }
3642
3643         bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3644 }
3645
3646 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3647 {
3648         char last_idx;
3649         int i, rc = 0;
3650         __rte_unused uint32_t row0, row1, row2, row3;
3651
3652         /* XSTORM */
3653         last_idx =
3654             REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3655         if (last_idx)
3656                 PMD_DRV_LOG(ERR, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3657
3658         /* print the asserts */
3659         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3660
3661                 row0 =
3662                     REG_RD(sc,
3663                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3664                 row1 =
3665                     REG_RD(sc,
3666                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3667                            4);
3668                 row2 =
3669                     REG_RD(sc,
3670                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3671                            8);
3672                 row3 =
3673                     REG_RD(sc,
3674                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3675                            12);
3676
3677                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3678                         PMD_DRV_LOG(ERR,
3679                                     "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3680                                     i, row3, row2, row1, row0);
3681                         rc++;
3682                 } else {
3683                         break;
3684                 }
3685         }
3686
3687         /* TSTORM */
3688         last_idx =
3689             REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3690         if (last_idx) {
3691                 PMD_DRV_LOG(ERR, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3692         }
3693
3694         /* print the asserts */
3695         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3696
3697                 row0 =
3698                     REG_RD(sc,
3699                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3700                 row1 =
3701                     REG_RD(sc,
3702                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3703                            4);
3704                 row2 =
3705                     REG_RD(sc,
3706                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3707                            8);
3708                 row3 =
3709                     REG_RD(sc,
3710                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3711                            12);
3712
3713                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3714                         PMD_DRV_LOG(ERR,
3715                                     "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3716                                     i, row3, row2, row1, row0);
3717                         rc++;
3718                 } else {
3719                         break;
3720                 }
3721         }
3722
3723         /* CSTORM */
3724         last_idx =
3725             REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3726         if (last_idx) {
3727                 PMD_DRV_LOG(ERR, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3728         }
3729
3730         /* print the asserts */
3731         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3732
3733                 row0 =
3734                     REG_RD(sc,
3735                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3736                 row1 =
3737                     REG_RD(sc,
3738                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3739                            4);
3740                 row2 =
3741                     REG_RD(sc,
3742                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3743                            8);
3744                 row3 =
3745                     REG_RD(sc,
3746                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3747                            12);
3748
3749                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3750                         PMD_DRV_LOG(ERR,
3751                                     "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3752                                     i, row3, row2, row1, row0);
3753                         rc++;
3754                 } else {
3755                         break;
3756                 }
3757         }
3758
3759         /* USTORM */
3760         last_idx =
3761             REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3762         if (last_idx) {
3763                 PMD_DRV_LOG(ERR, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3764         }
3765
3766         /* print the asserts */
3767         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3768
3769                 row0 =
3770                     REG_RD(sc,
3771                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3772                 row1 =
3773                     REG_RD(sc,
3774                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3775                            4);
3776                 row2 =
3777                     REG_RD(sc,
3778                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3779                            8);
3780                 row3 =
3781                     REG_RD(sc,
3782                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3783                            12);
3784
3785                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3786                         PMD_DRV_LOG(ERR,
3787                                     "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3788                                     i, row3, row2, row1, row0);
3789                         rc++;
3790                 } else {
3791                         break;
3792                 }
3793         }
3794
3795         return rc;
3796 }
3797
3798 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3799 {
3800         int func = SC_FUNC(sc);
3801         uint32_t val;
3802
3803         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3804
3805                 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3806
3807                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3808                         bnx2x_read_mf_cfg(sc);
3809                         sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3810                             MFCFG_RD(sc,
3811                                      func_mf_config[SC_ABS_FUNC(sc)].config);
3812                         val =
3813                             SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3814
3815                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3816                                 bnx2x_dcc_event(sc,
3817                                               (val &
3818                                                DRV_STATUS_DCC_EVENT_MASK));
3819
3820                         if (val & DRV_STATUS_SET_MF_BW)
3821                                 bnx2x_set_mf_bw(sc);
3822
3823                         if (val & DRV_STATUS_DRV_INFO_REQ)
3824                                 bnx2x_handle_drv_info_req(sc);
3825
3826                         if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3827                                 bnx2x_pmf_update(sc);
3828
3829                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3830                                 bnx2x_handle_eee_event(sc);
3831
3832                         if (sc->link_vars.periodic_flags &
3833                             ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3834                                 /* sync with link */
3835                                 sc->link_vars.periodic_flags &=
3836                                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3837                                 if (IS_MF(sc)) {
3838                                         bnx2x_link_sync_notify(sc);
3839                                 }
3840                                 bnx2x_link_report(sc);
3841                         }
3842
3843                         /*
3844                          * Always call it here: bnx2x_link_report() will
3845                          * prevent the link indication duplication.
3846                          */
3847                         bnx2x_link_status_update(sc);
3848
3849                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3850
3851                         PMD_DRV_LOG(ERR, "MC assert!");
3852                         bnx2x_mc_assert(sc);
3853                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3854                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3855                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3856                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3857                         rte_panic("MC assert!");
3858
3859                 } else if (attn & BNX2X_MCP_ASSERT) {
3860
3861                         PMD_DRV_LOG(ERR, "MCP assert!");
3862                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3863
3864                 } else {
3865                         PMD_DRV_LOG(ERR,
3866                                     "Unknown HW assert! (attn 0x%08x)", attn);
3867                 }
3868         }
3869
3870         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3871                 PMD_DRV_LOG(ERR, "LATCHED attention 0x%08x (masked)", attn);
3872                 if (attn & BNX2X_GRC_TIMEOUT) {
3873                         val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3874                         PMD_DRV_LOG(ERR, "GRC time-out 0x%08x", val);
3875                 }
3876                 if (attn & BNX2X_GRC_RSV) {
3877                         val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3878                         PMD_DRV_LOG(ERR, "GRC reserved 0x%08x", val);
3879                 }
3880                 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3881         }
3882 }
3883
3884 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3885 {
3886         int port = SC_PORT(sc);
3887         int reg_offset;
3888         uint32_t val0, mask0, val1, mask1;
3889         uint32_t val;
3890
3891         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3892                 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3893                 PMD_DRV_LOG(ERR, "CFC hw attention 0x%08x", val);
3894 /* CFC error attention */
3895                 if (val & 0x2) {
3896                         PMD_DRV_LOG(ERR, "FATAL error from CFC");
3897                 }
3898         }
3899
3900         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3901                 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3902                 PMD_DRV_LOG(ERR, "PXP hw attention-0 0x%08x", val);
3903 /* RQ_USDMDP_FIFO_OVERFLOW */
3904                 if (val & 0x18000) {
3905                         PMD_DRV_LOG(ERR, "FATAL error from PXP");
3906                 }
3907
3908                 if (!CHIP_IS_E1x(sc)) {
3909                         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3910                         PMD_DRV_LOG(ERR, "PXP hw attention-1 0x%08x", val);
3911                 }
3912         }
3913 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3914 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3915
3916         if (attn & AEU_PXP2_HW_INT_BIT) {
3917 /*  CQ47854 workaround do not panic on
3918  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3919  */
3920                 if (!CHIP_IS_E1x(sc)) {
3921                         mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3922                         val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3923                         mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3924                         val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3925                         /*
3926                          * If the only PXP2_EOP_ERROR_BIT is set in
3927                          * STS0 and STS1 - clear it
3928                          *
3929                          * probably we lose additional attentions between
3930                          * STS0 and STS_CLR0, in this case user will not
3931                          * be notified about them
3932                          */
3933                         if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3934                             !(val1 & mask1))
3935                                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3936
3937                         /* print the register, since no one can restore it */
3938                         PMD_DRV_LOG(ERR,
3939                                     "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
3940
3941                         /*
3942                          * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3943                          * then notify
3944                          */
3945                         if (val0 & PXP2_EOP_ERROR_BIT) {
3946                                 PMD_DRV_LOG(ERR, "PXP2_WR_PGLUE_EOP_ERROR");
3947
3948                                 /*
3949                                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
3950                                  * set then clear attention from PXP2 block without panic
3951                                  */
3952                                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
3953                                     ((val1 & mask1) == 0))
3954                                         attn &= ~AEU_PXP2_HW_INT_BIT;
3955                         }
3956                 }
3957         }
3958
3959         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3960                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3961                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3962
3963                 val = REG_RD(sc, reg_offset);
3964                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3965                 REG_WR(sc, reg_offset, val);
3966
3967                 PMD_DRV_LOG(ERR,
3968                             "FATAL HW block attention set2 0x%x",
3969                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
3970                 rte_panic("HW block attention set2");
3971         }
3972 }
3973
3974 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
3975 {
3976         int port = SC_PORT(sc);
3977         int reg_offset;
3978         uint32_t val;
3979
3980         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3981                 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
3982                 PMD_DRV_LOG(ERR, "DB hw attention 0x%08x", val);
3983 /* DORQ discard attention */
3984                 if (val & 0x2) {
3985                         PMD_DRV_LOG(ERR, "FATAL error from DORQ");
3986                 }
3987         }
3988
3989         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3990                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3991                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3992
3993                 val = REG_RD(sc, reg_offset);
3994                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3995                 REG_WR(sc, reg_offset, val);
3996
3997                 PMD_DRV_LOG(ERR,
3998                             "FATAL HW block attention set1 0x%08x",
3999                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4000                 rte_panic("HW block attention set1");
4001         }
4002 }
4003
4004 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4005 {
4006         int port = SC_PORT(sc);
4007         int reg_offset;
4008         uint32_t val;
4009
4010         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4011             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4012
4013         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4014                 val = REG_RD(sc, reg_offset);
4015                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4016                 REG_WR(sc, reg_offset, val);
4017
4018                 PMD_DRV_LOG(WARNING, "SPIO5 hw attention");
4019
4020 /* Fan failure attention */
4021                 elink_hw_reset_phy(&sc->link_params);
4022                 bnx2x_fan_failure(sc);
4023         }
4024
4025         if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4026                 elink_handle_module_detect_int(&sc->link_params);
4027         }
4028
4029         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4030                 val = REG_RD(sc, reg_offset);
4031                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4032                 REG_WR(sc, reg_offset, val);
4033
4034                 rte_panic("FATAL HW block attention set0 0x%lx",
4035                           (attn & HW_INTERRUT_ASSERT_SET_0));
4036         }
4037 }
4038
4039 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4040 {
4041         struct attn_route attn;
4042         struct attn_route *group_mask;
4043         int port = SC_PORT(sc);
4044         int index;
4045         uint32_t reg_addr;
4046         uint32_t val;
4047         uint32_t aeu_mask;
4048         uint8_t global = FALSE;
4049
4050         /*
4051          * Need to take HW lock because MCP or other port might also
4052          * try to handle this event.
4053          */
4054         bnx2x_acquire_alr(sc);
4055
4056         if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4057                 sc->recovery_state = BNX2X_RECOVERY_INIT;
4058
4059 /* disable HW interrupts */
4060                 bnx2x_int_disable(sc);
4061                 bnx2x_release_alr(sc);
4062                 return;
4063         }
4064
4065         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4066         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4067         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4068         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4069         if (!CHIP_IS_E1x(sc)) {
4070                 attn.sig[4] =
4071                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4072         } else {
4073                 attn.sig[4] = 0;
4074         }
4075
4076         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4077                 if (deasserted & (1 << index)) {
4078                         group_mask = &sc->attn_group[index];
4079
4080                         bnx2x_attn_int_deasserted4(sc,
4081                                                  attn.
4082                                                  sig[4] & group_mask->sig[4]);
4083                         bnx2x_attn_int_deasserted3(sc,
4084                                                  attn.
4085                                                  sig[3] & group_mask->sig[3]);
4086                         bnx2x_attn_int_deasserted1(sc,
4087                                                  attn.
4088                                                  sig[1] & group_mask->sig[1]);
4089                         bnx2x_attn_int_deasserted2(sc,
4090                                                  attn.
4091                                                  sig[2] & group_mask->sig[2]);
4092                         bnx2x_attn_int_deasserted0(sc,
4093                                                  attn.
4094                                                  sig[0] & group_mask->sig[0]);
4095                 }
4096         }
4097
4098         bnx2x_release_alr(sc);
4099
4100         if (sc->devinfo.int_block == INT_BLOCK_HC) {
4101                 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4102                             COMMAND_REG_ATTN_BITS_CLR);
4103         } else {
4104                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4105         }
4106
4107         val = ~deasserted;
4108         PMD_DRV_LOG(DEBUG,
4109                     "about to mask 0x%08x at %s addr 0x%08x", val,
4110                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4111                     reg_addr);
4112         REG_WR(sc, reg_addr, val);
4113
4114         if (~sc->attn_state & deasserted) {
4115                 PMD_DRV_LOG(ERR, "IGU error");
4116         }
4117
4118         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4119             MISC_REG_AEU_MASK_ATTN_FUNC_0;
4120
4121         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4122
4123         aeu_mask = REG_RD(sc, reg_addr);
4124
4125         aeu_mask |= (deasserted & 0x3ff);
4126
4127         REG_WR(sc, reg_addr, aeu_mask);
4128         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4129
4130         sc->attn_state &= ~deasserted;
4131 }
4132
4133 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4134 {
4135         /* read local copy of bits */
4136         uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4137         uint32_t attn_ack =
4138             le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4139         uint32_t attn_state = sc->attn_state;
4140
4141         /* look for changed bits */
4142         uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4143         uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4144
4145         PMD_DRV_LOG(DEBUG,
4146                     "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4147                     attn_bits, attn_ack, asserted, deasserted);
4148
4149         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4150                 PMD_DRV_LOG(ERR, "BAD attention state");
4151         }
4152
4153         /* handle bits that were raised */
4154         if (asserted) {
4155                 bnx2x_attn_int_asserted(sc, asserted);
4156         }
4157
4158         if (deasserted) {
4159                 bnx2x_attn_int_deasserted(sc, deasserted);
4160         }
4161 }
4162
4163 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4164 {
4165         struct host_sp_status_block *def_sb = sc->def_sb;
4166         uint16_t rc = 0;
4167
4168         mb();                   /* status block is written to by the chip */
4169
4170         if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4171                 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4172                 rc |= BNX2X_DEF_SB_ATT_IDX;
4173         }
4174
4175         if (sc->def_idx != def_sb->sp_sb.running_index) {
4176                 sc->def_idx = def_sb->sp_sb.running_index;
4177                 rc |= BNX2X_DEF_SB_IDX;
4178         }
4179
4180         mb();
4181
4182         return rc;
4183 }
4184
4185 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4186                                                           uint32_t cid)
4187 {
4188         return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4189 }
4190
4191 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4192 {
4193         struct ecore_mcast_ramrod_params rparam;
4194         int rc;
4195
4196         memset(&rparam, 0, sizeof(rparam));
4197
4198         rparam.mcast_obj = &sc->mcast_obj;
4199
4200         /* clear pending state for the last command */
4201         sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4202
4203         /* if there are pending mcast commands - send them */
4204         if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4205                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4206                 if (rc < 0) {
4207                         PMD_DRV_LOG(INFO,
4208                                     "Failed to send pending mcast commands (%d)",
4209                                     rc);
4210                 }
4211         }
4212 }
4213
4214 static void
4215 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4216 {
4217         unsigned long ramrod_flags = 0;
4218         int rc = 0;
4219         uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4220         struct ecore_vlan_mac_obj *vlan_mac_obj;
4221
4222         /* always push next commands out, don't wait here */
4223         bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4224
4225         switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4226         case ECORE_FILTER_MAC_PENDING:
4227                 PMD_DRV_LOG(DEBUG, "Got SETUP_MAC completions");
4228                 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4229                 break;
4230
4231         case ECORE_FILTER_MCAST_PENDING:
4232                 PMD_DRV_LOG(DEBUG, "Got SETUP_MCAST completions");
4233                 bnx2x_handle_mcast_eqe(sc);
4234                 return;
4235
4236         default:
4237                 PMD_DRV_LOG(NOTICE, "Unsupported classification command: %d",
4238                             elem->message.data.eth_event.echo);
4239                 return;
4240         }
4241
4242         rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4243
4244         if (rc < 0) {
4245                 PMD_DRV_LOG(NOTICE, "Failed to schedule new commands (%d)", rc);
4246         } else if (rc > 0) {
4247                 PMD_DRV_LOG(DEBUG, "Scheduled next pending commands...");
4248         }
4249 }
4250
4251 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4252 {
4253         bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4254
4255         /* send rx_mode command again if was requested */
4256         if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4257                 bnx2x_set_storm_rx_mode(sc);
4258         }
4259 }
4260
4261 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4262 {
4263         storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4264         wmb();                  /* keep prod updates ordered */
4265 }
4266
4267 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4268 {
4269         uint16_t hw_cons, sw_cons, sw_prod;
4270         union event_ring_elem *elem;
4271         uint8_t echo;
4272         uint32_t cid;
4273         uint8_t opcode;
4274         int spqe_cnt = 0;
4275         struct ecore_queue_sp_obj *q_obj;
4276         struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4277         struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4278
4279         hw_cons = le16toh(*sc->eq_cons_sb);
4280
4281         /*
4282          * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4283          * when we get to the next-page we need to adjust so the loop
4284          * condition below will be met. The next element is the size of a
4285          * regular element and hence incrementing by 1
4286          */
4287         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4288                 hw_cons++;
4289         }
4290
4291         /*
4292          * This function may never run in parallel with itself for a
4293          * specific sc and no need for a read memory barrier here.
4294          */
4295         sw_cons = sc->eq_cons;
4296         sw_prod = sc->eq_prod;
4297
4298         for (;
4299              sw_cons != hw_cons;
4300              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4301
4302                 elem = &sc->eq[EQ_DESC(sw_cons)];
4303
4304 /* elem CID originates from FW, actually LE */
4305                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4306                 opcode = elem->message.opcode;
4307
4308 /* handle eq element */
4309                 switch (opcode) {
4310                 case EVENT_RING_OPCODE_STAT_QUERY:
4311                         PMD_DEBUG_PERIODIC_LOG(DEBUG, "got statistics completion event %d",
4312                                     sc->stats_comp++);
4313                         /* nothing to do with stats comp */
4314                         goto next_spqe;
4315
4316                 case EVENT_RING_OPCODE_CFC_DEL:
4317                         /* handle according to cid range */
4318                         /* we may want to verify here that the sc state is HALTING */
4319                         PMD_DRV_LOG(DEBUG, "got delete ramrod for MULTI[%d]",
4320                                     cid);
4321                         q_obj = bnx2x_cid_to_q_obj(sc, cid);
4322                         if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4323                                 break;
4324                         }
4325                         goto next_spqe;
4326
4327                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4328                         PMD_DRV_LOG(DEBUG, "got STOP TRAFFIC");
4329                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4330                                 break;
4331                         }
4332                         goto next_spqe;
4333
4334                 case EVENT_RING_OPCODE_START_TRAFFIC:
4335                         PMD_DRV_LOG(DEBUG, "got START TRAFFIC");
4336                         if (f_obj->complete_cmd
4337                             (sc, f_obj, ECORE_F_CMD_TX_START)) {
4338                                 break;
4339                         }
4340                         goto next_spqe;
4341
4342                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4343                         echo = elem->message.data.function_update_event.echo;
4344                         if (echo == SWITCH_UPDATE) {
4345                                 PMD_DRV_LOG(DEBUG,
4346                                             "got FUNC_SWITCH_UPDATE ramrod");
4347                                 if (f_obj->complete_cmd(sc, f_obj,
4348                                                         ECORE_F_CMD_SWITCH_UPDATE))
4349                                 {
4350                                         break;
4351                                 }
4352                         } else {
4353                                 PMD_DRV_LOG(DEBUG,
4354                                             "AFEX: ramrod completed FUNCTION_UPDATE");
4355                                 f_obj->complete_cmd(sc, f_obj,
4356                                                     ECORE_F_CMD_AFEX_UPDATE);
4357                         }
4358                         goto next_spqe;
4359
4360                 case EVENT_RING_OPCODE_FORWARD_SETUP:
4361                         q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4362                         if (q_obj->complete_cmd(sc, q_obj,
4363                                                 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4364                                 break;
4365                         }
4366                         goto next_spqe;
4367
4368                 case EVENT_RING_OPCODE_FUNCTION_START:
4369                         PMD_DRV_LOG(DEBUG, "got FUNC_START ramrod");
4370                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4371                                 break;
4372                         }
4373                         goto next_spqe;
4374
4375                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4376                         PMD_DRV_LOG(DEBUG, "got FUNC_STOP ramrod");
4377                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4378                                 break;
4379                         }
4380                         goto next_spqe;
4381                 }
4382
4383                 switch (opcode | sc->state) {
4384                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4385                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4386                         cid =
4387                             elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4388                         PMD_DRV_LOG(DEBUG, "got RSS_UPDATE ramrod. CID %d",
4389                                     cid);
4390                         rss_raw->clear_pending(rss_raw);
4391                         break;
4392
4393                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4394                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4395                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4396                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4397                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4398                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4399                         PMD_DRV_LOG(DEBUG,
4400                                     "got (un)set mac ramrod");
4401                         bnx2x_handle_classification_eqe(sc, elem);
4402                         break;
4403
4404                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4405                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4406                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4407                         PMD_DRV_LOG(DEBUG,
4408                                     "got mcast ramrod");
4409                         bnx2x_handle_mcast_eqe(sc);
4410                         break;
4411
4412                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4413                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4414                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4415                         PMD_DRV_LOG(DEBUG,
4416                                     "got rx_mode ramrod");
4417                         bnx2x_handle_rx_mode_eqe(sc);
4418                         break;
4419
4420                 default:
4421                         /* unknown event log error and continue */
4422                         PMD_DRV_LOG(INFO, "Unknown EQ event %d, sc->state 0x%x",
4423                                     elem->message.opcode, sc->state);
4424                 }
4425
4426 next_spqe:
4427                 spqe_cnt++;
4428         }                       /* for */
4429
4430         mb();
4431         atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4432
4433         sc->eq_cons = sw_cons;
4434         sc->eq_prod = sw_prod;
4435
4436         /* make sure that above mem writes were issued towards the memory */
4437         wmb();
4438
4439         /* update producer */
4440         bnx2x_update_eq_prod(sc, sc->eq_prod);
4441 }
4442
4443 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4444 {
4445         uint16_t status;
4446         int rc = 0;
4447
4448         /* what work needs to be performed? */
4449         status = bnx2x_update_dsb_idx(sc);
4450
4451         /* HW attentions */
4452         if (status & BNX2X_DEF_SB_ATT_IDX) {
4453                 PMD_DRV_LOG(DEBUG, "---> ATTN INTR <---");
4454                 bnx2x_attn_int(sc);
4455                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4456                 rc = 1;
4457         }
4458
4459         /* SP events: STAT_QUERY and others */
4460         if (status & BNX2X_DEF_SB_IDX) {
4461 /* handle EQ completions */
4462                 PMD_DEBUG_PERIODIC_LOG(DEBUG, "---> EQ INTR <---");
4463                 bnx2x_eq_int(sc);
4464                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4465                            le16toh(sc->def_idx), IGU_INT_NOP, 1);
4466                 status &= ~BNX2X_DEF_SB_IDX;
4467         }
4468
4469         /* if status is non zero then something went wrong */
4470         if (unlikely(status)) {
4471                 PMD_DRV_LOG(INFO,
4472                             "Got an unknown SP interrupt! (0x%04x)", status);
4473         }
4474
4475         /* ack status block only if something was actually handled */
4476         bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4477                    le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4478
4479         return rc;
4480 }
4481
4482 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp)
4483 {
4484         struct bnx2x_softc *sc = fp->sc;
4485         uint8_t more_rx = FALSE;
4486
4487         PMD_DRV_LOG(DEBUG, "---> FP TASK QUEUE (%d) <--", fp->index);
4488
4489         /* update the fastpath index */
4490         bnx2x_update_fp_sb_idx(fp);
4491
4492         if (scan_fp) {
4493                 if (bnx2x_has_rx_work(fp)) {
4494                         more_rx = bnx2x_rxeof(sc, fp);
4495                 }
4496
4497                 if (more_rx) {
4498                         /* still more work to do */
4499                         bnx2x_handle_fp_tq(fp, scan_fp);
4500                         return;
4501                 }
4502         }
4503
4504         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4505                    le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4506 }
4507
4508 /*
4509  * Legacy interrupt entry point.
4510  *
4511  * Verifies that the controller generated the interrupt and
4512  * then calls a separate routine to handle the various
4513  * interrupt causes: link, RX, and TX.
4514  */
4515 int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp)
4516 {
4517         struct bnx2x_fastpath *fp;
4518         uint32_t status, mask;
4519         int i, rc = 0;
4520
4521         /*
4522          * 0 for ustorm, 1 for cstorm
4523          * the bits returned from ack_int() are 0-15
4524          * bit 0 = attention status block
4525          * bit 1 = fast path status block
4526          * a mask of 0x2 or more = tx/rx event
4527          * a mask of 1 = slow path event
4528          */
4529
4530         status = bnx2x_ack_int(sc);
4531
4532         /* the interrupt is not for us */
4533         if (unlikely(status == 0)) {
4534                 return 0;
4535         }
4536
4537         PMD_DEBUG_PERIODIC_LOG(DEBUG, "Interrupt status 0x%04x", status);
4538         //bnx2x_dump_status_block(sc);
4539
4540         FOR_EACH_ETH_QUEUE(sc, i) {
4541                 fp = &sc->fp[i];
4542                 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4543                 if (status & mask) {
4544                         bnx2x_handle_fp_tq(fp, scan_fp);
4545                         status &= ~mask;
4546                 }
4547         }
4548
4549         if (unlikely(status & 0x1)) {
4550                 rc = bnx2x_handle_sp_tq(sc);
4551                 status &= ~0x1;
4552         }
4553
4554         if (unlikely(status)) {
4555                 PMD_DRV_LOG(WARNING,
4556                             "Unexpected fastpath status (0x%08x)!", status);
4557         }
4558
4559         return rc;
4560 }
4561
4562 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4563 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4564 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4565 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4566 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4567 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4568 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4569 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4570 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4571
4572 static struct
4573 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4574         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4575         .init_hw_cmn = bnx2x_init_hw_common,
4576         .init_hw_port = bnx2x_init_hw_port,
4577         .init_hw_func = bnx2x_init_hw_func,
4578
4579         .reset_hw_cmn = bnx2x_reset_common,
4580         .reset_hw_port = bnx2x_reset_port,
4581         .reset_hw_func = bnx2x_reset_func,
4582
4583         .init_fw = bnx2x_init_firmware,
4584         .release_fw = bnx2x_release_firmware,
4585 };
4586
4587 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4588 {
4589         sc->dmae_ready = 0;
4590
4591         PMD_INIT_FUNC_TRACE();
4592
4593         ecore_init_func_obj(sc,
4594                             &sc->func_obj,
4595                             BNX2X_SP(sc, func_rdata),
4596                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4597                             BNX2X_SP(sc, func_afex_rdata),
4598                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4599                             &bnx2x_func_sp_drv);
4600 }
4601
4602 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4603 {
4604         struct ecore_func_state_params func_params = { NULL };
4605         int rc;
4606
4607         PMD_INIT_FUNC_TRACE();
4608
4609         /* prepare the parameters for function state transitions */
4610         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4611
4612         func_params.f_obj = &sc->func_obj;
4613         func_params.cmd = ECORE_F_CMD_HW_INIT;
4614
4615         func_params.params.hw_init.load_phase = load_code;
4616
4617         /*
4618          * Via a plethora of function pointers, we will eventually reach
4619          * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4620          */
4621         rc = ecore_func_state_change(sc, &func_params);
4622
4623         return rc;
4624 }
4625
4626 static void
4627 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4628 {
4629         uint32_t i;
4630
4631         if (!(len % 4) && !(addr % 4)) {
4632                 for (i = 0; i < len; i += 4) {
4633                         REG_WR(sc, (addr + i), fill);
4634                 }
4635         } else {
4636                 for (i = 0; i < len; i++) {
4637                         REG_WR8(sc, (addr + i), fill);
4638                 }
4639         }
4640 }
4641
4642 /* writes FP SP data to FW - data_size in dwords */
4643 static void
4644 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4645                   uint32_t data_size)
4646 {
4647         uint32_t index;
4648
4649         for (index = 0; index < data_size; index++) {
4650                 REG_WR(sc,
4651                        (BAR_CSTRORM_INTMEM +
4652                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4653                         (sizeof(uint32_t) * index)), *(sb_data_p + index));
4654         }
4655 }
4656
4657 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4658 {
4659         struct hc_status_block_data_e2 sb_data_e2;
4660         struct hc_status_block_data_e1x sb_data_e1x;
4661         uint32_t *sb_data_p;
4662         uint32_t data_size = 0;
4663
4664         if (!CHIP_IS_E1x(sc)) {
4665                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4666                 sb_data_e2.common.state = SB_DISABLED;
4667                 sb_data_e2.common.p_func.vf_valid = FALSE;
4668                 sb_data_p = (uint32_t *) & sb_data_e2;
4669                 data_size = (sizeof(struct hc_status_block_data_e2) /
4670                              sizeof(uint32_t));
4671         } else {
4672                 memset(&sb_data_e1x, 0,
4673                        sizeof(struct hc_status_block_data_e1x));
4674                 sb_data_e1x.common.state = SB_DISABLED;
4675                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4676                 sb_data_p = (uint32_t *) & sb_data_e1x;
4677                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4678                              sizeof(uint32_t));
4679         }
4680
4681         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4682
4683         bnx2x_fill(sc,
4684                  (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4685                  CSTORM_STATUS_BLOCK_SIZE);
4686         bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4687                  0, CSTORM_SYNC_BLOCK_SIZE);
4688 }
4689
4690 static void
4691 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4692                   struct hc_sp_status_block_data *sp_sb_data)
4693 {
4694         uint32_t i;
4695
4696         for (i = 0;
4697              i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4698              i++) {
4699                 REG_WR(sc,
4700                        (BAR_CSTRORM_INTMEM +
4701                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4702                         (i * sizeof(uint32_t))),
4703                        *((uint32_t *) sp_sb_data + i));
4704         }
4705 }
4706
4707 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4708 {
4709         struct hc_sp_status_block_data sp_sb_data;
4710
4711         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4712
4713         sp_sb_data.state = SB_DISABLED;
4714         sp_sb_data.p_func.vf_valid = FALSE;
4715
4716         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4717
4718         bnx2x_fill(sc,
4719                  (BAR_CSTRORM_INTMEM +
4720                   CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4721                  0, CSTORM_SP_STATUS_BLOCK_SIZE);
4722         bnx2x_fill(sc,
4723                  (BAR_CSTRORM_INTMEM +
4724                   CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4725                  0, CSTORM_SP_SYNC_BLOCK_SIZE);
4726 }
4727
4728 static void
4729 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4730                              int igu_seg_id)
4731 {
4732         hc_sm->igu_sb_id = igu_sb_id;
4733         hc_sm->igu_seg_id = igu_seg_id;
4734         hc_sm->timer_value = 0xFF;
4735         hc_sm->time_to_expire = 0xFFFFFFFF;
4736 }
4737
4738 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4739 {
4740         /* zero out state machine indices */
4741
4742         /* rx indices */
4743         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4744
4745         /* tx indices */
4746         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4747         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4748         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4749         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4750
4751         /* map indices */
4752
4753         /* rx indices */
4754         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4755             (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4756
4757         /* tx indices */
4758         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4759             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4760         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4761             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4762         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4763             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4764         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4765             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4766 }
4767
4768 static void
4769 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4770             uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4771 {
4772         struct hc_status_block_data_e2 sb_data_e2;
4773         struct hc_status_block_data_e1x sb_data_e1x;
4774         struct hc_status_block_sm *hc_sm_p;
4775         uint32_t *sb_data_p;
4776         int igu_seg_id;
4777         int data_size;
4778
4779         if (CHIP_INT_MODE_IS_BC(sc)) {
4780                 igu_seg_id = HC_SEG_ACCESS_NORM;
4781         } else {
4782                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4783         }
4784
4785         bnx2x_zero_fp_sb(sc, fw_sb_id);
4786
4787         if (!CHIP_IS_E1x(sc)) {
4788                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4789                 sb_data_e2.common.state = SB_ENABLED;
4790                 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4791                 sb_data_e2.common.p_func.vf_id = vfid;
4792                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4793                 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4794                 sb_data_e2.common.same_igu_sb_1b = TRUE;
4795                 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4796                 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4797                 hc_sm_p = sb_data_e2.common.state_machine;
4798                 sb_data_p = (uint32_t *) & sb_data_e2;
4799                 data_size = (sizeof(struct hc_status_block_data_e2) /
4800                              sizeof(uint32_t));
4801                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4802         } else {
4803                 memset(&sb_data_e1x, 0,
4804                        sizeof(struct hc_status_block_data_e1x));
4805                 sb_data_e1x.common.state = SB_ENABLED;
4806                 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4807                 sb_data_e1x.common.p_func.vf_id = 0xff;
4808                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4809                 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4810                 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4811                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4812                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4813                 hc_sm_p = sb_data_e1x.common.state_machine;
4814                 sb_data_p = (uint32_t *) & sb_data_e1x;
4815                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4816                              sizeof(uint32_t));
4817                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4818         }
4819
4820         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4821         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4822
4823         /* write indices to HW - PCI guarantees endianity of regpairs */
4824         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4825 }
4826
4827 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4828 {
4829         if (CHIP_IS_E1x(fp->sc)) {
4830                 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4831         } else {
4832                 return fp->cl_id;
4833         }
4834 }
4835
4836 static uint32_t
4837 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4838 {
4839         uint32_t offset = BAR_USTRORM_INTMEM;
4840
4841         if (IS_VF(sc)) {
4842                 return PXP_VF_ADDR_USDM_QUEUES_START +
4843                         (sc->acquire_resp.resc.hw_qid[fp->index] *
4844                          sizeof(struct ustorm_queue_zone_data));
4845         } else if (!CHIP_IS_E1x(sc)) {
4846                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4847         } else {
4848                 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4849         }
4850
4851         return offset;
4852 }
4853
4854 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4855 {
4856         struct bnx2x_fastpath *fp = &sc->fp[idx];
4857         uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4858         unsigned long q_type = 0;
4859         int cos;
4860
4861         fp->sc = sc;
4862         fp->index = idx;
4863
4864         fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4865         fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4866
4867         if (CHIP_IS_E1x(sc))
4868                 fp->cl_id = SC_L_ID(sc) + idx;
4869         else
4870 /* want client ID same as IGU SB ID for non-E1 */
4871                 fp->cl_id = fp->igu_sb_id;
4872         fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4873
4874         /* setup sb indices */
4875         if (!CHIP_IS_E1x(sc)) {
4876                 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4877                 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4878         } else {
4879                 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4880                 fp->sb_running_index =
4881                     fp->status_block.e1x_sb->sb.running_index;
4882         }
4883
4884         /* init shortcut */
4885         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4886
4887         fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4888
4889         for (cos = 0; cos < sc->max_cos; cos++) {
4890                 cids[cos] = idx;
4891         }
4892         fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4893
4894         /* nothing more for a VF to do */
4895         if (IS_VF(sc)) {
4896                 return;
4897         }
4898
4899         bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4900                     fp->fw_sb_id, fp->igu_sb_id);
4901
4902         bnx2x_update_fp_sb_idx(fp);
4903
4904         /* Configure Queue State object */
4905         bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4906         bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4907
4908         ecore_init_queue_obj(sc,
4909                              &sc->sp_objs[idx].q_obj,
4910                              fp->cl_id,
4911                              cids,
4912                              sc->max_cos,
4913                              SC_FUNC(sc),
4914                              BNX2X_SP(sc, q_rdata),
4915                              (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
4916                              q_type);
4917
4918         /* configure classification DBs */
4919         ecore_init_mac_obj(sc,
4920                            &sc->sp_objs[idx].mac_obj,
4921                            fp->cl_id,
4922                            idx,
4923                            SC_FUNC(sc),
4924                            BNX2X_SP(sc, mac_rdata),
4925                            (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
4926                            ECORE_FILTER_MAC_PENDING, &sc->sp_state,
4927                            ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
4928 }
4929
4930 static void
4931 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
4932                    uint16_t rx_bd_prod, uint16_t rx_cq_prod)
4933 {
4934         union ustorm_eth_rx_producers rx_prods;
4935         uint32_t i;
4936
4937         /* update producers */
4938         rx_prods.prod.bd_prod = rx_bd_prod;
4939         rx_prods.prod.cqe_prod = rx_cq_prod;
4940         rx_prods.prod.reserved = 0;
4941
4942         /*
4943          * Make sure that the BD and SGE data is updated before updating the
4944          * producers since FW might read the BD/SGE right after the producer
4945          * is updated.
4946          * This is only applicable for weak-ordered memory model archs such
4947          * as IA-64. The following barrier is also mandatory since FW will
4948          * assumes BDs must have buffers.
4949          */
4950         wmb();
4951
4952         for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
4953                 REG_WR(sc,
4954                        (fp->ustorm_rx_prods_offset + (i * 4)),
4955                        rx_prods.raw_data[i]);
4956         }
4957
4958         wmb();                  /* keep prod updates ordered */
4959 }
4960
4961 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
4962 {
4963         struct bnx2x_fastpath *fp;
4964         int i;
4965         struct bnx2x_rx_queue *rxq;
4966
4967         for (i = 0; i < sc->num_queues; i++) {
4968                 fp = &sc->fp[i];
4969                 rxq = sc->rx_queues[fp->index];
4970                 if (!rxq) {
4971                         PMD_RX_LOG(ERR, "RX queue is NULL");
4972                         return;
4973                 }
4974
4975                 rxq->rx_bd_head = 0;
4976                 rxq->rx_bd_tail = rxq->nb_rx_desc;
4977                 rxq->rx_cq_head = 0;
4978                 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
4979                 *fp->rx_cq_cons_sb = 0;
4980
4981                 /*
4982                  * Activate the BD ring...
4983                  * Warning, this will generate an interrupt (to the TSTORM)
4984                  * so this can only be done after the chip is initialized
4985                  */
4986                 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
4987
4988                 if (i != 0) {
4989                         continue;
4990                 }
4991         }
4992 }
4993
4994 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
4995 {
4996         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
4997
4998         fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
4999         fp->tx_db.data.zero_fill1 = 0;
5000         fp->tx_db.data.prod = 0;
5001
5002         if (!txq) {
5003                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5004                 return;
5005         }
5006
5007         txq->tx_pkt_tail = 0;
5008         txq->tx_pkt_head = 0;
5009         txq->tx_bd_tail = 0;
5010         txq->tx_bd_head = 0;
5011 }
5012
5013 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5014 {
5015         int i;
5016
5017         for (i = 0; i < sc->num_queues; i++) {
5018                 bnx2x_init_tx_ring_one(&sc->fp[i]);
5019         }
5020 }
5021
5022 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5023 {
5024         struct host_sp_status_block *def_sb = sc->def_sb;
5025         rte_iova_t mapping = sc->def_sb_dma.paddr;
5026         int igu_sp_sb_index;
5027         int igu_seg_id;
5028         int port = SC_PORT(sc);
5029         int func = SC_FUNC(sc);
5030         int reg_offset, reg_offset_en5;
5031         uint64_t section;
5032         int index, sindex;
5033         struct hc_sp_status_block_data sp_sb_data;
5034
5035         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5036
5037         if (CHIP_INT_MODE_IS_BC(sc)) {
5038                 igu_sp_sb_index = DEF_SB_IGU_ID;
5039                 igu_seg_id = HC_SEG_ACCESS_DEF;
5040         } else {
5041                 igu_sp_sb_index = sc->igu_dsb_id;
5042                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5043         }
5044
5045         /* attentions */
5046         section = ((uint64_t) mapping +
5047                    offsetof(struct host_sp_status_block, atten_status_block));
5048         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5049         sc->attn_state = 0;
5050
5051         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5052             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5053
5054         reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5055             MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5056
5057         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5058 /* take care of sig[0]..sig[4] */
5059                 for (sindex = 0; sindex < 4; sindex++) {
5060                         sc->attn_group[index].sig[sindex] =
5061                             REG_RD(sc,
5062                                    (reg_offset + (sindex * 0x4) +
5063                                     (0x10 * index)));
5064                 }
5065
5066                 if (!CHIP_IS_E1x(sc)) {
5067                         /*
5068                          * enable5 is separate from the rest of the registers,
5069                          * and the address skip is 4 and not 16 between the
5070                          * different groups
5071                          */
5072                         sc->attn_group[index].sig[4] =
5073                             REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5074                 } else {
5075                         sc->attn_group[index].sig[4] = 0;
5076                 }
5077         }
5078
5079         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5080                 reg_offset =
5081                     port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5082                 REG_WR(sc, reg_offset, U64_LO(section));
5083                 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5084         } else if (!CHIP_IS_E1x(sc)) {
5085                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5086                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5087         }
5088
5089         section = ((uint64_t) mapping +
5090                    offsetof(struct host_sp_status_block, sp_sb));
5091
5092         bnx2x_zero_sp_sb(sc);
5093
5094         /* PCI guarantees endianity of regpair */
5095         sp_sb_data.state = SB_ENABLED;
5096         sp_sb_data.host_sb_addr.lo = U64_LO(section);
5097         sp_sb_data.host_sb_addr.hi = U64_HI(section);
5098         sp_sb_data.igu_sb_id = igu_sp_sb_index;
5099         sp_sb_data.igu_seg_id = igu_seg_id;
5100         sp_sb_data.p_func.pf_id = func;
5101         sp_sb_data.p_func.vnic_id = SC_VN(sc);
5102         sp_sb_data.p_func.vf_id = 0xff;
5103
5104         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5105
5106         bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5107 }
5108
5109 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5110 {
5111         atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5112         sc->spq_prod_idx = 0;
5113         sc->dsb_sp_prod =
5114             &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5115         sc->spq_prod_bd = sc->spq;
5116         sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5117 }
5118
5119 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5120 {
5121         union event_ring_elem *elem;
5122         int i;
5123
5124         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5125                 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5126
5127                 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5128                                                          BNX2X_PAGE_SIZE *
5129                                                          (i % NUM_EQ_PAGES)));
5130                 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5131                                                          BNX2X_PAGE_SIZE *
5132                                                          (i % NUM_EQ_PAGES)));
5133         }
5134
5135         sc->eq_cons = 0;
5136         sc->eq_prod = NUM_EQ_DESC;
5137         sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5138
5139         atomic_store_rel_long(&sc->eq_spq_left,
5140                               (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5141                                    NUM_EQ_DESC) - 1));
5142 }
5143
5144 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5145 {
5146         int i;
5147
5148         if (IS_MF_SI(sc)) {
5149 /*
5150  * In switch independent mode, the TSTORM needs to accept
5151  * packets that failed classification, since approximate match
5152  * mac addresses aren't written to NIG LLH.
5153  */
5154                 REG_WR8(sc,
5155                         (BAR_TSTRORM_INTMEM +
5156                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5157         } else
5158                 REG_WR8(sc,
5159                         (BAR_TSTRORM_INTMEM +
5160                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5161
5162         /*
5163          * Zero this manually as its initialization is currently missing
5164          * in the initTool.
5165          */
5166         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5167                 REG_WR(sc,
5168                        (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5169                        0);
5170         }
5171
5172         if (!CHIP_IS_E1x(sc)) {
5173                 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5174                         CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5175                         HC_IGU_NBC_MODE);
5176         }
5177 }
5178
5179 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5180 {
5181         switch (load_code) {
5182         case FW_MSG_CODE_DRV_LOAD_COMMON:
5183         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5184                 bnx2x_init_internal_common(sc);
5185                 /* no break */
5186
5187         case FW_MSG_CODE_DRV_LOAD_PORT:
5188                 /* nothing to do */
5189                 /* no break */
5190
5191         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5192                 /* internal memory per function is initialized inside bnx2x_pf_init */
5193                 break;
5194
5195         default:
5196                 PMD_DRV_LOG(NOTICE, "Unknown load_code (0x%x) from MCP",
5197                             load_code);
5198                 break;
5199         }
5200 }
5201
5202 static void
5203 storm_memset_func_cfg(struct bnx2x_softc *sc,
5204                       struct tstorm_eth_function_common_config *tcfg,
5205                       uint16_t abs_fid)
5206 {
5207         uint32_t addr;
5208         size_t size;
5209
5210         addr = (BAR_TSTRORM_INTMEM +
5211                 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5212         size = sizeof(struct tstorm_eth_function_common_config);
5213         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5214 }
5215
5216 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5217 {
5218         struct tstorm_eth_function_common_config tcfg = { 0 };
5219
5220         if (CHIP_IS_E1x(sc)) {
5221                 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5222         }
5223
5224         /* Enable the function in the FW */
5225         storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5226         storm_memset_func_en(sc, p->func_id, 1);
5227
5228         /* spq */
5229         if (p->func_flgs & FUNC_FLG_SPQ) {
5230                 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5231                 REG_WR(sc,
5232                        (XSEM_REG_FAST_MEMORY +
5233                         XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5234         }
5235 }
5236
5237 /*
5238  * Calculates the sum of vn_min_rates.
5239  * It's needed for further normalizing of the min_rates.
5240  * Returns:
5241  *   sum of vn_min_rates.
5242  *     or
5243  *   0 - if all the min_rates are 0.
5244  * In the later case fainess algorithm should be deactivated.
5245  * If all min rates are not zero then those that are zeroes will be set to 1.
5246  */
5247 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5248 {
5249         uint32_t vn_cfg;
5250         uint32_t vn_min_rate;
5251         int all_zero = 1;
5252         int vn;
5253
5254         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5255                 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5256                 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5257                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5258
5259                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5260                         /* skip hidden VNs */
5261                         vn_min_rate = 0;
5262                 } else if (!vn_min_rate) {
5263                         /* If min rate is zero - set it to 100 */
5264                         vn_min_rate = DEF_MIN_RATE;
5265                 } else {
5266                         all_zero = 0;
5267                 }
5268
5269                 input->vnic_min_rate[vn] = vn_min_rate;
5270         }
5271
5272         /* if ETS or all min rates are zeros - disable fairness */
5273         if (all_zero) {
5274                 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5275         } else {
5276                 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5277         }
5278 }
5279
5280 static uint16_t
5281 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5282 {
5283         uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5284                             FUNC_MF_CFG_MAX_BW_SHIFT);
5285
5286         if (!max_cfg) {
5287                 PMD_DRV_LOG(DEBUG,
5288                             "Max BW configured to 0 - using 100 instead");
5289                 max_cfg = 100;
5290         }
5291
5292         return max_cfg;
5293 }
5294
5295 static void
5296 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5297 {
5298         uint16_t vn_max_rate;
5299         uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5300         uint32_t max_cfg;
5301
5302         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5303                 vn_max_rate = 0;
5304         } else {
5305                 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5306
5307                 if (IS_MF_SI(sc)) {
5308                         /* max_cfg in percents of linkspeed */
5309                         vn_max_rate =
5310                             ((sc->link_vars.line_speed * max_cfg) / 100);
5311                 } else {        /* SD modes */
5312                         /* max_cfg is absolute in 100Mb units */
5313                         vn_max_rate = (max_cfg * 100);
5314                 }
5315         }
5316
5317         input->vnic_max_rate[vn] = vn_max_rate;
5318 }
5319
5320 static void
5321 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5322 {
5323         struct cmng_init_input input;
5324         int vn;
5325
5326         memset(&input, 0, sizeof(struct cmng_init_input));
5327
5328         input.port_rate = sc->link_vars.line_speed;
5329
5330         if (cmng_type == CMNG_FNS_MINMAX) {
5331 /* read mf conf from shmem */
5332                 if (read_cfg) {
5333                         bnx2x_read_mf_cfg(sc);
5334                 }
5335
5336 /* get VN min rate and enable fairness if not 0 */
5337                 bnx2x_calc_vn_min(sc, &input);
5338
5339 /* get VN max rate */
5340                 if (sc->port.pmf) {
5341                         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5342                                 bnx2x_calc_vn_max(sc, vn, &input);
5343                         }
5344                 }
5345
5346 /* always enable rate shaping and fairness */
5347                 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5348
5349                 ecore_init_cmng(&input, &sc->cmng);
5350                 return;
5351         }
5352 }
5353
5354 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5355 {
5356         if (CHIP_REV_IS_SLOW(sc)) {
5357                 return CMNG_FNS_NONE;
5358         }
5359
5360         if (IS_MF(sc)) {
5361                 return CMNG_FNS_MINMAX;
5362         }
5363
5364         return CMNG_FNS_NONE;
5365 }
5366
5367 static void
5368 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5369 {
5370         int vn;
5371         int func;
5372         uint32_t addr;
5373         size_t size;
5374
5375         addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5376         size = sizeof(struct cmng_struct_per_port);
5377         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5378
5379         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5380                 func = func_by_vn(sc, vn);
5381
5382                 addr = (BAR_XSTRORM_INTMEM +
5383                         XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5384                 size = sizeof(struct rate_shaping_vars_per_vn);
5385                 ecore_storm_memset_struct(sc, addr, size,
5386                                           (uint32_t *) & cmng->
5387                                           vnic.vnic_max_rate[vn]);
5388
5389                 addr = (BAR_XSTRORM_INTMEM +
5390                         XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5391                 size = sizeof(struct fairness_vars_per_vn);
5392                 ecore_storm_memset_struct(sc, addr, size,
5393                                           (uint32_t *) & cmng->
5394                                           vnic.vnic_min_rate[vn]);
5395         }
5396 }
5397
5398 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5399 {
5400         struct bnx2x_func_init_params func_init;
5401         struct event_ring_data eq_data;
5402         uint16_t flags;
5403
5404         memset(&eq_data, 0, sizeof(struct event_ring_data));
5405         memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5406
5407         if (!CHIP_IS_E1x(sc)) {
5408 /* reset IGU PF statistics: MSIX + ATTN */
5409 /* PF */
5410                 REG_WR(sc,
5411                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5412                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5413                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5414                          4)), 0);
5415 /* ATTN */
5416                 REG_WR(sc,
5417                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5418                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5419                         (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5420                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5421                          4)), 0);
5422         }
5423
5424         /* function setup flags */
5425         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5426
5427         func_init.func_flgs = flags;
5428         func_init.pf_id = SC_FUNC(sc);
5429         func_init.func_id = SC_FUNC(sc);
5430         func_init.spq_map = sc->spq_dma.paddr;
5431         func_init.spq_prod = sc->spq_prod_idx;
5432
5433         bnx2x_func_init(sc, &func_init);
5434
5435         memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5436
5437         /*
5438          * Congestion management values depend on the link rate.
5439          * There is no active link so initial link rate is set to 10Gbps.
5440          * When the link comes up the congestion management values are
5441          * re-calculated according to the actual link rate.
5442          */
5443         sc->link_vars.line_speed = SPEED_10000;
5444         bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5445
5446         /* Only the PMF sets the HW */
5447         if (sc->port.pmf) {
5448                 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5449         }
5450
5451         /* init Event Queue - PCI bus guarantees correct endainity */
5452         eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5453         eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5454         eq_data.producer = sc->eq_prod;
5455         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5456         eq_data.sb_id = DEF_SB_ID;
5457         storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5458 }
5459
5460 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5461 {
5462         int port = SC_PORT(sc);
5463         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5464         uint32_t val = REG_RD(sc, addr);
5465         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5466             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5467         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5468         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5469
5470         if (msix) {
5471                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5472                          HC_CONFIG_0_REG_INT_LINE_EN_0);
5473                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5474                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5475                 if (single_msix) {
5476                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5477                 }
5478         } else if (msi) {
5479                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5480                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5481                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5482                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5483         } else {
5484                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5485                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5486                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
5487                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5488
5489                 REG_WR(sc, addr, val);
5490
5491                 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5492         }
5493
5494         REG_WR(sc, addr, val);
5495
5496         /* ensure that HC_CONFIG is written before leading/trailing edge config */
5497         mb();
5498
5499         /* init leading/trailing edge */
5500         if (IS_MF(sc)) {
5501                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5502                 if (sc->port.pmf) {
5503                         /* enable nig and gpio3 attention */
5504                         val |= 0x1100;
5505                 }
5506         } else {
5507                 val = 0xffff;
5508         }
5509
5510         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5511         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5512
5513         /* make sure that interrupts are indeed enabled from here on */
5514         mb();
5515 }
5516
5517 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5518 {
5519         uint32_t val;
5520         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5521             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5522         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5523         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5524
5525         val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5526
5527         if (msix) {
5528                 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5529                 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5530                 if (single_msix) {
5531                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
5532                 }
5533         } else if (msi) {
5534                 val &= ~IGU_PF_CONF_INT_LINE_EN;
5535                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5536                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5537         } else {
5538                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5539                 val |= (IGU_PF_CONF_INT_LINE_EN |
5540                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5541         }
5542
5543         /* clean previous status - need to configure igu prior to ack */
5544         if ((!msix) || single_msix) {
5545                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5546                 bnx2x_ack_int(sc);
5547         }
5548
5549         val |= IGU_PF_CONF_FUNC_EN;
5550
5551         PMD_DRV_LOG(DEBUG, "write 0x%x to IGU mode %s",
5552                     val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5553
5554         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5555
5556         mb();
5557
5558         /* init leading/trailing edge */
5559         if (IS_MF(sc)) {
5560                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5561                 if (sc->port.pmf) {
5562                         /* enable nig and gpio3 attention */
5563                         val |= 0x1100;
5564                 }
5565         } else {
5566                 val = 0xffff;
5567         }
5568
5569         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5570         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5571
5572         /* make sure that interrupts are indeed enabled from here on */
5573         mb();
5574 }
5575
5576 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5577 {
5578         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5579                 bnx2x_hc_int_enable(sc);
5580         } else {
5581                 bnx2x_igu_int_enable(sc);
5582         }
5583 }
5584
5585 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5586 {
5587         int port = SC_PORT(sc);
5588         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5589         uint32_t val = REG_RD(sc, addr);
5590
5591         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5592                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5593                  HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5594         /* flush all outstanding writes */
5595         mb();
5596
5597         REG_WR(sc, addr, val);
5598         if (REG_RD(sc, addr) != val) {
5599                 PMD_DRV_LOG(ERR, "proper val not read from HC IGU!");
5600         }
5601 }
5602
5603 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5604 {
5605         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5606
5607         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5608                  IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5609
5610         PMD_DRV_LOG(DEBUG, "write %x to IGU", val);
5611
5612         /* flush all outstanding writes */
5613         mb();
5614
5615         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5616         if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5617                 PMD_DRV_LOG(ERR, "proper val not read from IGU!");
5618         }
5619 }
5620
5621 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5622 {
5623         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5624                 bnx2x_hc_int_disable(sc);
5625         } else {
5626                 bnx2x_igu_int_disable(sc);
5627         }
5628 }
5629
5630 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5631 {
5632         int i;
5633
5634         PMD_INIT_FUNC_TRACE();
5635
5636         for (i = 0; i < sc->num_queues; i++) {
5637                 bnx2x_init_eth_fp(sc, i);
5638         }
5639
5640         rmb();                  /* ensure status block indices were read */
5641
5642         bnx2x_init_rx_rings(sc);
5643         bnx2x_init_tx_rings(sc);
5644
5645         if (IS_VF(sc)) {
5646                 bnx2x_memset_stats(sc);
5647                 return;
5648         }
5649
5650         /* initialize MOD_ABS interrupts */
5651         elink_init_mod_abs_int(sc, &sc->link_vars,
5652                                sc->devinfo.chip_id,
5653                                sc->devinfo.shmem_base,
5654                                sc->devinfo.shmem2_base, SC_PORT(sc));
5655
5656         bnx2x_init_def_sb(sc);
5657         bnx2x_update_dsb_idx(sc);
5658         bnx2x_init_sp_ring(sc);
5659         bnx2x_init_eq_ring(sc);
5660         bnx2x_init_internal(sc, load_code);
5661         bnx2x_pf_init(sc);
5662         bnx2x_stats_init(sc);
5663
5664         /* flush all before enabling interrupts */
5665         mb();
5666
5667         bnx2x_int_enable(sc);
5668
5669         /* check for SPIO5 */
5670         bnx2x_attn_int_deasserted0(sc,
5671                                  REG_RD(sc,
5672                                         (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5673                                          SC_PORT(sc) * 4)) &
5674                                  AEU_INPUTS_ATTN_BITS_SPIO5);
5675 }
5676
5677 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5678 {
5679         /* mcast rules must be added to tx if tx switching is enabled */
5680         ecore_obj_type o_type;
5681         if (sc->flags & BNX2X_TX_SWITCHING)
5682                 o_type = ECORE_OBJ_TYPE_RX_TX;
5683         else
5684                 o_type = ECORE_OBJ_TYPE_RX;
5685
5686         /* RX_MODE controlling object */
5687         ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5688
5689         /* multicast configuration controlling object */
5690         ecore_init_mcast_obj(sc,
5691                              &sc->mcast_obj,
5692                              sc->fp[0].cl_id,
5693                              sc->fp[0].index,
5694                              SC_FUNC(sc),
5695                              SC_FUNC(sc),
5696                              BNX2X_SP(sc, mcast_rdata),
5697                              (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5698                              ECORE_FILTER_MCAST_PENDING,
5699                              &sc->sp_state, o_type);
5700
5701         /* Setup CAM credit pools */
5702         ecore_init_mac_credit_pool(sc,
5703                                    &sc->macs_pool,
5704                                    SC_FUNC(sc),
5705                                    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5706                                    VNICS_PER_PATH(sc));
5707
5708         ecore_init_vlan_credit_pool(sc,
5709                                     &sc->vlans_pool,
5710                                     SC_ABS_FUNC(sc) >> 1,
5711                                     CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5712                                     VNICS_PER_PATH(sc));
5713
5714         /* RSS configuration object */
5715         ecore_init_rss_config_obj(&sc->rss_conf_obj,
5716                                   sc->fp[0].cl_id,
5717                                   sc->fp[0].index,
5718                                   SC_FUNC(sc),
5719                                   SC_FUNC(sc),
5720                                   BNX2X_SP(sc, rss_rdata),
5721                                   (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5722                                   ECORE_FILTER_RSS_CONF_PENDING,
5723                                   &sc->sp_state, ECORE_OBJ_TYPE_RX);
5724 }
5725
5726 /*
5727  * Initialize the function. This must be called before sending CLIENT_SETUP
5728  * for the first client.
5729  */
5730 static int bnx2x_func_start(struct bnx2x_softc *sc)
5731 {
5732         struct ecore_func_state_params func_params = { NULL };
5733         struct ecore_func_start_params *start_params =
5734             &func_params.params.start;
5735
5736         /* Prepare parameters for function state transitions */
5737         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5738
5739         func_params.f_obj = &sc->func_obj;
5740         func_params.cmd = ECORE_F_CMD_START;
5741
5742         /* Function parameters */
5743         start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5744         start_params->sd_vlan_tag = OVLAN(sc);
5745
5746         if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5747                 start_params->network_cos_mode = STATIC_COS;
5748         } else {                /* CHIP_IS_E1X */
5749                 start_params->network_cos_mode = FW_WRR;
5750         }
5751
5752         start_params->gre_tunnel_mode = 0;
5753         start_params->gre_tunnel_rss = 0;
5754
5755         return ecore_func_state_change(sc, &func_params);
5756 }
5757
5758 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5759 {
5760         uint16_t pmcsr;
5761
5762         /* If there is no power capability, silently succeed */
5763         if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5764                 PMD_DRV_LOG(WARNING, "No power capability");
5765                 return 0;
5766         }
5767
5768         pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5769                  2);
5770
5771         switch (state) {
5772         case PCI_PM_D0:
5773                 pci_write_word(sc,
5774                                (sc->devinfo.pcie_pm_cap_reg +
5775                                 PCIR_POWER_STATUS),
5776                                ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5777
5778                 if (pmcsr & PCIM_PSTAT_DMASK) {
5779                         /* delay required during transition out of D3hot */
5780                         DELAY(20000);
5781                 }
5782
5783                 break;
5784
5785         case PCI_PM_D3hot:
5786                 /* don't shut down the power for emulation and FPGA */
5787                 if (CHIP_REV_IS_SLOW(sc)) {
5788                         return 0;
5789                 }
5790
5791                 pmcsr &= ~PCIM_PSTAT_DMASK;
5792                 pmcsr |= PCIM_PSTAT_D3;
5793
5794                 if (sc->wol) {
5795                         pmcsr |= PCIM_PSTAT_PMEENABLE;
5796                 }
5797
5798                 pci_write_long(sc,
5799                                (sc->devinfo.pcie_pm_cap_reg +
5800                                 PCIR_POWER_STATUS), pmcsr);
5801
5802                 /*
5803                  * No more memory access after this point until device is brought back
5804                  * to D0 state.
5805                  */
5806                 break;
5807
5808         default:
5809                 PMD_DRV_LOG(NOTICE, "Can't support PCI power state = %d",
5810                             state);
5811                 return -1;
5812         }
5813
5814         return 0;
5815 }
5816
5817 /* return true if succeeded to acquire the lock */
5818 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5819 {
5820         uint32_t lock_status;
5821         uint32_t resource_bit = (1 << resource);
5822         int func = SC_FUNC(sc);
5823         uint32_t hw_lock_control_reg;
5824
5825         /* Validating that the resource is within range */
5826         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5827                 PMD_DRV_LOG(INFO,
5828                             "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5829                             resource, HW_LOCK_MAX_RESOURCE_VALUE);
5830                 return FALSE;
5831         }
5832
5833         if (func <= 5) {
5834                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5835         } else {
5836                 hw_lock_control_reg =
5837                     (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5838         }
5839
5840         /* try to acquire the lock */
5841         REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5842         lock_status = REG_RD(sc, hw_lock_control_reg);
5843         if (lock_status & resource_bit) {
5844                 return TRUE;
5845         }
5846
5847         PMD_DRV_LOG(NOTICE, "Failed to get a resource lock 0x%x", resource);
5848
5849         return FALSE;
5850 }
5851
5852 /*
5853  * Get the recovery leader resource id according to the engine this function
5854  * belongs to. Currently only only 2 engines is supported.
5855  */
5856 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5857 {
5858         if (SC_PATH(sc)) {
5859                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5860         } else {
5861                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5862         }
5863 }
5864
5865 /* try to acquire a leader lock for current engine */
5866 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5867 {
5868         return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5869 }
5870
5871 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5872 {
5873         return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5874 }
5875
5876 /* close gates #2, #3 and #4 */
5877 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5878 {
5879         uint32_t val;
5880
5881         /* gates #2 and #4a are closed/opened */
5882         /* #4 */
5883         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5884         /* #2 */
5885         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5886
5887         /* #3 */
5888         if (CHIP_IS_E1x(sc)) {
5889 /* prevent interrupts from HC on both ports */
5890                 val = REG_RD(sc, HC_REG_CONFIG_1);
5891                 if (close)
5892                         REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5893                                                      HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5894                 else
5895                         REG_WR(sc, HC_REG_CONFIG_1,
5896                                (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5897
5898                 val = REG_RD(sc, HC_REG_CONFIG_0);
5899                 if (close)
5900                         REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5901                                                      HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5902                 else
5903                         REG_WR(sc, HC_REG_CONFIG_0,
5904                                (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5905
5906         } else {
5907 /* Prevent incoming interrupts in IGU */
5908                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5909
5910                 if (close)
5911                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5912                                (val & ~(uint32_t)
5913                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5914                 else
5915                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5916                                (val |
5917                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5918         }
5919
5920         wmb();
5921 }
5922
5923 /* poll for pending writes bit, it should get cleared in no more than 1s */
5924 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
5925 {
5926         uint32_t cnt = 1000;
5927         uint32_t pend_bits = 0;
5928
5929         do {
5930                 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
5931
5932                 if (pend_bits == 0) {
5933                         break;
5934                 }
5935
5936                 DELAY(1000);
5937         } while (cnt-- > 0);
5938
5939         if (cnt <= 0) {
5940                 PMD_DRV_LOG(NOTICE, "Still pending IGU requests bits=0x%08x!",
5941                             pend_bits);
5942                 return -1;
5943         }
5944
5945         return 0;
5946 }
5947
5948 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
5949
5950 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5951 {
5952         /* Do some magic... */
5953         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5954         *magic_val = val & SHARED_MF_CLP_MAGIC;
5955         MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
5956 }
5957
5958 /* restore the value of the 'magic' bit */
5959 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
5960 {
5961         /* Restore the 'magic' bit value... */
5962         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5963         MFCFG_WR(sc, shared_mf_config.clp_mb,
5964                  (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
5965 }
5966
5967 /* prepare for MCP reset, takes care of CLP configurations */
5968 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5969 {
5970         uint32_t shmem;
5971         uint32_t validity_offset;
5972
5973         /* set `magic' bit in order to save MF config */
5974         bnx2x_clp_reset_prep(sc, magic_val);
5975
5976         /* get shmem offset */
5977         shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
5978         validity_offset =
5979             offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
5980
5981         /* Clear validity map flags */
5982         if (shmem > 0) {
5983                 REG_WR(sc, shmem + validity_offset, 0);
5984         }
5985 }
5986
5987 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
5988 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
5989
5990 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
5991 {
5992         /* special handling for emulation and FPGA (10 times longer) */
5993         if (CHIP_REV_IS_SLOW(sc)) {
5994                 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
5995         } else {
5996                 DELAY((MCP_ONE_TIMEOUT) * 1000);
5997         }
5998 }
5999
6000 /* initialize shmem_base and waits for validity signature to appear */
6001 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6002 {
6003         int cnt = 0;
6004         uint32_t val = 0;
6005
6006         do {
6007                 sc->devinfo.shmem_base =
6008                     sc->link_params.shmem_base =
6009                     REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6010
6011                 if (sc->devinfo.shmem_base) {
6012                         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6013                         if (val & SHR_MEM_VALIDITY_MB)
6014                                 return 0;
6015                 }
6016
6017                 bnx2x_mcp_wait_one(sc);
6018
6019         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6020
6021         PMD_DRV_LOG(NOTICE, "BAD MCP validity signature");
6022
6023         return -1;
6024 }
6025
6026 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6027 {
6028         int rc = bnx2x_init_shmem(sc);
6029
6030         /* Restore the `magic' bit value */
6031         bnx2x_clp_reset_done(sc, magic_val);
6032
6033         return rc;
6034 }
6035
6036 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6037 {
6038         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6039         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6040         wmb();
6041 }
6042
6043 /*
6044  * Reset the whole chip except for:
6045  *      - PCIE core
6046  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6047  *      - IGU
6048  *      - MISC (including AEU)
6049  *      - GRC
6050  *      - RBCN, RBCP
6051  */
6052 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6053 {
6054         uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6055         uint32_t global_bits2, stay_reset2;
6056
6057         /*
6058          * Bits that have to be set in reset_mask2 if we want to reset 'global'
6059          * (per chip) blocks.
6060          */
6061         global_bits2 =
6062             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6063             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6064
6065         /*
6066          * Don't reset the following blocks.
6067          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6068          *            reset, as in 4 port device they might still be owned
6069          *            by the MCP (there is only one leader per path).
6070          */
6071         not_reset_mask1 =
6072             MISC_REGISTERS_RESET_REG_1_RST_HC |
6073             MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6074             MISC_REGISTERS_RESET_REG_1_RST_PXP;
6075
6076         not_reset_mask2 =
6077             MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6078             MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6079             MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6080             MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6081             MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6082             MISC_REGISTERS_RESET_REG_2_RST_GRC |
6083             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6084             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6085             MISC_REGISTERS_RESET_REG_2_RST_ATC |
6086             MISC_REGISTERS_RESET_REG_2_PGLC |
6087             MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6088             MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6089             MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6090             MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6091             MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6092
6093         /*
6094          * Keep the following blocks in reset:
6095          *  - all xxMACs are handled by the elink code.
6096          */
6097         stay_reset2 =
6098             MISC_REGISTERS_RESET_REG_2_XMAC |
6099             MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6100
6101         /* Full reset masks according to the chip */
6102         reset_mask1 = 0xffffffff;
6103
6104         if (CHIP_IS_E1H(sc))
6105                 reset_mask2 = 0x1ffff;
6106         else if (CHIP_IS_E2(sc))
6107                 reset_mask2 = 0xfffff;
6108         else                    /* CHIP_IS_E3 */
6109                 reset_mask2 = 0x3ffffff;
6110
6111         /* Don't reset global blocks unless we need to */
6112         if (!global)
6113                 reset_mask2 &= ~global_bits2;
6114
6115         /*
6116          * In case of attention in the QM, we need to reset PXP
6117          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6118          * because otherwise QM reset would release 'close the gates' shortly
6119          * before resetting the PXP, then the PSWRQ would send a write
6120          * request to PGLUE. Then when PXP is reset, PGLUE would try to
6121          * read the payload data from PSWWR, but PSWWR would not
6122          * respond. The write queue in PGLUE would stuck, dmae commands
6123          * would not return. Therefore it's important to reset the second
6124          * reset register (containing the
6125          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6126          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6127          * bit).
6128          */
6129         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6130                reset_mask2 & (~not_reset_mask2));
6131
6132         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6133                reset_mask1 & (~not_reset_mask1));
6134
6135         mb();
6136         wmb();
6137
6138         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6139                reset_mask2 & (~stay_reset2));
6140
6141         mb();
6142         wmb();
6143
6144         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6145         wmb();
6146 }
6147
6148 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6149 {
6150         int cnt = 1000;
6151         uint32_t val = 0;
6152         uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6153         uint32_t tags_63_32 = 0;
6154
6155         /* Empty the Tetris buffer, wait for 1s */
6156         do {
6157                 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6158                 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6159                 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6160                 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6161                 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6162                 if (CHIP_IS_E3(sc)) {
6163                         tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6164                 }
6165
6166                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6167                     ((port_is_idle_0 & 0x1) == 0x1) &&
6168                     ((port_is_idle_1 & 0x1) == 0x1) &&
6169                     (pgl_exp_rom2 == 0xffffffff) &&
6170                     (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6171                         break;
6172                 DELAY(1000);
6173         } while (cnt-- > 0);
6174
6175         if (cnt <= 0) {
6176                 PMD_DRV_LOG(NOTICE,
6177                             "ERROR: Tetris buffer didn't get empty or there "
6178                             "are still outstanding read requests after 1s! "
6179                             "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6180                             "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6181                             sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6182                             pgl_exp_rom2);
6183                 return -1;
6184         }
6185
6186         mb();
6187
6188         /* Close gates #2, #3 and #4 */
6189         bnx2x_set_234_gates(sc, TRUE);
6190
6191         /* Poll for IGU VQs for 57712 and newer chips */
6192         if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6193                 return -1;
6194         }
6195
6196         /* clear "unprepared" bit */
6197         REG_WR(sc, MISC_REG_UNPREPARED, 0);
6198         mb();
6199
6200         /* Make sure all is written to the chip before the reset */
6201         wmb();
6202
6203         /*
6204          * Wait for 1ms to empty GLUE and PCI-E core queues,
6205          * PSWHST, GRC and PSWRD Tetris buffer.
6206          */
6207         DELAY(1000);
6208
6209         /* Prepare to chip reset: */
6210         /* MCP */
6211         if (global) {
6212                 bnx2x_reset_mcp_prep(sc, &val);
6213         }
6214
6215         /* PXP */
6216         bnx2x_pxp_prep(sc);
6217         mb();
6218
6219         /* reset the chip */
6220         bnx2x_process_kill_chip_reset(sc, global);
6221         mb();
6222
6223         /* Recover after reset: */
6224         /* MCP */
6225         if (global && bnx2x_reset_mcp_comp(sc, val)) {
6226                 return -1;
6227         }
6228
6229         /* Open the gates #2, #3 and #4 */
6230         bnx2x_set_234_gates(sc, FALSE);
6231
6232         return 0;
6233 }
6234
6235 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6236 {
6237         int rc = 0;
6238         uint8_t global = bnx2x_reset_is_global(sc);
6239         uint32_t load_code;
6240
6241         /*
6242          * If not going to reset MCP, load "fake" driver to reset HW while
6243          * driver is owner of the HW.
6244          */
6245         if (!global && !BNX2X_NOMCP(sc)) {
6246                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6247                                            DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6248                 if (!load_code) {
6249                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6250                         rc = -1;
6251                         goto exit_leader_reset;
6252                 }
6253
6254                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6255                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6256                         PMD_DRV_LOG(NOTICE,
6257                                     "MCP unexpected response, aborting");
6258                         rc = -1;
6259                         goto exit_leader_reset2;
6260                 }
6261
6262                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6263                 if (!load_code) {
6264                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6265                         rc = -1;
6266                         goto exit_leader_reset2;
6267                 }
6268         }
6269
6270         /* try to recover after the failure */
6271         if (bnx2x_process_kill(sc, global)) {
6272                 PMD_DRV_LOG(NOTICE, "Something bad occurred on engine %d!",
6273                             SC_PATH(sc));
6274                 rc = -1;
6275                 goto exit_leader_reset2;
6276         }
6277
6278         /*
6279          * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6280          * state.
6281          */
6282         bnx2x_set_reset_done(sc);
6283         if (global) {
6284                 bnx2x_clear_reset_global(sc);
6285         }
6286
6287 exit_leader_reset2:
6288
6289         /* unload "fake driver" if it was loaded */
6290         if (!global &&!BNX2X_NOMCP(sc)) {
6291                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6292                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6293         }
6294
6295 exit_leader_reset:
6296
6297         sc->is_leader = 0;
6298         bnx2x_release_leader_lock(sc);
6299
6300         mb();
6301         return rc;
6302 }
6303
6304 /*
6305  * prepare INIT transition, parameters configured:
6306  *   - HC configuration
6307  *   - Queue's CDU context
6308  */
6309 static void
6310 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6311                    struct ecore_queue_init_params *init_params)
6312 {
6313         uint8_t cos;
6314         int cxt_index, cxt_offset;
6315
6316         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6317         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6318
6319         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6320         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6321
6322         /* HC rate */
6323         init_params->rx.hc_rate =
6324             sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6325         init_params->tx.hc_rate =
6326             sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6327
6328         /* FW SB ID */
6329         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6330
6331         /* CQ index among the SB indices */
6332         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6333         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6334
6335         /* set maximum number of COSs supported by this queue */
6336         init_params->max_cos = sc->max_cos;
6337
6338         /* set the context pointers queue object */
6339         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6340                 cxt_index = fp->index / ILT_PAGE_CIDS;
6341                 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6342                 init_params->cxts[cos] =
6343                     &sc->context[cxt_index].vcxt[cxt_offset].eth;
6344         }
6345 }
6346
6347 /* set flags that are common for the Tx-only and not normal connections */
6348 static unsigned long
6349 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6350 {
6351         unsigned long flags = 0;
6352
6353         /* PF driver will always initialize the Queue to an ACTIVE state */
6354         bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6355
6356         /*
6357          * tx only connections collect statistics (on the same index as the
6358          * parent connection). The statistics are zeroed when the parent
6359          * connection is initialized.
6360          */
6361
6362         bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6363         if (zero_stats) {
6364                 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6365         }
6366
6367         /*
6368          * tx only connections can support tx-switching, though their
6369          * CoS-ness doesn't survive the loopback
6370          */
6371         if (sc->flags & BNX2X_TX_SWITCHING) {
6372                 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6373         }
6374
6375         bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6376
6377         return flags;
6378 }
6379
6380 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6381 {
6382         unsigned long flags = 0;
6383
6384         if (IS_MF_SD(sc)) {
6385                 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6386         }
6387
6388         if (leading) {
6389                 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6390                 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6391         }
6392
6393         bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6394
6395         /* merge with common flags */
6396         return flags | bnx2x_get_common_flags(sc, TRUE);
6397 }
6398
6399 static void
6400 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6401                       struct ecore_general_setup_params *gen_init, uint8_t cos)
6402 {
6403         gen_init->stat_id = bnx2x_stats_id(fp);
6404         gen_init->spcl_id = fp->cl_id;
6405         gen_init->mtu = sc->mtu;
6406         gen_init->cos = cos;
6407 }
6408
6409 static void
6410 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6411                  struct rxq_pause_params *pause,
6412                  struct ecore_rxq_setup_params *rxq_init)
6413 {
6414         struct bnx2x_rx_queue *rxq;
6415
6416         rxq = sc->rx_queues[fp->index];
6417         if (!rxq) {
6418                 PMD_RX_LOG(ERR, "RX queue is NULL");
6419                 return;
6420         }
6421         /* pause */
6422         pause->bd_th_lo = BD_TH_LO(sc);
6423         pause->bd_th_hi = BD_TH_HI(sc);
6424
6425         pause->rcq_th_lo = RCQ_TH_LO(sc);
6426         pause->rcq_th_hi = RCQ_TH_HI(sc);
6427
6428         /* validate rings have enough entries to cross high thresholds */
6429         if (sc->dropless_fc &&
6430             pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6431                 PMD_DRV_LOG(WARNING, "rx bd ring threshold limit");
6432         }
6433
6434         if (sc->dropless_fc &&
6435             pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6436                 PMD_DRV_LOG(WARNING, "rcq ring threshold limit");
6437         }
6438
6439         pause->pri_map = 1;
6440
6441         /* rxq setup */
6442         rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6443         rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6444         rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6445                                               BNX2X_PAGE_SIZE);
6446
6447         /*
6448          * This should be a maximum number of data bytes that may be
6449          * placed on the BD (not including paddings).
6450          */
6451         rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6452
6453         rxq_init->cl_qzone_id = fp->cl_qzone_id;
6454         rxq_init->rss_engine_id = SC_FUNC(sc);
6455         rxq_init->mcast_engine_id = SC_FUNC(sc);
6456
6457         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6458         rxq_init->fw_sb_id = fp->fw_sb_id;
6459
6460         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6461
6462         /*
6463          * configure silent vlan removal
6464          * if multi function mode is afex, then mask default vlan
6465          */
6466         if (IS_MF_AFEX(sc)) {
6467                 rxq_init->silent_removal_value =
6468                     sc->devinfo.mf_info.afex_def_vlan_tag;
6469                 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6470         }
6471 }
6472
6473 static void
6474 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6475                  struct ecore_txq_setup_params *txq_init, uint8_t cos)
6476 {
6477         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6478
6479         if (!txq) {
6480                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6481                 return;
6482         }
6483         txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6484         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6485         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6486         txq_init->fw_sb_id = fp->fw_sb_id;
6487
6488         /*
6489          * set the TSS leading client id for TX classfication to the
6490          * leading RSS client id
6491          */
6492         txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6493 }
6494
6495 /*
6496  * This function performs 2 steps in a queue state machine:
6497  *   1) RESET->INIT
6498  *   2) INIT->SETUP
6499  */
6500 static int
6501 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6502 {
6503         struct ecore_queue_state_params q_params = { NULL };
6504         struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6505         int rc;
6506
6507         PMD_DRV_LOG(DEBUG, "setting up queue %d", fp->index);
6508
6509         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6510
6511         q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6512
6513         /* we want to wait for completion in this context */
6514         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6515
6516         /* prepare the INIT parameters */
6517         bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6518
6519         /* Set the command */
6520         q_params.cmd = ECORE_Q_CMD_INIT;
6521
6522         /* Change the state to INIT */
6523         rc = ecore_queue_state_change(sc, &q_params);
6524         if (rc) {
6525                 PMD_DRV_LOG(NOTICE, "Queue(%d) INIT failed", fp->index);
6526                 return rc;
6527         }
6528
6529         PMD_DRV_LOG(DEBUG, "init complete");
6530
6531         /* now move the Queue to the SETUP state */
6532         memset(setup_params, 0, sizeof(*setup_params));
6533
6534         /* set Queue flags */
6535         setup_params->flags = bnx2x_get_q_flags(sc, leading);
6536
6537         /* set general SETUP parameters */
6538         bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6539                               FIRST_TX_COS_INDEX);
6540
6541         bnx2x_pf_rx_q_prep(sc, fp,
6542                          &setup_params->pause_params,
6543                          &setup_params->rxq_params);
6544
6545         bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6546
6547         /* Set the command */
6548         q_params.cmd = ECORE_Q_CMD_SETUP;
6549
6550         /* change the state to SETUP */
6551         rc = ecore_queue_state_change(sc, &q_params);
6552         if (rc) {
6553                 PMD_DRV_LOG(NOTICE, "Queue(%d) SETUP failed", fp->index);
6554                 return rc;
6555         }
6556
6557         return rc;
6558 }
6559
6560 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6561 {
6562         if (IS_PF(sc))
6563                 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6564         else                    /* VF */
6565                 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6566 }
6567
6568 static int
6569 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6570                   uint8_t config_hash)
6571 {
6572         struct ecore_config_rss_params params = { NULL };
6573         uint32_t i;
6574
6575         /*
6576          * Although RSS is meaningless when there is a single HW queue we
6577          * still need it enabled in order to have HW Rx hash generated.
6578          */
6579
6580         params.rss_obj = rss_obj;
6581
6582         bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6583
6584         bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6585
6586         /* RSS configuration */
6587         bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6588         bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6589         bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6590         bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6591         if (rss_obj->udp_rss_v4) {
6592                 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6593         }
6594         if (rss_obj->udp_rss_v6) {
6595                 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6596         }
6597
6598         /* Hash bits */
6599         params.rss_result_mask = MULTI_MASK;
6600
6601         rte_memcpy(params.ind_table, rss_obj->ind_table,
6602                          sizeof(params.ind_table));
6603
6604         if (config_hash) {
6605 /* RSS keys */
6606                 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6607                         params.rss_key[i] = (uint32_t) rte_rand();
6608                 }
6609
6610                 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6611         }
6612
6613         if (IS_PF(sc))
6614                 return ecore_config_rss(sc, &params);
6615         else
6616                 return bnx2x_vf_config_rss(sc, &params);
6617 }
6618
6619 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6620 {
6621         return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6622 }
6623
6624 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6625 {
6626         uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6627         uint32_t i;
6628
6629         /*
6630          * Prepare the initial contents of the indirection table if
6631          * RSS is enabled
6632          */
6633         for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6634                 sc->rss_conf_obj.ind_table[i] =
6635                     (sc->fp->cl_id + (i % num_eth_queues));
6636         }
6637
6638         if (sc->udp_rss) {
6639                 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6640         }
6641
6642         /*
6643          * For 57711 SEARCHER configuration (rss_keys) is
6644          * per-port, so if explicit configuration is needed, do it only
6645          * for a PMF.
6646          *
6647          * For 57712 and newer it's a per-function configuration.
6648          */
6649         return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6650 }
6651
6652 static int
6653 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6654                 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6655                 unsigned long *ramrod_flags)
6656 {
6657         struct ecore_vlan_mac_ramrod_params ramrod_param;
6658         int rc;
6659
6660         memset(&ramrod_param, 0, sizeof(ramrod_param));
6661
6662         /* fill in general parameters */
6663         ramrod_param.vlan_mac_obj = obj;
6664         ramrod_param.ramrod_flags = *ramrod_flags;
6665
6666         /* fill a user request section if needed */
6667         if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6668                 rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6669                                  ETH_ALEN);
6670
6671                 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6672
6673 /* Set the command: ADD or DEL */
6674                 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6675                     ECORE_VLAN_MAC_DEL;
6676         }
6677
6678         rc = ecore_config_vlan_mac(sc, &ramrod_param);
6679
6680         if (rc == ECORE_EXISTS) {
6681                 PMD_DRV_LOG(INFO, "Failed to schedule ADD operations (EEXIST)");
6682 /* do not treat adding same MAC as error */
6683                 rc = 0;
6684         } else if (rc < 0) {
6685                 PMD_DRV_LOG(ERR,
6686                             "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6687         }
6688
6689         return rc;
6690 }
6691
6692 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6693 {
6694         unsigned long ramrod_flags = 0;
6695
6696         PMD_DRV_LOG(DEBUG, "Adding Ethernet MAC");
6697
6698         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6699
6700         /* Eth MAC is set on RSS leading client (fp[0]) */
6701         return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6702                                &sc->sp_objs->mac_obj,
6703                                set, ECORE_ETH_MAC, &ramrod_flags);
6704 }
6705
6706 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6707 {
6708         uint32_t sel_phy_idx = 0;
6709
6710         if (sc->link_params.num_phys <= 1) {
6711                 return ELINK_INT_PHY;
6712         }
6713
6714         if (sc->link_vars.link_up) {
6715                 sel_phy_idx = ELINK_EXT_PHY1;
6716 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6717                 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6718                     (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6719                      ELINK_SUPPORTED_FIBRE))
6720                         sel_phy_idx = ELINK_EXT_PHY2;
6721         } else {
6722                 switch (elink_phy_selection(&sc->link_params)) {
6723                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6724                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6725                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6726                         sel_phy_idx = ELINK_EXT_PHY1;
6727                         break;
6728                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6729                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6730                         sel_phy_idx = ELINK_EXT_PHY2;
6731                         break;
6732                 }
6733         }
6734
6735         return sel_phy_idx;
6736 }
6737
6738 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6739 {
6740         uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6741
6742         /*
6743          * The selected activated PHY is always after swapping (in case PHY
6744          * swapping is enabled). So when swapping is enabled, we need to reverse
6745          * the configuration
6746          */
6747
6748         if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6749                 if (sel_phy_idx == ELINK_EXT_PHY1)
6750                         sel_phy_idx = ELINK_EXT_PHY2;
6751                 else if (sel_phy_idx == ELINK_EXT_PHY2)
6752                         sel_phy_idx = ELINK_EXT_PHY1;
6753         }
6754
6755         return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6756 }
6757
6758 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6759 {
6760         /*
6761          * Initialize link parameters structure variables
6762          * It is recommended to turn off RX FC for jumbo frames
6763          * for better performance
6764          */
6765         if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6766                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6767         } else {
6768                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6769         }
6770 }
6771
6772 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6773 {
6774         uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6775         switch (sc->link_vars.ieee_fc &
6776                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6777         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6778         default:
6779                 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6780                                                    ADVERTISED_Pause);
6781                 break;
6782
6783         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6784                 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6785                                                   ADVERTISED_Pause);
6786                 break;
6787
6788         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6789                 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6790                 break;
6791         }
6792 }
6793
6794 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6795 {
6796         uint16_t line_speed = sc->link_vars.line_speed;
6797         if (IS_MF(sc)) {
6798                 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6799                                                       sc->devinfo.
6800                                                       mf_info.mf_config[SC_VN
6801                                                                         (sc)]);
6802
6803 /* calculate the current MAX line speed limit for the MF devices */
6804                 if (IS_MF_SI(sc)) {
6805                         line_speed = (line_speed * maxCfg) / 100;
6806                 } else {        /* SD mode */
6807                         uint16_t vn_max_rate = maxCfg * 100;
6808
6809                         if (vn_max_rate < line_speed) {
6810                                 line_speed = vn_max_rate;
6811                         }
6812                 }
6813         }
6814
6815         return line_speed;
6816 }
6817
6818 static void
6819 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6820 {
6821         uint16_t line_speed = bnx2x_get_mf_speed(sc);
6822
6823         memset(data, 0, sizeof(*data));
6824
6825         /* fill the report data with the effective line speed */
6826         data->line_speed = line_speed;
6827
6828         /* Link is down */
6829         if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6830                 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6831                             &data->link_report_flags);
6832         }
6833
6834         /* Full DUPLEX */
6835         if (sc->link_vars.duplex == DUPLEX_FULL) {
6836                 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6837                             &data->link_report_flags);
6838         }
6839
6840         /* Rx Flow Control is ON */
6841         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6842                 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6843         }
6844
6845         /* Tx Flow Control is ON */
6846         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6847                 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6848         }
6849 }
6850
6851 /* report link status to OS, should be called under phy_lock */
6852 static void bnx2x_link_report(struct bnx2x_softc *sc)
6853 {
6854         struct bnx2x_link_report_data cur_data;
6855
6856         /* reread mf_cfg */
6857         if (IS_PF(sc)) {
6858                 bnx2x_read_mf_cfg(sc);
6859         }
6860
6861         /* Read the current link report info */
6862         bnx2x_fill_report_data(sc, &cur_data);
6863
6864         /* Don't report link down or exactly the same link status twice */
6865         if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6866             (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6867                           &sc->last_reported_link.link_report_flags) &&
6868              bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6869                           &cur_data.link_report_flags))) {
6870                 return;
6871         }
6872
6873         sc->link_cnt++;
6874
6875         /* report new link params and remember the state for the next time */
6876         rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6877
6878         if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6879                          &cur_data.link_report_flags)) {
6880                 PMD_DRV_LOG(INFO, "NIC Link is Down");
6881         } else {
6882                 __rte_unused const char *duplex;
6883                 __rte_unused const char *flow;
6884
6885                 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6886                                            &cur_data.link_report_flags)) {
6887                         duplex = "full";
6888                 } else {
6889                         duplex = "half";
6890                 }
6891
6892 /*
6893  * Handle the FC at the end so that only these flags would be
6894  * possibly set. This way we may easily check if there is no FC
6895  * enabled.
6896  */
6897                 if (cur_data.link_report_flags) {
6898                         if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6899                                          &cur_data.link_report_flags) &&
6900                             bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6901                                          &cur_data.link_report_flags)) {
6902                                 flow = "ON - receive & transmit";
6903                         } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6904                                                 &cur_data.link_report_flags) &&
6905                                    !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6906                                                  &cur_data.link_report_flags)) {
6907                                 flow = "ON - receive";
6908                         } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6909                                                  &cur_data.link_report_flags) &&
6910                                    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6911                                                 &cur_data.link_report_flags)) {
6912                                 flow = "ON - transmit";
6913                         } else {
6914                                 flow = "none";  /* possible? */
6915                         }
6916                 } else {
6917                         flow = "none";
6918                 }
6919
6920                 PMD_DRV_LOG(INFO,
6921                             "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
6922                             cur_data.line_speed, duplex, flow);
6923         }
6924 }
6925
6926 void bnx2x_link_status_update(struct bnx2x_softc *sc)
6927 {
6928         if (sc->state != BNX2X_STATE_OPEN) {
6929                 return;
6930         }
6931
6932         if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
6933                 elink_link_status_update(&sc->link_params, &sc->link_vars);
6934         } else {
6935                 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
6936                                           ELINK_SUPPORTED_10baseT_Full |
6937                                           ELINK_SUPPORTED_100baseT_Half |
6938                                           ELINK_SUPPORTED_100baseT_Full |
6939                                           ELINK_SUPPORTED_1000baseT_Full |
6940                                           ELINK_SUPPORTED_2500baseX_Full |
6941                                           ELINK_SUPPORTED_10000baseT_Full |
6942                                           ELINK_SUPPORTED_TP |
6943                                           ELINK_SUPPORTED_FIBRE |
6944                                           ELINK_SUPPORTED_Autoneg |
6945                                           ELINK_SUPPORTED_Pause |
6946                                           ELINK_SUPPORTED_Asym_Pause);
6947                 sc->port.advertising[0] = sc->port.supported[0];
6948
6949                 sc->link_params.sc = sc;
6950                 sc->link_params.port = SC_PORT(sc);
6951                 sc->link_params.req_duplex[0] = DUPLEX_FULL;
6952                 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
6953                 sc->link_params.req_line_speed[0] = SPEED_10000;
6954                 sc->link_params.speed_cap_mask[0] = 0x7f0000;
6955                 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
6956
6957                 if (CHIP_REV_IS_FPGA(sc)) {
6958                         sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
6959                         sc->link_vars.line_speed = ELINK_SPEED_1000;
6960                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6961                                                      LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
6962                 } else {
6963                         sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
6964                         sc->link_vars.line_speed = ELINK_SPEED_10000;
6965                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6966                                                      LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
6967                 }
6968
6969                 sc->link_vars.link_up = 1;
6970
6971                 sc->link_vars.duplex = DUPLEX_FULL;
6972                 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
6973
6974                 if (IS_PF(sc)) {
6975                         REG_WR(sc,
6976                                NIG_REG_EGRESS_DRAIN0_MODE +
6977                                sc->link_params.port * 4, 0);
6978                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6979                         bnx2x_link_report(sc);
6980                 }
6981         }
6982
6983         if (IS_PF(sc)) {
6984                 if (sc->link_vars.link_up) {
6985                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6986                 } else {
6987                         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
6988                 }
6989                 bnx2x_link_report(sc);
6990         } else {
6991                 bnx2x_link_report(sc);
6992                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6993         }
6994 }
6995
6996 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
6997 {
6998         int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
6999         uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7000         struct elink_params *lp = &sc->link_params;
7001
7002         bnx2x_set_requested_fc(sc);
7003
7004         if (load_mode == LOAD_DIAG) {
7005                 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7006 /* Prefer doing PHY loopback at 10G speed, if possible */
7007                 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7008                         if (lp->speed_cap_mask[cfg_idx] &
7009                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7010                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7011                         } else {
7012                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7013                         }
7014                 }
7015         }
7016
7017         if (load_mode == LOAD_LOOPBACK_EXT) {
7018                 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7019         }
7020
7021         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7022
7023         bnx2x_calc_fc_adv(sc);
7024
7025         if (sc->link_vars.link_up) {
7026                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7027                 bnx2x_link_report(sc);
7028         }
7029
7030         sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7031         return rc;
7032 }
7033
7034 /* update flags in shmem */
7035 static void
7036 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7037 {
7038         uint32_t drv_flags;
7039
7040         if (SHMEM2_HAS(sc, drv_flags)) {
7041                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7042                 drv_flags = SHMEM2_RD(sc, drv_flags);
7043
7044                 if (set) {
7045                         drv_flags |= flags;
7046                 } else {
7047                         drv_flags &= ~flags;
7048                 }
7049
7050                 SHMEM2_WR(sc, drv_flags, drv_flags);
7051
7052                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7053         }
7054 }
7055
7056 /* periodic timer callout routine, only runs when the interface is up */
7057 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7058 {
7059         if ((sc->state != BNX2X_STATE_OPEN) ||
7060             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7061                 PMD_DRV_LOG(WARNING, "periodic callout exit (state=0x%x)",
7062                             sc->state);
7063                 return;
7064         }
7065         if (!CHIP_REV_IS_SLOW(sc)) {
7066 /*
7067  * This barrier is needed to ensure the ordering between the writing
7068  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7069  * the reading here.
7070  */
7071                 mb();
7072                 if (sc->port.pmf) {
7073                         elink_period_func(&sc->link_params, &sc->link_vars);
7074                 }
7075         }
7076 #ifdef BNX2X_PULSE
7077         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7078                 int mb_idx = SC_FW_MB_IDX(sc);
7079                 uint32_t drv_pulse;
7080                 uint32_t mcp_pulse;
7081
7082                 ++sc->fw_drv_pulse_wr_seq;
7083                 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7084
7085                 drv_pulse = sc->fw_drv_pulse_wr_seq;
7086                 bnx2x_drv_pulse(sc);
7087
7088                 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7089                              MCP_PULSE_SEQ_MASK);
7090
7091 /*
7092  * The delta between driver pulse and mcp response should
7093  * be 1 (before mcp response) or 0 (after mcp response).
7094  */
7095                 if ((drv_pulse != mcp_pulse) &&
7096                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7097                         /* someone lost a heartbeat... */
7098                         PMD_DRV_LOG(ERR,
7099                                     "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7100                                     drv_pulse, mcp_pulse);
7101                 }
7102         }
7103 #endif
7104 }
7105
7106 /* start the controller */
7107 static __rte_noinline
7108 int bnx2x_nic_load(struct bnx2x_softc *sc)
7109 {
7110         uint32_t val;
7111         uint32_t load_code = 0;
7112         int i, rc = 0;
7113
7114         PMD_INIT_FUNC_TRACE();
7115
7116         sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7117
7118         if (IS_PF(sc)) {
7119 /* must be called before memory allocation and HW init */
7120                 bnx2x_ilt_set_info(sc);
7121         }
7122
7123         bnx2x_set_fp_rx_buf_size(sc);
7124
7125         if (IS_PF(sc)) {
7126                 if (bnx2x_alloc_mem(sc) != 0) {
7127                         sc->state = BNX2X_STATE_CLOSED;
7128                         rc = -ENOMEM;
7129                         goto bnx2x_nic_load_error0;
7130                 }
7131         }
7132
7133         if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7134                 sc->state = BNX2X_STATE_CLOSED;
7135                 rc = -ENOMEM;
7136                 goto bnx2x_nic_load_error0;
7137         }
7138
7139         if (IS_VF(sc)) {
7140                 rc = bnx2x_vf_init(sc);
7141                 if (rc) {
7142                         sc->state = BNX2X_STATE_ERROR;
7143                         goto bnx2x_nic_load_error0;
7144                 }
7145         }
7146
7147         if (IS_PF(sc)) {
7148 /* set pf load just before approaching the MCP */
7149                 bnx2x_set_pf_load(sc);
7150
7151 /* if MCP exists send load request and analyze response */
7152                 if (!BNX2X_NOMCP(sc)) {
7153                         /* attempt to load pf */
7154                         if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7155                                 sc->state = BNX2X_STATE_CLOSED;
7156                                 rc = -ENXIO;
7157                                 goto bnx2x_nic_load_error1;
7158                         }
7159
7160                         /* what did the MCP say? */
7161                         if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7162                                 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7163                                 sc->state = BNX2X_STATE_CLOSED;
7164                                 rc = -ENXIO;
7165                                 goto bnx2x_nic_load_error2;
7166                         }
7167                 } else {
7168                         PMD_DRV_LOG(INFO, "Device has no MCP!");
7169                         load_code = bnx2x_nic_load_no_mcp(sc);
7170                 }
7171
7172 /* mark PMF if applicable */
7173                 bnx2x_nic_load_pmf(sc, load_code);
7174
7175 /* Init Function state controlling object */
7176                 bnx2x_init_func_obj(sc);
7177
7178 /* Initialize HW */
7179                 if (bnx2x_init_hw(sc, load_code) != 0) {
7180                         PMD_DRV_LOG(NOTICE, "HW init failed");
7181                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7182                         sc->state = BNX2X_STATE_CLOSED;
7183                         rc = -ENXIO;
7184                         goto bnx2x_nic_load_error2;
7185                 }
7186         }
7187
7188         bnx2x_nic_init(sc, load_code);
7189
7190         /* Init per-function objects */
7191         if (IS_PF(sc)) {
7192                 bnx2x_init_objs(sc);
7193
7194 /* set AFEX default VLAN tag to an invalid value */
7195                 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7196
7197                 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7198                 rc = bnx2x_func_start(sc);
7199                 if (rc) {
7200                         PMD_DRV_LOG(NOTICE, "Function start failed!");
7201                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7202                         sc->state = BNX2X_STATE_ERROR;
7203                         goto bnx2x_nic_load_error3;
7204                 }
7205
7206 /* send LOAD_DONE command to MCP */
7207                 if (!BNX2X_NOMCP(sc)) {
7208                         load_code =
7209                             bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7210                         if (!load_code) {
7211                                 PMD_DRV_LOG(NOTICE,
7212                                             "MCP response failure, aborting");
7213                                 sc->state = BNX2X_STATE_ERROR;
7214                                 rc = -ENXIO;
7215                                 goto bnx2x_nic_load_error3;
7216                         }
7217                 }
7218         }
7219
7220         rc = bnx2x_setup_leading(sc);
7221         if (rc) {
7222                 PMD_DRV_LOG(NOTICE, "Setup leading failed!");
7223                 sc->state = BNX2X_STATE_ERROR;
7224                 goto bnx2x_nic_load_error3;
7225         }
7226
7227         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7228                 if (IS_PF(sc))
7229                         rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7230                 else            /* IS_VF(sc) */
7231                         rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7232
7233                 if (rc) {
7234                         PMD_DRV_LOG(NOTICE, "Queue(%d) setup failed", i);
7235                         sc->state = BNX2X_STATE_ERROR;
7236                         goto bnx2x_nic_load_error3;
7237                 }
7238         }
7239
7240         rc = bnx2x_init_rss_pf(sc);
7241         if (rc) {
7242                 PMD_DRV_LOG(NOTICE, "PF RSS init failed");
7243                 sc->state = BNX2X_STATE_ERROR;
7244                 goto bnx2x_nic_load_error3;
7245         }
7246
7247         /* now when Clients are configured we are ready to work */
7248         sc->state = BNX2X_STATE_OPEN;
7249
7250         /* Configure a ucast MAC */
7251         if (IS_PF(sc)) {
7252                 rc = bnx2x_set_eth_mac(sc, TRUE);
7253         } else {                /* IS_VF(sc) */
7254                 rc = bnx2x_vf_set_mac(sc, TRUE);
7255         }
7256
7257         if (rc) {
7258                 PMD_DRV_LOG(NOTICE, "Setting Ethernet MAC failed");
7259                 sc->state = BNX2X_STATE_ERROR;
7260                 goto bnx2x_nic_load_error3;
7261         }
7262
7263         if (sc->port.pmf) {
7264                 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7265                 if (rc) {
7266                         sc->state = BNX2X_STATE_ERROR;
7267                         goto bnx2x_nic_load_error3;
7268                 }
7269         }
7270
7271         sc->link_params.feature_config_flags &=
7272             ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7273
7274         /* start the Tx */
7275         switch (LOAD_OPEN) {
7276         case LOAD_NORMAL:
7277         case LOAD_OPEN:
7278                 break;
7279
7280         case LOAD_DIAG:
7281         case LOAD_LOOPBACK_EXT:
7282                 sc->state = BNX2X_STATE_DIAG;
7283                 break;
7284
7285         default:
7286                 break;
7287         }
7288
7289         if (sc->port.pmf) {
7290                 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7291         } else {
7292                 bnx2x_link_status_update(sc);
7293         }
7294
7295         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7296 /* mark driver is loaded in shmem2 */
7297                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7298                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7299                           (val |
7300                            DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7301                            DRV_FLAGS_CAPABILITIES_LOADED_L2));
7302         }
7303
7304         /* start fast path */
7305         /* Initialize Rx filter */
7306         bnx2x_set_rx_mode(sc);
7307
7308         /* wait for all pending SP commands to complete */
7309         if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7310                 PMD_DRV_LOG(NOTICE, "Timeout waiting for all SPs to complete!");
7311                 bnx2x_periodic_stop(sc);
7312                 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7313                 return -ENXIO;
7314         }
7315
7316         PMD_DRV_LOG(DEBUG, "NIC successfully loaded");
7317
7318         return 0;
7319
7320 bnx2x_nic_load_error3:
7321
7322         if (IS_PF(sc)) {
7323                 bnx2x_int_disable_sync(sc, 1);
7324
7325 /* clean out queued objects */
7326                 bnx2x_squeeze_objects(sc);
7327         }
7328
7329 bnx2x_nic_load_error2:
7330
7331         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7332                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7333                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7334         }
7335
7336         sc->port.pmf = 0;
7337
7338 bnx2x_nic_load_error1:
7339
7340         /* clear pf_load status, as it was already set */
7341         if (IS_PF(sc)) {
7342                 bnx2x_clear_pf_load(sc);
7343         }
7344
7345 bnx2x_nic_load_error0:
7346
7347         bnx2x_free_fw_stats_mem(sc);
7348         bnx2x_free_mem(sc);
7349
7350         return rc;
7351 }
7352
7353 /*
7354 * Handles controller initialization.
7355 */
7356 int bnx2x_init(struct bnx2x_softc *sc)
7357 {
7358         int other_engine = SC_PATH(sc) ? 0 : 1;
7359         uint8_t other_load_status, load_status;
7360         uint8_t global = FALSE;
7361         int rc;
7362
7363         /* Check if the driver is still running and bail out if it is. */
7364         if (sc->state != BNX2X_STATE_CLOSED) {
7365                 PMD_DRV_LOG(DEBUG, "Init called while driver is running!");
7366                 rc = 0;
7367                 goto bnx2x_init_done;
7368         }
7369
7370         bnx2x_set_power_state(sc, PCI_PM_D0);
7371
7372         /*
7373          * If parity occurred during the unload, then attentions and/or
7374          * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7375          * loaded on the current engine to complete the recovery. Parity recovery
7376          * is only relevant for PF driver.
7377          */
7378         if (IS_PF(sc)) {
7379                 other_load_status = bnx2x_get_load_status(sc, other_engine);
7380                 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7381
7382                 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7383                     bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7384                         do {
7385                                 /*
7386                                  * If there are attentions and they are in global blocks, set
7387                                  * the GLOBAL_RESET bit regardless whether it will be this
7388                                  * function that will complete the recovery or not.
7389                                  */
7390                                 if (global) {
7391                                         bnx2x_set_reset_global(sc);
7392                                 }
7393
7394                                 /*
7395                                  * Only the first function on the current engine should try
7396                                  * to recover in open. In case of attentions in global blocks
7397                                  * only the first in the chip should try to recover.
7398                                  */
7399                                 if ((!load_status
7400                                      && (!global ||!other_load_status))
7401                                     && bnx2x_trylock_leader_lock(sc)
7402                                     && !bnx2x_leader_reset(sc)) {
7403                                         PMD_DRV_LOG(INFO,
7404                                                     "Recovered during init");
7405                                         break;
7406                                 }
7407
7408                                 /* recovery has failed... */
7409                                 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7410
7411                                 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7412
7413                                 PMD_DRV_LOG(NOTICE,
7414                                             "Recovery flow hasn't properly "
7415                                             "completed yet, try again later. "
7416                                             "If you still see this message after a "
7417                                             "few retries then power cycle is required.");
7418
7419                                 rc = -ENXIO;
7420                                 goto bnx2x_init_done;
7421                         } while (0);
7422                 }
7423         }
7424
7425         sc->recovery_state = BNX2X_RECOVERY_DONE;
7426
7427         rc = bnx2x_nic_load(sc);
7428
7429 bnx2x_init_done:
7430
7431         if (rc) {
7432                 PMD_DRV_LOG(NOTICE, "Initialization failed, "
7433                             "stack notified driver is NOT running!");
7434         }
7435
7436         return rc;
7437 }
7438
7439 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7440 {
7441         uint32_t val = 0;
7442
7443         /*
7444          * Read the ME register to get the function number. The ME register
7445          * holds the relative-function number and absolute-function number. The
7446          * absolute-function number appears only in E2 and above. Before that
7447          * these bits always contained zero, therefore we cannot blindly use them.
7448          */
7449
7450         val = REG_RD(sc, BAR_ME_REGISTER);
7451
7452         sc->pfunc_rel =
7453             (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7454         sc->path_id =
7455             (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7456             1;
7457
7458         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7459                 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7460         } else {
7461                 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7462         }
7463
7464         PMD_DRV_LOG(DEBUG,
7465                     "Relative function %d, Absolute function %d, Path %d",
7466                     sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7467 }
7468
7469 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7470 {
7471         uint32_t shmem2_size;
7472         uint32_t offset;
7473         uint32_t mf_cfg_offset_value;
7474
7475         /* Non 57712 */
7476         offset = (SHMEM_ADDR(sc, func_mb) +
7477                   (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7478
7479         /* 57712 plus */
7480         if (sc->devinfo.shmem2_base != 0) {
7481                 shmem2_size = SHMEM2_RD(sc, size);
7482                 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7483                         mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7484                         if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7485                                 offset = mf_cfg_offset_value;
7486                         }
7487                 }
7488         }
7489
7490         return offset;
7491 }
7492
7493 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7494 {
7495         uint32_t ret;
7496         struct bnx2x_pci_cap *caps;
7497
7498         /* ensure PCIe capability is enabled */
7499         caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7500         if (NULL != caps) {
7501                 PMD_DRV_LOG(DEBUG, "Found PCIe capability: "
7502                             "id=0x%04X type=0x%04X addr=0x%08X",
7503                             caps->id, caps->type, caps->addr);
7504                 pci_read(sc, (caps->addr + reg), &ret, 2);
7505                 return ret;
7506         }
7507
7508         PMD_DRV_LOG(WARNING, "PCIe capability NOT FOUND!!!");
7509
7510         return 0;
7511 }
7512
7513 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7514 {
7515         return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7516                 PCIM_EXP_STA_TRANSACTION_PND;
7517 }
7518
7519 /*
7520 * Walk the PCI capabiites list for the device to find what features are
7521 * supported. These capabilites may be enabled/disabled by firmware so it's
7522 * best to walk the list rather than make assumptions.
7523 */
7524 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7525 {
7526         PMD_INIT_FUNC_TRACE();
7527
7528         struct bnx2x_pci_cap *caps;
7529         uint16_t link_status;
7530         int reg = 0;
7531
7532         /* check if PCI Power Management is enabled */
7533         caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7534         if (NULL != caps) {
7535                 PMD_DRV_LOG(DEBUG, "Found PM capability: "
7536                             "id=0x%04X type=0x%04X addr=0x%08X",
7537                             caps->id, caps->type, caps->addr);
7538
7539                 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7540                 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7541         }
7542
7543         link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7544
7545         sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7546         sc->devinfo.pcie_link_width =
7547             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7548
7549         PMD_DRV_LOG(DEBUG, "PCIe link speed=%d width=%d",
7550                     sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7551
7552         sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7553
7554         /* check if MSI capability is enabled */
7555         caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7556         if (NULL != caps) {
7557                 PMD_DRV_LOG(DEBUG, "Found MSI capability at 0x%04x", reg);
7558
7559                 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7560                 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7561         }
7562
7563         /* check if MSI-X capability is enabled */
7564         caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7565         if (NULL != caps) {
7566                 PMD_DRV_LOG(DEBUG, "Found MSI-X capability at 0x%04x", reg);
7567
7568                 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7569                 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7570         }
7571 }
7572
7573 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7574 {
7575         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7576         uint32_t val;
7577
7578         /* get the outer vlan if we're in switch-dependent mode */
7579
7580         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7581         mf_info->ext_id = (uint16_t) val;
7582
7583         mf_info->multi_vnics_mode = 1;
7584
7585         if (!VALID_OVLAN(mf_info->ext_id)) {
7586                 PMD_DRV_LOG(NOTICE, "Invalid VLAN (%d)", mf_info->ext_id);
7587                 return 1;
7588         }
7589
7590         /* get the capabilities */
7591         if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7592             FUNC_MF_CFG_PROTOCOL_ISCSI) {
7593                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7594         } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7595                    == FUNC_MF_CFG_PROTOCOL_FCOE) {
7596                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7597         } else {
7598                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7599         }
7600
7601         mf_info->vnics_per_port =
7602             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7603
7604         return 0;
7605 }
7606
7607 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7608 {
7609         uint32_t retval = 0;
7610         uint32_t val;
7611
7612         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7613
7614         if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7615                 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7616                         retval |= MF_PROTO_SUPPORT_ETHERNET;
7617                 }
7618                 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7619                         retval |= MF_PROTO_SUPPORT_ISCSI;
7620                 }
7621                 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7622                         retval |= MF_PROTO_SUPPORT_FCOE;
7623                 }
7624         }
7625
7626         return retval;
7627 }
7628
7629 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7630 {
7631         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7632         uint32_t val;
7633
7634         /*
7635          * There is no outer vlan if we're in switch-independent mode.
7636          * If the mac is valid then assume multi-function.
7637          */
7638
7639         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7640
7641         mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7642
7643         mf_info->mf_protos_supported =
7644             bnx2x_get_shmem_ext_proto_support_flags(sc);
7645
7646         mf_info->vnics_per_port =
7647             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7648
7649         return 0;
7650 }
7651
7652 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7653 {
7654         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7655         uint32_t e1hov_tag;
7656         uint32_t func_config;
7657         uint32_t niv_config;
7658
7659         mf_info->multi_vnics_mode = 1;
7660
7661         e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7662         func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7663         niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7664
7665         mf_info->ext_id =
7666             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7667                         FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7668
7669         mf_info->default_vlan =
7670             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7671                         FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7672
7673         mf_info->niv_allowed_priorities =
7674             (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7675                        FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7676
7677         mf_info->niv_default_cos =
7678             (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7679                        FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7680
7681         mf_info->afex_vlan_mode =
7682             ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7683              FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7684
7685         mf_info->niv_mba_enabled =
7686             ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7687              FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7688
7689         mf_info->mf_protos_supported =
7690             bnx2x_get_shmem_ext_proto_support_flags(sc);
7691
7692         mf_info->vnics_per_port =
7693             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7694
7695         return 0;
7696 }
7697
7698 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7699 {
7700         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7701         uint32_t mf_cfg1;
7702         uint32_t mf_cfg2;
7703         uint32_t ovlan1;
7704         uint32_t ovlan2;
7705         uint8_t i, j;
7706
7707         /* various MF mode sanity checks... */
7708
7709         if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7710                 PMD_DRV_LOG(NOTICE,
7711                             "Enumerated function %d is marked as hidden",
7712                             SC_PORT(sc));
7713                 return 1;
7714         }
7715
7716         if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7717                 PMD_DRV_LOG(NOTICE, "vnics_per_port=%d multi_vnics_mode=%d",
7718                             mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7719                 return 1;
7720         }
7721
7722         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7723 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7724                 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7725                         PMD_DRV_LOG(NOTICE, "mf_mode=SD vnic_id=%d ovlan=%d",
7726                                     SC_VN(sc), OVLAN(sc));
7727                         return 1;
7728                 }
7729
7730                 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7731                         PMD_DRV_LOG(NOTICE,
7732                                     "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7733                                     mf_info->multi_vnics_mode, OVLAN(sc));
7734                         return 1;
7735                 }
7736
7737 /*
7738  * Verify all functions are either MF or SF mode. If MF, make sure
7739  * sure that all non-hidden functions have a valid ovlan. If SF,
7740  * make sure that all non-hidden functions have an invalid ovlan.
7741  */
7742                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7743                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7744                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7745                         if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7746                             (((mf_info->multi_vnics_mode)
7747                               && !VALID_OVLAN(ovlan1))
7748                              || ((!mf_info->multi_vnics_mode)
7749                                  && VALID_OVLAN(ovlan1)))) {
7750                                 PMD_DRV_LOG(NOTICE,
7751                                             "mf_mode=SD function %d MF config "
7752                                             "mismatch, multi_vnics_mode=%d ovlan=%d",
7753                                             i, mf_info->multi_vnics_mode,
7754                                             ovlan1);
7755                                 return 1;
7756                         }
7757                 }
7758
7759 /* Verify all funcs on the same port each have a different ovlan. */
7760                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7761                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7762                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7763                         /* iterate from the next function on the port to the max func */
7764                         for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7765                                 mf_cfg2 =
7766                                     MFCFG_RD(sc, func_mf_config[j].config);
7767                                 ovlan2 =
7768                                     MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7769                                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7770                                     && VALID_OVLAN(ovlan1)
7771                                     && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7772                                     && VALID_OVLAN(ovlan2)
7773                                     && (ovlan1 == ovlan2)) {
7774                                         PMD_DRV_LOG(NOTICE,
7775                                                     "mf_mode=SD functions %d and %d "
7776                                                     "have the same ovlan (%d)",
7777                                                     i, j, ovlan1);
7778                                         return 1;
7779                                 }
7780                         }
7781                 }
7782         }
7783         /* MULTI_FUNCTION_SD */
7784         return 0;
7785 }
7786
7787 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7788 {
7789         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7790         uint32_t val, mac_upper;
7791         uint8_t i, vnic;
7792
7793         /* initialize mf_info defaults */
7794         mf_info->vnics_per_port = 1;
7795         mf_info->multi_vnics_mode = FALSE;
7796         mf_info->path_has_ovlan = FALSE;
7797         mf_info->mf_mode = SINGLE_FUNCTION;
7798
7799         if (!CHIP_IS_MF_CAP(sc)) {
7800                 return 0;
7801         }
7802
7803         if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7804                 PMD_DRV_LOG(NOTICE, "Invalid mf_cfg_base!");
7805                 return 1;
7806         }
7807
7808         /* get the MF mode (switch dependent / independent / single-function) */
7809
7810         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7811
7812         switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7813         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7814
7815                 mac_upper =
7816                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7817
7818                 /* check for legal upper mac bytes */
7819                 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7820                         mf_info->mf_mode = MULTI_FUNCTION_SI;
7821                 } else {
7822                         PMD_DRV_LOG(NOTICE,
7823                                     "Invalid config for Switch Independent mode");
7824                 }
7825
7826                 break;
7827
7828         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7829         case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7830
7831                 /* get outer vlan configuration */
7832                 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7833
7834                 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7835                     FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7836                         mf_info->mf_mode = MULTI_FUNCTION_SD;
7837                 } else {
7838                         PMD_DRV_LOG(NOTICE,
7839                                     "Invalid config for Switch Dependent mode");
7840                 }
7841
7842                 break;
7843
7844         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7845
7846                 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7847                 return 0;
7848
7849         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7850
7851                 /*
7852                  * Mark MF mode as NIV if MCP version includes NPAR-SD support
7853                  * and the MAC address is valid.
7854                  */
7855                 mac_upper =
7856                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7857
7858                 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7859                     (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7860                         mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7861                 } else {
7862                         PMD_DRV_LOG(NOTICE, "Invalid config for AFEX mode");
7863                 }
7864
7865                 break;
7866
7867         default:
7868
7869                 PMD_DRV_LOG(NOTICE, "Unknown MF mode (0x%08x)",
7870                             (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7871
7872                 return 1;
7873         }
7874
7875         /* set path mf_mode (which could be different than function mf_mode) */
7876         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7877                 mf_info->path_has_ovlan = TRUE;
7878         } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7879 /*
7880  * Decide on path multi vnics mode. If we're not in MF mode and in
7881  * 4-port mode, this is good enough to check vnic-0 of the other port
7882  * on the same path
7883  */
7884                 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7885                         uint8_t other_port = !(PORT_ID(sc) & 1);
7886                         uint8_t abs_func_other_port =
7887                             (SC_PATH(sc) + (2 * other_port));
7888
7889                         val =
7890                             MFCFG_RD(sc,
7891                                      func_mf_config
7892                                      [abs_func_other_port].e1hov_tag);
7893
7894                         mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7895                 }
7896         }
7897
7898         if (mf_info->mf_mode == SINGLE_FUNCTION) {
7899 /* invalid MF config */
7900                 if (SC_VN(sc) >= 1) {
7901                         PMD_DRV_LOG(NOTICE, "VNIC ID >= 1 in SF mode");
7902                         return 1;
7903                 }
7904
7905                 return 0;
7906         }
7907
7908         /* get the MF configuration */
7909         mf_info->mf_config[SC_VN(sc)] =
7910             MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7911
7912         switch (mf_info->mf_mode) {
7913         case MULTI_FUNCTION_SD:
7914
7915                 bnx2x_get_shmem_mf_cfg_info_sd(sc);
7916                 break;
7917
7918         case MULTI_FUNCTION_SI:
7919
7920                 bnx2x_get_shmem_mf_cfg_info_si(sc);
7921                 break;
7922
7923         case MULTI_FUNCTION_AFEX:
7924
7925                 bnx2x_get_shmem_mf_cfg_info_niv(sc);
7926                 break;
7927
7928         default:
7929
7930                 PMD_DRV_LOG(NOTICE, "Get MF config failed (mf_mode=0x%08x)",
7931                             mf_info->mf_mode);
7932                 return 1;
7933         }
7934
7935         /* get the congestion management parameters */
7936
7937         vnic = 0;
7938         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7939 /* get min/max bw */
7940                 val = MFCFG_RD(sc, func_mf_config[i].config);
7941                 mf_info->min_bw[vnic] =
7942                     ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
7943                      FUNC_MF_CFG_MIN_BW_SHIFT);
7944                 mf_info->max_bw[vnic] =
7945                     ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
7946                      FUNC_MF_CFG_MAX_BW_SHIFT);
7947                 vnic++;
7948         }
7949
7950         return bnx2x_check_valid_mf_cfg(sc);
7951 }
7952
7953 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
7954 {
7955         int port;
7956         uint32_t mac_hi, mac_lo, val;
7957
7958         PMD_INIT_FUNC_TRACE();
7959
7960         port = SC_PORT(sc);
7961         mac_hi = mac_lo = 0;
7962
7963         sc->link_params.sc = sc;
7964         sc->link_params.port = port;
7965
7966         /* get the hardware config info */
7967         sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
7968         sc->devinfo.hw_config2 =
7969             SHMEM_RD(sc, dev_info.shared_hw_config.config2);
7970
7971         sc->link_params.hw_led_mode =
7972             ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
7973              SHARED_HW_CFG_LED_MODE_SHIFT);
7974
7975         /* get the port feature config */
7976         sc->port.config =
7977             SHMEM_RD(sc, dev_info.port_feature_config[port].config);
7978
7979         /* get the link params */
7980         sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
7981             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
7982             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
7983         sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
7984             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
7985             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
7986
7987         /* get the lane config */
7988         sc->link_params.lane_config =
7989             SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
7990
7991         /* get the link config */
7992         val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
7993         sc->port.link_config[ELINK_INT_PHY] = val;
7994         sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
7995         sc->port.link_config[ELINK_EXT_PHY1] =
7996             SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
7997
7998         /* get the override preemphasis flag and enable it or turn it off */
7999         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8000         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8001                 sc->link_params.feature_config_flags |=
8002                     ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8003         } else {
8004                 sc->link_params.feature_config_flags &=
8005                     ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8006         }
8007
8008         /* get the initial value of the link params */
8009         sc->link_params.multi_phy_config =
8010             SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8011
8012         /* get external phy info */
8013         sc->port.ext_phy_config =
8014             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8015
8016         /* get the multifunction configuration */
8017         bnx2x_get_mf_cfg_info(sc);
8018
8019         /* get the mac address */
8020         if (IS_MF(sc)) {
8021                 mac_hi =
8022                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8023                 mac_lo =
8024                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8025         } else {
8026                 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8027                 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8028         }
8029
8030         if ((mac_lo == 0) && (mac_hi == 0)) {
8031                 *sc->mac_addr_str = 0;
8032                 PMD_DRV_LOG(NOTICE, "No Ethernet address programmed!");
8033         } else {
8034                 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8035                 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8036                 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8037                 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8038                 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8039                 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8040                 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8041                          "%02x:%02x:%02x:%02x:%02x:%02x",
8042                          sc->link_params.mac_addr[0],
8043                          sc->link_params.mac_addr[1],
8044                          sc->link_params.mac_addr[2],
8045                          sc->link_params.mac_addr[3],
8046                          sc->link_params.mac_addr[4],
8047                          sc->link_params.mac_addr[5]);
8048                 PMD_DRV_LOG(DEBUG, "Ethernet address: %s", sc->mac_addr_str);
8049         }
8050
8051         return 0;
8052 }
8053
8054 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8055 {
8056         uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8057         switch (sc->link_params.phy[phy_idx].media_type) {
8058         case ELINK_ETH_PHY_SFPP_10G_FIBER:
8059         case ELINK_ETH_PHY_SFP_1G_FIBER:
8060         case ELINK_ETH_PHY_XFP_FIBER:
8061         case ELINK_ETH_PHY_KR:
8062         case ELINK_ETH_PHY_CX4:
8063                 PMD_DRV_LOG(INFO, "Found 10GBase-CX4 media.");
8064                 sc->media = IFM_10G_CX4;
8065                 break;
8066         case ELINK_ETH_PHY_DA_TWINAX:
8067                 PMD_DRV_LOG(INFO, "Found 10Gb Twinax media.");
8068                 sc->media = IFM_10G_TWINAX;
8069                 break;
8070         case ELINK_ETH_PHY_BASE_T:
8071                 PMD_DRV_LOG(INFO, "Found 10GBase-T media.");
8072                 sc->media = IFM_10G_T;
8073                 break;
8074         case ELINK_ETH_PHY_NOT_PRESENT:
8075                 PMD_DRV_LOG(INFO, "Media not present.");
8076                 sc->media = 0;
8077                 break;
8078         case ELINK_ETH_PHY_UNSPECIFIED:
8079         default:
8080                 PMD_DRV_LOG(INFO, "Unknown media!");
8081                 sc->media = 0;
8082                 break;
8083         }
8084 }
8085
8086 #define GET_FIELD(value, fname)                     \
8087 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8088 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8089 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8090
8091 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8092 {
8093         int pfid = SC_FUNC(sc);
8094         int igu_sb_id;
8095         uint32_t val;
8096         uint8_t fid, igu_sb_cnt = 0;
8097
8098         sc->igu_base_sb = 0xff;
8099
8100         if (CHIP_INT_MODE_IS_BC(sc)) {
8101                 int vn = SC_VN(sc);
8102                 igu_sb_cnt = sc->igu_sb_cnt;
8103                 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8104                                    FP_SB_MAX_E1x);
8105                 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8106                                   (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8107                 return 0;
8108         }
8109
8110         /* IGU in normal mode - read CAM */
8111         for (igu_sb_id = 0;
8112              igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8113                 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8114                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8115                         continue;
8116                 }
8117                 fid = IGU_FID(val);
8118                 if (fid & IGU_FID_ENCODE_IS_PF) {
8119                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8120                                 continue;
8121                         }
8122                         if (IGU_VEC(val) == 0) {
8123                                 /* default status block */
8124                                 sc->igu_dsb_id = igu_sb_id;
8125                         } else {
8126                                 if (sc->igu_base_sb == 0xff) {
8127                                         sc->igu_base_sb = igu_sb_id;
8128                                 }
8129                                 igu_sb_cnt++;
8130                         }
8131                 }
8132         }
8133
8134         /*
8135          * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8136          * that number of CAM entries will not be equal to the value advertised in
8137          * PCI. Driver should use the minimal value of both as the actual status
8138          * block count
8139          */
8140         sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8141
8142         if (igu_sb_cnt == 0) {
8143                 PMD_DRV_LOG(ERR, "CAM configuration error");
8144                 return -1;
8145         }
8146
8147         return 0;
8148 }
8149
8150 /*
8151 * Gather various information from the device config space, the device itself,
8152 * shmem, and the user input.
8153 */
8154 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8155 {
8156         uint32_t val;
8157         int rc;
8158
8159         /* get the chip revision (chip metal comes from pci config space) */
8160         sc->devinfo.chip_id = sc->link_params.chip_id =
8161             (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8162              ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8163              (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8164              ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8165
8166         /* force 57811 according to MISC register */
8167         if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8168                 if (CHIP_IS_57810(sc)) {
8169                         sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8170                                                (sc->
8171                                                 devinfo.chip_id & 0x0000ffff));
8172                 } else if (CHIP_IS_57810_MF(sc)) {
8173                         sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8174                                                (sc->
8175                                                 devinfo.chip_id & 0x0000ffff));
8176                 }
8177                 sc->devinfo.chip_id |= 0x1;
8178         }
8179
8180         PMD_DRV_LOG(DEBUG,
8181                     "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8182                     sc->devinfo.chip_id,
8183                     ((sc->devinfo.chip_id >> 16) & 0xffff),
8184                     ((sc->devinfo.chip_id >> 12) & 0xf),
8185                     ((sc->devinfo.chip_id >> 4) & 0xff),
8186                     ((sc->devinfo.chip_id >> 0) & 0xf));
8187
8188         val = (REG_RD(sc, 0x2874) & 0x55);
8189         if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8190                 sc->flags |= BNX2X_ONE_PORT_FLAG;
8191                 PMD_DRV_LOG(DEBUG, "single port device");
8192         }
8193
8194         /* set the doorbell size */
8195         sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8196
8197         /* determine whether the device is in 2 port or 4 port mode */
8198         sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;       /* E1h */
8199         if (CHIP_IS_E2E3(sc)) {
8200 /*
8201  * Read port4mode_en_ovwr[0]:
8202  *   If 1, four port mode is in port4mode_en_ovwr[1].
8203  *   If 0, four port mode is in port4mode_en[0].
8204  */
8205                 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8206                 if (val & 1) {
8207                         val = ((val >> 1) & 1);
8208                 } else {
8209                         val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8210                 }
8211
8212                 sc->devinfo.chip_port_mode =
8213                     (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8214
8215                 PMD_DRV_LOG(DEBUG, "Port mode = %s", (val) ? "4" : "2");
8216         }
8217
8218         /* get the function and path info for the device */
8219         bnx2x_get_function_num(sc);
8220
8221         /* get the shared memory base address */
8222         sc->devinfo.shmem_base =
8223             sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8224         sc->devinfo.shmem2_base =
8225             REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8226                         MISC_REG_GENERIC_CR_0));
8227
8228         if (!sc->devinfo.shmem_base) {
8229 /* this should ONLY prevent upcoming shmem reads */
8230                 PMD_DRV_LOG(INFO, "MCP not active");
8231                 sc->flags |= BNX2X_NO_MCP_FLAG;
8232                 return 0;
8233         }
8234
8235         /* make sure the shared memory contents are valid */
8236         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8237         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8238             (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8239                 PMD_DRV_LOG(NOTICE, "Invalid SHMEM validity signature: 0x%08x",
8240                             val);
8241                 return 0;
8242         }
8243
8244         /* get the bootcode version */
8245         sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8246         snprintf(sc->devinfo.bc_ver_str,
8247                  sizeof(sc->devinfo.bc_ver_str),
8248                  "%d.%d.%d",
8249                  ((sc->devinfo.bc_ver >> 24) & 0xff),
8250                  ((sc->devinfo.bc_ver >> 16) & 0xff),
8251                  ((sc->devinfo.bc_ver >> 8) & 0xff));
8252         PMD_DRV_LOG(INFO, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8253
8254         /* get the bootcode shmem address */
8255         sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8256
8257         /* clean indirect addresses as they're not used */
8258         pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8259         if (IS_PF(sc)) {
8260                 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8261                 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8262                 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8263                 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8264                 if (CHIP_IS_E1x(sc)) {
8265                         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8266                         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8267                         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8268                         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8269                 }
8270         }
8271
8272         /* get the nvram size */
8273         val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8274         sc->devinfo.flash_size =
8275             (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8276
8277         bnx2x_set_power_state(sc, PCI_PM_D0);
8278         /* get various configuration parameters from shmem */
8279         bnx2x_get_shmem_info(sc);
8280
8281         /* initialize IGU parameters */
8282         if (CHIP_IS_E1x(sc)) {
8283                 sc->devinfo.int_block = INT_BLOCK_HC;
8284                 sc->igu_dsb_id = DEF_SB_IGU_ID;
8285                 sc->igu_base_sb = 0;
8286         } else {
8287                 sc->devinfo.int_block = INT_BLOCK_IGU;
8288
8289 /* do not allow device reset during IGU info preocessing */
8290                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8291
8292                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8293
8294                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8295                         int tout = 5000;
8296
8297                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8298                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8299                         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8300
8301                         while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8302                                 tout--;
8303                                 DELAY(1000);
8304                         }
8305
8306                         if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8307                                 PMD_DRV_LOG(NOTICE,
8308                                             "FORCING IGU Normal Mode failed!!!");
8309                                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8310                                 return -1;
8311                         }
8312                 }
8313
8314                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8315                         PMD_DRV_LOG(DEBUG, "IGU Backward Compatible Mode");
8316                         sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8317                 } else {
8318                         PMD_DRV_LOG(DEBUG, "IGU Normal Mode");
8319                 }
8320
8321                 rc = bnx2x_get_igu_cam_info(sc);
8322
8323                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8324
8325                 if (rc) {
8326                         return rc;
8327                 }
8328         }
8329
8330         /*
8331          * Get base FW non-default (fast path) status block ID. This value is
8332          * used to initialize the fw_sb_id saved on the fp/queue structure to
8333          * determine the id used by the FW.
8334          */
8335         if (CHIP_IS_E1x(sc)) {
8336                 sc->base_fw_ndsb =
8337                     ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8338         } else {
8339 /*
8340  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8341  * the same queue are indicated on the same IGU SB). So we prefer
8342  * FW and IGU SBs to be the same value.
8343  */
8344                 sc->base_fw_ndsb = sc->igu_base_sb;
8345         }
8346
8347         elink_phy_probe(&sc->link_params);
8348
8349         return 0;
8350 }
8351
8352 static void
8353 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8354 {
8355         uint32_t cfg_size = 0;
8356         uint32_t idx;
8357         uint8_t port = SC_PORT(sc);
8358
8359         /* aggregation of supported attributes of all external phys */
8360         sc->port.supported[0] = 0;
8361         sc->port.supported[1] = 0;
8362
8363         switch (sc->link_params.num_phys) {
8364         case 1:
8365                 sc->port.supported[0] =
8366                     sc->link_params.phy[ELINK_INT_PHY].supported;
8367                 cfg_size = 1;
8368                 break;
8369         case 2:
8370                 sc->port.supported[0] =
8371                     sc->link_params.phy[ELINK_EXT_PHY1].supported;
8372                 cfg_size = 1;
8373                 break;
8374         case 3:
8375                 if (sc->link_params.multi_phy_config &
8376                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8377                         sc->port.supported[1] =
8378                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8379                         sc->port.supported[0] =
8380                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8381                 } else {
8382                         sc->port.supported[0] =
8383                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8384                         sc->port.supported[1] =
8385                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8386                 }
8387                 cfg_size = 2;
8388                 break;
8389         }
8390
8391         if (!(sc->port.supported[0] || sc->port.supported[1])) {
8392                 PMD_DRV_LOG(ERR,
8393                             "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8394                             SHMEM_RD(sc,
8395                                      dev_info.port_hw_config
8396                                      [port].external_phy_config),
8397                             SHMEM_RD(sc,
8398                                      dev_info.port_hw_config
8399                                      [port].external_phy_config2));
8400                 return;
8401         }
8402
8403         if (CHIP_IS_E3(sc))
8404                 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8405         else {
8406                 switch (switch_cfg) {
8407                 case ELINK_SWITCH_CFG_1G:
8408                         sc->port.phy_addr =
8409                             REG_RD(sc,
8410                                    NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8411                         break;
8412                 case ELINK_SWITCH_CFG_10G:
8413                         sc->port.phy_addr =
8414                             REG_RD(sc,
8415                                    NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8416                         break;
8417                 default:
8418                         PMD_DRV_LOG(ERR,
8419                                     "Invalid switch config in"
8420                                     "link_config=0x%08x",
8421                                     sc->port.link_config[0]);
8422                         return;
8423                 }
8424         }
8425
8426         PMD_DRV_LOG(INFO, "PHY addr 0x%08x", sc->port.phy_addr);
8427
8428         /* mask what we support according to speed_cap_mask per configuration */
8429         for (idx = 0; idx < cfg_size; idx++) {
8430                 if (!(sc->link_params.speed_cap_mask[idx] &
8431                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8432                         sc->port.supported[idx] &=
8433                             ~ELINK_SUPPORTED_10baseT_Half;
8434                 }
8435
8436                 if (!(sc->link_params.speed_cap_mask[idx] &
8437                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8438                         sc->port.supported[idx] &=
8439                             ~ELINK_SUPPORTED_10baseT_Full;
8440                 }
8441
8442                 if (!(sc->link_params.speed_cap_mask[idx] &
8443                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8444                         sc->port.supported[idx] &=
8445                             ~ELINK_SUPPORTED_100baseT_Half;
8446                 }
8447
8448                 if (!(sc->link_params.speed_cap_mask[idx] &
8449                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8450                         sc->port.supported[idx] &=
8451                             ~ELINK_SUPPORTED_100baseT_Full;
8452                 }
8453
8454                 if (!(sc->link_params.speed_cap_mask[idx] &
8455                       PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8456                         sc->port.supported[idx] &=
8457                             ~ELINK_SUPPORTED_1000baseT_Full;
8458                 }
8459
8460                 if (!(sc->link_params.speed_cap_mask[idx] &
8461                       PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8462                         sc->port.supported[idx] &=
8463                             ~ELINK_SUPPORTED_2500baseX_Full;
8464                 }
8465
8466                 if (!(sc->link_params.speed_cap_mask[idx] &
8467                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8468                         sc->port.supported[idx] &=
8469                             ~ELINK_SUPPORTED_10000baseT_Full;
8470                 }
8471
8472                 if (!(sc->link_params.speed_cap_mask[idx] &
8473                       PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8474                         sc->port.supported[idx] &=
8475                             ~ELINK_SUPPORTED_20000baseKR2_Full;
8476                 }
8477         }
8478
8479         PMD_DRV_LOG(INFO, "PHY supported 0=0x%08x 1=0x%08x",
8480                     sc->port.supported[0], sc->port.supported[1]);
8481 }
8482
8483 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8484 {
8485         uint32_t link_config;
8486         uint32_t idx;
8487         uint32_t cfg_size = 0;
8488
8489         sc->port.advertising[0] = 0;
8490         sc->port.advertising[1] = 0;
8491
8492         switch (sc->link_params.num_phys) {
8493         case 1:
8494         case 2:
8495                 cfg_size = 1;
8496                 break;
8497         case 3:
8498                 cfg_size = 2;
8499                 break;
8500         }
8501
8502         for (idx = 0; idx < cfg_size; idx++) {
8503                 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8504                 link_config = sc->port.link_config[idx];
8505
8506                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8507                 case PORT_FEATURE_LINK_SPEED_AUTO:
8508                         if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8509                                 sc->link_params.req_line_speed[idx] =
8510                                     ELINK_SPEED_AUTO_NEG;
8511                                 sc->port.advertising[idx] |=
8512                                     sc->port.supported[idx];
8513                                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8514                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8515                                         sc->port.advertising[idx] |=
8516                                             (ELINK_SUPPORTED_100baseT_Half |
8517                                              ELINK_SUPPORTED_100baseT_Full);
8518                         } else {
8519                                 /* force 10G, no AN */
8520                                 sc->link_params.req_line_speed[idx] =
8521                                     ELINK_SPEED_10000;
8522                                 sc->port.advertising[idx] |=
8523                                     (ADVERTISED_10000baseT_Full |
8524                                      ADVERTISED_FIBRE);
8525                                 continue;
8526                         }
8527                         break;
8528
8529                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8530                         if (sc->
8531                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8532                         {
8533                                 sc->link_params.req_line_speed[idx] =
8534                                     ELINK_SPEED_10;
8535                                 sc->port.advertising[idx] |=
8536                                     (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8537                         } else {
8538                                 PMD_DRV_LOG(ERR,
8539                                             "Invalid NVRAM config link_config=0x%08x "
8540                                             "speed_cap_mask=0x%08x",
8541                                             link_config,
8542                                             sc->
8543                                             link_params.speed_cap_mask[idx]);
8544                                 return;
8545                         }
8546                         break;
8547
8548                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8549                         if (sc->
8550                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8551                         {
8552                                 sc->link_params.req_line_speed[idx] =
8553                                     ELINK_SPEED_10;
8554                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8555                                 sc->port.advertising[idx] |=
8556                                     (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8557                         } else {
8558                                 PMD_DRV_LOG(ERR,
8559                                             "Invalid NVRAM config link_config=0x%08x "
8560                                             "speed_cap_mask=0x%08x",
8561                                             link_config,
8562                                             sc->
8563                                             link_params.speed_cap_mask[idx]);
8564                                 return;
8565                         }
8566                         break;
8567
8568                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8569                         if (sc->
8570                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8571                         {
8572                                 sc->link_params.req_line_speed[idx] =
8573                                     ELINK_SPEED_100;
8574                                 sc->port.advertising[idx] |=
8575                                     (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8576                         } else {
8577                                 PMD_DRV_LOG(ERR,
8578                                             "Invalid NVRAM config link_config=0x%08x "
8579                                             "speed_cap_mask=0x%08x",
8580                                             link_config,
8581                                             sc->
8582                                             link_params.speed_cap_mask[idx]);
8583                                 return;
8584                         }
8585                         break;
8586
8587                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8588                         if (sc->
8589                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8590                         {
8591                                 sc->link_params.req_line_speed[idx] =
8592                                     ELINK_SPEED_100;
8593                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8594                                 sc->port.advertising[idx] |=
8595                                     (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8596                         } else {
8597                                 PMD_DRV_LOG(ERR,
8598                                             "Invalid NVRAM config link_config=0x%08x "
8599                                             "speed_cap_mask=0x%08x",
8600                                             link_config,
8601                                             sc->
8602                                             link_params.speed_cap_mask[idx]);
8603                                 return;
8604                         }
8605                         break;
8606
8607                 case PORT_FEATURE_LINK_SPEED_1G:
8608                         if (sc->port.supported[idx] &
8609                             ELINK_SUPPORTED_1000baseT_Full) {
8610                                 sc->link_params.req_line_speed[idx] =
8611                                     ELINK_SPEED_1000;
8612                                 sc->port.advertising[idx] |=
8613                                     (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8614                         } else {
8615                                 PMD_DRV_LOG(ERR,
8616                                             "Invalid NVRAM config link_config=0x%08x "
8617                                             "speed_cap_mask=0x%08x",
8618                                             link_config,
8619                                             sc->
8620                                             link_params.speed_cap_mask[idx]);
8621                                 return;
8622                         }
8623                         break;
8624
8625                 case PORT_FEATURE_LINK_SPEED_2_5G:
8626                         if (sc->port.supported[idx] &
8627                             ELINK_SUPPORTED_2500baseX_Full) {
8628                                 sc->link_params.req_line_speed[idx] =
8629                                     ELINK_SPEED_2500;
8630                                 sc->port.advertising[idx] |=
8631                                     (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8632                         } else {
8633                                 PMD_DRV_LOG(ERR,
8634                                             "Invalid NVRAM config link_config=0x%08x "
8635                                             "speed_cap_mask=0x%08x",
8636                                             link_config,
8637                                             sc->
8638                                             link_params.speed_cap_mask[idx]);
8639                                 return;
8640                         }
8641                         break;
8642
8643                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8644                         if (sc->port.supported[idx] &
8645                             ELINK_SUPPORTED_10000baseT_Full) {
8646                                 sc->link_params.req_line_speed[idx] =
8647                                     ELINK_SPEED_10000;
8648                                 sc->port.advertising[idx] |=
8649                                     (ADVERTISED_10000baseT_Full |
8650                                      ADVERTISED_FIBRE);
8651                         } else {
8652                                 PMD_DRV_LOG(ERR,
8653                                             "Invalid NVRAM config link_config=0x%08x "
8654                                             "speed_cap_mask=0x%08x",
8655                                             link_config,
8656                                             sc->
8657                                             link_params.speed_cap_mask[idx]);
8658                                 return;
8659                         }
8660                         break;
8661
8662                 case PORT_FEATURE_LINK_SPEED_20G:
8663                         sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8664                         break;
8665
8666                 default:
8667                         PMD_DRV_LOG(ERR,
8668                                     "Invalid NVRAM config link_config=0x%08x "
8669                                     "speed_cap_mask=0x%08x", link_config,
8670                                     sc->link_params.speed_cap_mask[idx]);
8671                         sc->link_params.req_line_speed[idx] =
8672                             ELINK_SPEED_AUTO_NEG;
8673                         sc->port.advertising[idx] = sc->port.supported[idx];
8674                         break;
8675                 }
8676
8677                 sc->link_params.req_flow_ctrl[idx] =
8678                     (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8679
8680                 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8681                         if (!
8682                             (sc->
8683                              port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8684                                 sc->link_params.req_flow_ctrl[idx] =
8685                                     ELINK_FLOW_CTRL_NONE;
8686                         } else {
8687                                 bnx2x_set_requested_fc(sc);
8688                         }
8689                 }
8690         }
8691 }
8692
8693 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8694 {
8695         uint8_t port = SC_PORT(sc);
8696         uint32_t eee_mode;
8697
8698         PMD_INIT_FUNC_TRACE();
8699
8700         /* shmem data already read in bnx2x_get_shmem_info() */
8701
8702         bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8703         bnx2x_link_settings_requested(sc);
8704
8705         /* configure link feature according to nvram value */
8706         eee_mode =
8707             (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8708               & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8709              PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8710         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8711                 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8712                                             ELINK_EEE_MODE_ENABLE_LPI |
8713                                             ELINK_EEE_MODE_OUTPUT_TIME);
8714         } else {
8715                 sc->link_params.eee_mode = 0;
8716         }
8717
8718         /* get the media type */
8719         bnx2x_media_detect(sc);
8720 }
8721
8722 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8723 {
8724         uint32_t flags = MODE_ASIC | MODE_PORT2;
8725
8726         if (CHIP_IS_E2(sc)) {
8727                 flags |= MODE_E2;
8728         } else if (CHIP_IS_E3(sc)) {
8729                 flags |= MODE_E3;
8730                 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8731                         flags |= MODE_E3_A0;
8732                 } else {        /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8733
8734                         flags |= MODE_E3_B0 | MODE_COS3;
8735                 }
8736         }
8737
8738         if (IS_MF(sc)) {
8739                 flags |= MODE_MF;
8740                 switch (sc->devinfo.mf_info.mf_mode) {
8741                 case MULTI_FUNCTION_SD:
8742                         flags |= MODE_MF_SD;
8743                         break;
8744                 case MULTI_FUNCTION_SI:
8745                         flags |= MODE_MF_SI;
8746                         break;
8747                 case MULTI_FUNCTION_AFEX:
8748                         flags |= MODE_MF_AFEX;
8749                         break;
8750                 }
8751         } else {
8752                 flags |= MODE_SF;
8753         }
8754
8755 #if defined(__LITTLE_ENDIAN)
8756         flags |= MODE_LITTLE_ENDIAN;
8757 #else /* __BIG_ENDIAN */
8758         flags |= MODE_BIG_ENDIAN;
8759 #endif
8760
8761         INIT_MODE_FLAGS(sc) = flags;
8762 }
8763
8764 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8765 {
8766         struct bnx2x_fastpath *fp;
8767         char buf[32];
8768         uint32_t i;
8769
8770         if (IS_PF(sc)) {
8771 /************************/
8772 /* DEFAULT STATUS BLOCK */
8773 /************************/
8774
8775                 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8776                                   &sc->def_sb_dma, "def_sb",
8777                                   RTE_CACHE_LINE_SIZE) != 0) {
8778                         return -1;
8779                 }
8780
8781                 sc->def_sb =
8782                     (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8783 /***************/
8784 /* EVENT QUEUE */
8785 /***************/
8786
8787                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8788                                   &sc->eq_dma, "ev_queue",
8789                                   RTE_CACHE_LINE_SIZE) != 0) {
8790                         sc->def_sb = NULL;
8791                         return -1;
8792                 }
8793
8794                 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8795
8796 /*************/
8797 /* SLOW PATH */
8798 /*************/
8799
8800                 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8801                                   &sc->sp_dma, "sp",
8802                                   RTE_CACHE_LINE_SIZE) != 0) {
8803                         sc->eq = NULL;
8804                         sc->def_sb = NULL;
8805                         return -1;
8806                 }
8807
8808                 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8809
8810 /*******************/
8811 /* SLOW PATH QUEUE */
8812 /*******************/
8813
8814                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8815                                   &sc->spq_dma, "sp_queue",
8816                                   RTE_CACHE_LINE_SIZE) != 0) {
8817                         sc->sp = NULL;
8818                         sc->eq = NULL;
8819                         sc->def_sb = NULL;
8820                         return -1;
8821                 }
8822
8823                 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8824
8825 /***************************/
8826 /* FW DECOMPRESSION BUFFER */
8827 /***************************/
8828
8829                 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8830                                   "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8831                         sc->spq = NULL;
8832                         sc->sp = NULL;
8833                         sc->eq = NULL;
8834                         sc->def_sb = NULL;
8835                         return -1;
8836                 }
8837
8838                 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8839         }
8840
8841         /*************/
8842         /* FASTPATHS */
8843         /*************/
8844
8845         /* allocate DMA memory for each fastpath structure */
8846         for (i = 0; i < sc->num_queues; i++) {
8847                 fp = &sc->fp[i];
8848                 fp->sc = sc;
8849                 fp->index = i;
8850
8851 /*******************/
8852 /* FP STATUS BLOCK */
8853 /*******************/
8854
8855                 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8856                 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8857                                   &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8858                         PMD_DRV_LOG(NOTICE, "Failed to alloc %s", buf);
8859                         return -1;
8860                 } else {
8861                         if (CHIP_IS_E2E3(sc)) {
8862                                 fp->status_block.e2_sb =
8863                                     (struct host_hc_status_block_e2 *)
8864                                     fp->sb_dma.vaddr;
8865                         } else {
8866                                 fp->status_block.e1x_sb =
8867                                     (struct host_hc_status_block_e1x *)
8868                                     fp->sb_dma.vaddr;
8869                         }
8870                 }
8871         }
8872
8873         return 0;
8874 }
8875
8876 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8877 {
8878         struct bnx2x_fastpath *fp;
8879         int i;
8880
8881         for (i = 0; i < sc->num_queues; i++) {
8882                 fp = &sc->fp[i];
8883
8884 /*******************/
8885 /* FP STATUS BLOCK */
8886 /*******************/
8887
8888                 memset(&fp->status_block, 0, sizeof(fp->status_block));
8889         }
8890
8891         /***************************/
8892         /* FW DECOMPRESSION BUFFER */
8893         /***************************/
8894
8895         sc->gz_buf = NULL;
8896
8897         /*******************/
8898         /* SLOW PATH QUEUE */
8899         /*******************/
8900
8901         sc->spq = NULL;
8902
8903         /*************/
8904         /* SLOW PATH */
8905         /*************/
8906
8907         sc->sp = NULL;
8908
8909         /***************/
8910         /* EVENT QUEUE */
8911         /***************/
8912
8913         sc->eq = NULL;
8914
8915         /************************/
8916         /* DEFAULT STATUS BLOCK */
8917         /************************/
8918
8919         sc->def_sb = NULL;
8920
8921 }
8922
8923 /*
8924 * Previous driver DMAE transaction may have occurred when pre-boot stage
8925 * ended and boot began. This would invalidate the addresses of the
8926 * transaction, resulting in was-error bit set in the PCI causing all
8927 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
8928 * the interrupt which detected this from the pglueb and the was-done bit
8929 */
8930 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
8931 {
8932         uint32_t val;
8933
8934         if (!CHIP_IS_E1x(sc)) {
8935                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
8936                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
8937                         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
8938                                1 << SC_FUNC(sc));
8939                 }
8940         }
8941 }
8942
8943 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
8944 {
8945         uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
8946                                      DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
8947         if (!rc) {
8948                 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
8949                 return -1;
8950         }
8951
8952         return 0;
8953 }
8954
8955 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
8956 {
8957         struct bnx2x_prev_list_node *tmp;
8958
8959         LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
8960                 if ((sc->pcie_bus == tmp->bus) &&
8961                     (sc->pcie_device == tmp->slot) &&
8962                     (SC_PATH(sc) == tmp->path)) {
8963                         return tmp;
8964                 }
8965         }
8966
8967         return NULL;
8968 }
8969
8970 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
8971 {
8972         struct bnx2x_prev_list_node *tmp;
8973         int rc = FALSE;
8974
8975         rte_spinlock_lock(&bnx2x_prev_mtx);
8976
8977         tmp = bnx2x_prev_path_get_entry(sc);
8978         if (tmp) {
8979                 if (tmp->aer) {
8980                         PMD_DRV_LOG(DEBUG,
8981                                     "Path %d/%d/%d was marked by AER",
8982                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
8983                 } else {
8984                         rc = TRUE;
8985                         PMD_DRV_LOG(DEBUG,
8986                                     "Path %d/%d/%d was already cleaned from previous drivers",
8987                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
8988                 }
8989         }
8990
8991         rte_spinlock_unlock(&bnx2x_prev_mtx);
8992
8993         return rc;
8994 }
8995
8996 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
8997 {
8998         struct bnx2x_prev_list_node *tmp;
8999
9000         rte_spinlock_lock(&bnx2x_prev_mtx);
9001
9002         /* Check whether the entry for this path already exists */
9003         tmp = bnx2x_prev_path_get_entry(sc);
9004         if (tmp) {
9005                 if (!tmp->aer) {
9006                         PMD_DRV_LOG(DEBUG,
9007                                     "Re-marking AER in path %d/%d/%d",
9008                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9009                 } else {
9010                         PMD_DRV_LOG(DEBUG,
9011                                     "Removing AER indication from path %d/%d/%d",
9012                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9013                         tmp->aer = 0;
9014                 }
9015
9016                 rte_spinlock_unlock(&bnx2x_prev_mtx);
9017                 return 0;
9018         }
9019
9020         rte_spinlock_unlock(&bnx2x_prev_mtx);
9021
9022         /* Create an entry for this path and add it */
9023         tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9024                          RTE_CACHE_LINE_SIZE);
9025         if (!tmp) {
9026                 PMD_DRV_LOG(NOTICE, "Failed to allocate 'bnx2x_prev_list_node'");
9027                 return -1;
9028         }
9029
9030         tmp->bus = sc->pcie_bus;
9031         tmp->slot = sc->pcie_device;
9032         tmp->path = SC_PATH(sc);
9033         tmp->aer = 0;
9034         tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9035
9036         rte_spinlock_lock(&bnx2x_prev_mtx);
9037
9038         LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9039
9040         rte_spinlock_unlock(&bnx2x_prev_mtx);
9041
9042         return 0;
9043 }
9044
9045 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9046 {
9047         int i;
9048
9049         /* only E2 and onwards support FLR */
9050         if (CHIP_IS_E1x(sc)) {
9051                 PMD_DRV_LOG(WARNING, "FLR not supported in E1H");
9052                 return -1;
9053         }
9054
9055         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9056         if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9057                 PMD_DRV_LOG(WARNING,
9058                             "FLR not supported by BC_VER: 0x%08x",
9059                             sc->devinfo.bc_ver);
9060                 return -1;
9061         }
9062
9063         /* Wait for Transaction Pending bit clean */
9064         for (i = 0; i < 4; i++) {
9065                 if (i) {
9066                         DELAY(((1 << (i - 1)) * 100) * 1000);
9067                 }
9068
9069                 if (!bnx2x_is_pcie_pending(sc)) {
9070                         goto clear;
9071                 }
9072         }
9073
9074         PMD_DRV_LOG(NOTICE, "PCIE transaction is not cleared, "
9075                     "proceeding with reset anyway");
9076
9077 clear:
9078         bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9079
9080         return 0;
9081 }
9082
9083 struct bnx2x_mac_vals {
9084         uint32_t xmac_addr;
9085         uint32_t xmac_val;
9086         uint32_t emac_addr;
9087         uint32_t emac_val;
9088         uint32_t umac_addr;
9089         uint32_t umac_val;
9090         uint32_t bmac_addr;
9091         uint32_t bmac_val[2];
9092 };
9093
9094 static void
9095 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9096 {
9097         uint32_t val, base_addr, offset, mask, reset_reg;
9098         uint8_t mac_stopped = FALSE;
9099         uint8_t port = SC_PORT(sc);
9100         uint32_t wb_data[2];
9101
9102         /* reset addresses as they also mark which values were changed */
9103         vals->bmac_addr = 0;
9104         vals->umac_addr = 0;
9105         vals->xmac_addr = 0;
9106         vals->emac_addr = 0;
9107
9108         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9109
9110         if (!CHIP_IS_E3(sc)) {
9111                 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9112                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9113                 if ((mask & reset_reg) && val) {
9114                         base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9115                             : NIG_REG_INGRESS_BMAC0_MEM;
9116                         offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9117                             : BIGMAC_REGISTER_BMAC_CONTROL;
9118
9119                         /*
9120                          * use rd/wr since we cannot use dmae. This is safe
9121                          * since MCP won't access the bus due to the request
9122                          * to unload, and no function on the path can be
9123                          * loaded at this time.
9124                          */
9125                         wb_data[0] = REG_RD(sc, base_addr + offset);
9126                         wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9127                         vals->bmac_addr = base_addr + offset;
9128                         vals->bmac_val[0] = wb_data[0];
9129                         vals->bmac_val[1] = wb_data[1];
9130                         wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9131                         REG_WR(sc, vals->bmac_addr, wb_data[0]);
9132                         REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9133                 }
9134
9135                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9136                 vals->emac_val = REG_RD(sc, vals->emac_addr);
9137                 REG_WR(sc, vals->emac_addr, 0);
9138                 mac_stopped = TRUE;
9139         } else {
9140                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9141                         base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9142                         val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9143                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9144                                val & ~(1 << 1));
9145                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9146                                val | (1 << 1));
9147                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9148                         vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9149                         REG_WR(sc, vals->xmac_addr, 0);
9150                         mac_stopped = TRUE;
9151                 }
9152
9153                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9154                 if (mask & reset_reg) {
9155                         base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9156                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9157                         vals->umac_val = REG_RD(sc, vals->umac_addr);
9158                         REG_WR(sc, vals->umac_addr, 0);
9159                         mac_stopped = TRUE;
9160                 }
9161         }
9162
9163         if (mac_stopped) {
9164                 DELAY(20000);
9165         }
9166 }
9167
9168 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9169 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9170 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9171 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9172
9173 static void
9174 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9175 {
9176         uint16_t rcq, bd;
9177         uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9178
9179         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9180         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9181
9182         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9183         REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9184 }
9185
9186 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9187 {
9188         uint32_t reset_reg, tmp_reg = 0, rc;
9189         uint8_t prev_undi = FALSE;
9190         struct bnx2x_mac_vals mac_vals;
9191         uint32_t timer_count = 1000;
9192         uint32_t prev_brb;
9193
9194         /*
9195          * It is possible a previous function received 'common' answer,
9196          * but hasn't loaded yet, therefore creating a scenario of
9197          * multiple functions receiving 'common' on the same path.
9198          */
9199         memset(&mac_vals, 0, sizeof(mac_vals));
9200
9201         if (bnx2x_prev_is_path_marked(sc)) {
9202                 return bnx2x_prev_mcp_done(sc);
9203         }
9204
9205         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9206
9207         /* Reset should be performed after BRB is emptied */
9208         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9209                 /* Close the MAC Rx to prevent BRB from filling up */
9210                 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9211
9212                 /* close LLH filters towards the BRB */
9213                 elink_set_rx_filter(&sc->link_params, 0);
9214
9215                 /*
9216                  * Check if the UNDI driver was previously loaded.
9217                  * UNDI driver initializes CID offset for normal bell to 0x7
9218                  */
9219                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9220                         tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9221                         if (tmp_reg == 0x7) {
9222                                 PMD_DRV_LOG(DEBUG, "UNDI previously loaded");
9223                                 prev_undi = TRUE;
9224                                 /* clear the UNDI indication */
9225                                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9226                                 /* clear possible idle check errors */
9227                                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9228                         }
9229                 }
9230
9231                 /* wait until BRB is empty */
9232                 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9233                 while (timer_count) {
9234                         prev_brb = tmp_reg;
9235
9236                         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9237                         if (!tmp_reg) {
9238                                 break;
9239                         }
9240
9241                         PMD_DRV_LOG(DEBUG, "BRB still has 0x%08x", tmp_reg);
9242
9243                         /* reset timer as long as BRB actually gets emptied */
9244                         if (prev_brb > tmp_reg) {
9245                                 timer_count = 1000;
9246                         } else {
9247                                 timer_count--;
9248                         }
9249
9250                         /* If UNDI resides in memory, manually increment it */
9251                         if (prev_undi) {
9252                                 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9253                         }
9254
9255                         DELAY(10);
9256                 }
9257
9258                 if (!timer_count) {
9259                         PMD_DRV_LOG(NOTICE, "Failed to empty BRB");
9260                 }
9261         }
9262
9263         /* No packets are in the pipeline, path is ready for reset */
9264         bnx2x_reset_common(sc);
9265
9266         if (mac_vals.xmac_addr) {
9267                 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9268         }
9269         if (mac_vals.umac_addr) {
9270                 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9271         }
9272         if (mac_vals.emac_addr) {
9273                 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9274         }
9275         if (mac_vals.bmac_addr) {
9276                 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9277                 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9278         }
9279
9280         rc = bnx2x_prev_mark_path(sc, prev_undi);
9281         if (rc) {
9282                 bnx2x_prev_mcp_done(sc);
9283                 return rc;
9284         }
9285
9286         return bnx2x_prev_mcp_done(sc);
9287 }
9288
9289 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9290 {
9291         int rc;
9292
9293         /* Test if previous unload process was already finished for this path */
9294         if (bnx2x_prev_is_path_marked(sc)) {
9295                 return bnx2x_prev_mcp_done(sc);
9296         }
9297
9298         /*
9299          * If function has FLR capabilities, and existing FW version matches
9300          * the one required, then FLR will be sufficient to clean any residue
9301          * left by previous driver
9302          */
9303         rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9304         if (!rc) {
9305                 /* fw version is good */
9306                 rc = bnx2x_do_flr(sc);
9307         }
9308
9309         if (!rc) {
9310                 /* FLR was performed */
9311                 return 0;
9312         }
9313
9314         PMD_DRV_LOG(INFO, "Could not FLR");
9315
9316         /* Close the MCP request, return failure */
9317         rc = bnx2x_prev_mcp_done(sc);
9318         if (!rc) {
9319                 rc = BNX2X_PREV_WAIT_NEEDED;
9320         }
9321
9322         return rc;
9323 }
9324
9325 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9326 {
9327         int time_counter = 10;
9328         uint32_t fw, hw_lock_reg, hw_lock_val;
9329         uint32_t rc = 0;
9330
9331         /*
9332          * Clear HW from errors which may have resulted from an interrupted
9333          * DMAE transaction.
9334          */
9335         bnx2x_prev_interrupted_dmae(sc);
9336
9337         /* Release previously held locks */
9338         if (SC_FUNC(sc) <= 5)
9339                 hw_lock_reg = (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8);
9340         else
9341                 hw_lock_reg =
9342                     (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9343
9344         hw_lock_val = (REG_RD(sc, hw_lock_reg));
9345         if (hw_lock_val) {
9346                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9347                         REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9348                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9349                 }
9350                 REG_WR(sc, hw_lock_reg, 0xffffffff);
9351         }
9352
9353         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9354                 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9355         }
9356
9357         do {
9358                 /* Lock MCP using an unload request */
9359                 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9360                 if (!fw) {
9361                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
9362                         rc = -1;
9363                         break;
9364                 }
9365
9366                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9367                         rc = bnx2x_prev_unload_common(sc);
9368                         break;
9369                 }
9370
9371                 /* non-common reply from MCP might require looping */
9372                 rc = bnx2x_prev_unload_uncommon(sc);
9373                 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9374                         break;
9375                 }
9376
9377                 DELAY(20000);
9378         } while (--time_counter);
9379
9380         if (!time_counter || rc) {
9381                 PMD_DRV_LOG(NOTICE, "Failed to unload previous driver!");
9382                 rc = -1;
9383         }
9384
9385         return rc;
9386 }
9387
9388 static void
9389 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9390 {
9391         if (!CHIP_IS_E1x(sc)) {
9392                 sc->dcb_state = dcb_on;
9393                 sc->dcbx_enabled = dcbx_enabled;
9394         } else {
9395                 sc->dcb_state = FALSE;
9396                 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9397         }
9398         PMD_DRV_LOG(DEBUG,
9399                     "DCB state [%s:%s]",
9400                     dcb_on ? "ON" : "OFF",
9401                     (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9402                     (dcbx_enabled ==
9403                      BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9404                     : (dcbx_enabled ==
9405                        BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9406                     "on-chip with negotiation" : "invalid");
9407 }
9408
9409 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9410 {
9411         int cid_count = BNX2X_L2_MAX_CID(sc);
9412
9413         if (CNIC_SUPPORT(sc)) {
9414                 cid_count += CNIC_CID_MAX;
9415         }
9416
9417         return roundup(cid_count, QM_CID_ROUND);
9418 }
9419
9420 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9421 {
9422         int pri, cos;
9423
9424         uint32_t pri_map = 0;
9425
9426         for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9427                 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9428                 if (cos < sc->max_cos) {
9429                         sc->prio_to_cos[pri] = cos;
9430                 } else {
9431                         PMD_DRV_LOG(WARNING,
9432                                     "Invalid COS %d for priority %d "
9433                                     "(max COS is %d), setting to 0", cos, pri,
9434                                     (sc->max_cos - 1));
9435                         sc->prio_to_cos[pri] = 0;
9436                 }
9437         }
9438 }
9439
9440 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9441 {
9442         struct {
9443                 uint8_t id;
9444                 uint8_t next;
9445         } pci_cap;
9446         uint16_t status;
9447         struct bnx2x_pci_cap *cap;
9448
9449         cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9450                                          RTE_CACHE_LINE_SIZE);
9451         if (!cap) {
9452                 PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9453                 return -ENOMEM;
9454         }
9455
9456 #ifndef __FreeBSD__
9457         pci_read(sc, PCI_STATUS, &status, 2);
9458         if (!(status & PCI_STATUS_CAP_LIST)) {
9459 #else
9460         pci_read(sc, PCIR_STATUS, &status, 2);
9461         if (!(status & PCIM_STATUS_CAPPRESENT)) {
9462 #endif
9463                 PMD_DRV_LOG(NOTICE, "PCIe capability reading failed");
9464                 return -1;
9465         }
9466
9467 #ifndef __FreeBSD__
9468         pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9469 #else
9470         pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9471 #endif
9472         while (pci_cap.next) {
9473                 cap->addr = pci_cap.next & ~3;
9474                 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9475                 if (pci_cap.id == 0xff)
9476                         break;
9477                 cap->id = pci_cap.id;
9478                 cap->type = BNX2X_PCI_CAP;
9479                 cap->next = rte_zmalloc("pci_cap",
9480                                         sizeof(struct bnx2x_pci_cap),
9481                                         RTE_CACHE_LINE_SIZE);
9482                 if (!cap->next) {
9483                         PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9484                         return -ENOMEM;
9485                 }
9486                 cap = cap->next;
9487         }
9488
9489         return 0;
9490 }
9491
9492 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9493 {
9494         if (IS_VF(sc)) {
9495                 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9496                                         sc->igu_sb_cnt);
9497                 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9498                                         sc->igu_sb_cnt);
9499         } else {
9500                 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9501                 sc->max_tx_queues = sc->max_rx_queues;
9502         }
9503 }
9504
9505 #define FW_HEADER_LEN 104
9506 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9507 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9508
9509 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9510 {
9511         const char *fwname;
9512         int f;
9513         struct stat st;
9514
9515         fwname = sc->devinfo.device_id == CHIP_NUM_57711
9516                 ? FW_NAME_57711 : FW_NAME_57810;
9517         f = open(fwname, O_RDONLY);
9518         if (f < 0) {
9519                 PMD_DRV_LOG(NOTICE, "Can't open firmware file");
9520                 return;
9521         }
9522
9523         if (fstat(f, &st) < 0) {
9524                 PMD_DRV_LOG(NOTICE, "Can't stat firmware file");
9525                 close(f);
9526                 return;
9527         }
9528
9529         sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9530         if (!sc->firmware) {
9531                 PMD_DRV_LOG(NOTICE, "Can't allocate memory for firmware");
9532                 close(f);
9533                 return;
9534         }
9535
9536         if (read(f, sc->firmware, st.st_size) != st.st_size) {
9537                 PMD_DRV_LOG(NOTICE, "Can't read firmware data");
9538                 close(f);
9539                 return;
9540         }
9541         close(f);
9542
9543         sc->fw_len = st.st_size;
9544         if (sc->fw_len < FW_HEADER_LEN) {
9545                 PMD_DRV_LOG(NOTICE, "Invalid fw size: %" PRIu64, sc->fw_len);
9546                 return;
9547         }
9548         PMD_DRV_LOG(DEBUG, "fw_len = %" PRIu64, sc->fw_len);
9549 }
9550
9551 static void
9552 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9553 {
9554         uint32_t *src = (uint32_t *) data;
9555         uint32_t i, j, tmp;
9556
9557         for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9558                 tmp = rte_be_to_cpu_32(src[j]);
9559                 dst[i].op = (tmp >> 24) & 0xFF;
9560                 dst[i].offset = tmp & 0xFFFFFF;
9561                 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9562         }
9563 }
9564
9565 static void
9566 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9567 {
9568         uint16_t *src = (uint16_t *) data;
9569         uint32_t i;
9570
9571         for (i = 0; i < len / 2; ++i)
9572                 dst[i] = rte_be_to_cpu_16(src[i]);
9573 }
9574
9575 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9576 {
9577         uint32_t *src = (uint32_t *) data;
9578         uint32_t i;
9579
9580         for (i = 0; i < len / 4; ++i)
9581                 dst[i] = rte_be_to_cpu_32(src[i]);
9582 }
9583
9584 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9585 {
9586         uint32_t *src = (uint32_t *) data;
9587         uint32_t i, j, tmp;
9588
9589         for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9590                 dst[i].base = rte_be_to_cpu_32(src[j++]);
9591                 tmp = rte_be_to_cpu_32(src[j]);
9592                 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9593                 dst[i].m2 = tmp & 0xFFFF;
9594                 ++j;
9595                 tmp = rte_be_to_cpu_32(src[j]);
9596                 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9597                 dst[i].size = tmp & 0xFFFF;
9598         }
9599 }
9600
9601 /*
9602 * Device attach function.
9603 *
9604 * Allocates device resources, performs secondary chip identification, and
9605 * initializes driver instance variables. This function is called from driver
9606 * load after a successful probe.
9607 *
9608 * Returns:
9609 *   0 = Success, >0 = Failure
9610 */
9611 int bnx2x_attach(struct bnx2x_softc *sc)
9612 {
9613         int rc;
9614
9615         PMD_DRV_LOG(DEBUG, "Starting attach...");
9616
9617         rc = bnx2x_pci_get_caps(sc);
9618         if (rc) {
9619                 PMD_DRV_LOG(NOTICE, "PCIe caps reading was failed");
9620                 return rc;
9621         }
9622
9623         sc->state = BNX2X_STATE_CLOSED;
9624
9625         pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9626
9627         sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9628
9629         /* get PCI capabilites */
9630         bnx2x_probe_pci_caps(sc);
9631
9632         if (sc->devinfo.pcie_msix_cap_reg != 0) {
9633                 uint32_t val;
9634                 pci_read(sc,
9635                          (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9636                          2);
9637                 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9638         } else {
9639                 sc->igu_sb_cnt = 1;
9640         }
9641
9642         /* Init RTE stuff */
9643         bnx2x_init_rte(sc);
9644
9645         if (IS_PF(sc)) {
9646                 /* Enable internal target-read (in case we are probed after PF
9647                  * FLR). Must be done prior to any BAR read access. Only for
9648                  * 57712 and up
9649                  */
9650                 if (!CHIP_IS_E1x(sc)) {
9651                         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9652                                1);
9653                         DELAY(200000);
9654                 }
9655
9656                 /* get device info and set params */
9657                 if (bnx2x_get_device_info(sc) != 0) {
9658                         PMD_DRV_LOG(NOTICE, "getting device info");
9659                         return -ENXIO;
9660                 }
9661
9662 /* get phy settings from shmem and 'and' against admin settings */
9663                 bnx2x_get_phy_info(sc);
9664         } else {
9665                 /* Left mac of VF unfilled, PF should set it for VF */
9666                 memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN);
9667         }
9668
9669         sc->wol = 0;
9670
9671         /* set the default MTU (changed via ifconfig) */
9672         sc->mtu = ETHER_MTU;
9673
9674         bnx2x_set_modes_bitmap(sc);
9675
9676         /* need to reset chip if UNDI was active */
9677         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9678 /* init fw_seq */
9679                 sc->fw_seq =
9680                     (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9681                      DRV_MSG_SEQ_NUMBER_MASK);
9682                 bnx2x_prev_unload(sc);
9683         }
9684
9685         bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9686
9687         /* calculate qm_cid_count */
9688         sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9689
9690         sc->max_cos = 1;
9691         bnx2x_init_multi_cos(sc);
9692
9693         return 0;
9694 }
9695
9696 static void
9697 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9698                uint16_t index, uint8_t op, uint8_t update)
9699 {
9700         uint32_t igu_addr = sc->igu_base_addr;
9701         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9702         bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9703 }
9704
9705 static void
9706 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9707            uint16_t index, uint8_t op, uint8_t update)
9708 {
9709         if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9710                 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9711         else {
9712                 uint8_t segment;
9713                 if (CHIP_INT_MODE_IS_BC(sc)) {
9714                         segment = storm;
9715                 } else if (igu_sb_id != sc->igu_dsb_id) {
9716                         segment = IGU_SEG_ACCESS_DEF;
9717                 } else if (storm == ATTENTION_ID) {
9718                         segment = IGU_SEG_ACCESS_ATTN;
9719                 } else {
9720                         segment = IGU_SEG_ACCESS_DEF;
9721                 }
9722                 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9723         }
9724 }
9725
9726 static void
9727 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9728                      uint8_t is_pf)
9729 {
9730         uint32_t data, ctl, cnt = 100;
9731         uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9732         uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9733         uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9734             (idu_sb_id / 32) * 4;
9735         uint32_t sb_bit = 1 << (idu_sb_id % 32);
9736         uint32_t func_encode = func |
9737             (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9738         uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9739
9740         /* Not supported in BC mode */
9741         if (CHIP_INT_MODE_IS_BC(sc)) {
9742                 return;
9743         }
9744
9745         data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9746                  IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9747                 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9748
9749         ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9750                (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9751                (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9752
9753         REG_WR(sc, igu_addr_data, data);
9754
9755         mb();
9756
9757         PMD_DRV_LOG(DEBUG, "write 0x%08x to IGU(via GRC) addr 0x%x",
9758                     ctl, igu_addr_ctl);
9759         REG_WR(sc, igu_addr_ctl, ctl);
9760
9761         mb();
9762
9763         /* wait for clean up to finish */
9764         while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9765                 DELAY(20000);
9766         }
9767
9768         if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9769                 PMD_DRV_LOG(DEBUG,
9770                             "Unable to finish IGU cleanup: "
9771                             "idu_sb_id %d offset %d bit %d (cnt %d)",
9772                             idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9773         }
9774 }
9775
9776 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9777 {
9778         bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9779 }
9780
9781 /*******************/
9782 /* ECORE CALLBACKS */
9783 /*******************/
9784
9785 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9786 {
9787         uint32_t val = 0x1400;
9788
9789         PMD_INIT_FUNC_TRACE();
9790
9791         /* reset_common */
9792         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9793                0xd3ffff7f);
9794
9795         if (CHIP_IS_E3(sc)) {
9796                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9797                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9798         }
9799
9800         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9801 }
9802
9803 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9804 {
9805         uint32_t shmem_base[2];
9806         uint32_t shmem2_base[2];
9807
9808         /* Avoid common init in case MFW supports LFA */
9809         if (SHMEM2_RD(sc, size) >
9810             (uint32_t) offsetof(struct shmem2_region,
9811                                 lfa_host_addr[SC_PORT(sc)])) {
9812                 return;
9813         }
9814
9815         shmem_base[0] = sc->devinfo.shmem_base;
9816         shmem2_base[0] = sc->devinfo.shmem2_base;
9817
9818         if (!CHIP_IS_E1x(sc)) {
9819                 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9820                 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9821         }
9822
9823         elink_common_init_phy(sc, shmem_base, shmem2_base,
9824                               sc->devinfo.chip_id, 0);
9825 }
9826
9827 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9828 {
9829         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9830
9831         val &= ~IGU_PF_CONF_FUNC_EN;
9832
9833         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9834         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9835         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9836 }
9837
9838 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9839 {
9840         uint16_t devctl;
9841         int r_order, w_order;
9842
9843         devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9844
9845         w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9846         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9847
9848         ecore_init_pxp_arb(sc, r_order, w_order);
9849 }
9850
9851 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9852 {
9853         uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9854         uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9855         return base + (SC_ABS_FUNC(sc)) * stride;
9856 }
9857
9858 /*
9859  * Called only on E1H or E2.
9860  * When pretending to be PF, the pretend value is the function number 0..7.
9861  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9862  * combination.
9863  */
9864 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9865 {
9866         uint32_t pretend_reg;
9867
9868         if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
9869                 return -1;
9870
9871         /* get my own pretend register */
9872         pretend_reg = bnx2x_get_pretend_reg(sc);
9873         REG_WR(sc, pretend_reg, pretend_func_val);
9874         REG_RD(sc, pretend_reg);
9875         return 0;
9876 }
9877
9878 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
9879 {
9880         int is_required;
9881         uint32_t val;
9882         int port;
9883
9884         is_required = 0;
9885         val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
9886                SHARED_HW_CFG_FAN_FAILURE_MASK);
9887
9888         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
9889                 is_required = 1;
9890         }
9891         /*
9892          * The fan failure mechanism is usually related to the PHY type since
9893          * the power consumption of the board is affected by the PHY. Currently,
9894          * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
9895          */
9896         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
9897                 for (port = PORT_0; port < PORT_MAX; port++) {
9898                         is_required |= elink_fan_failure_det_req(sc,
9899                                                                  sc->
9900                                                                  devinfo.shmem_base,
9901                                                                  sc->
9902                                                                  devinfo.shmem2_base,
9903                                                                  port);
9904                 }
9905         }
9906
9907         if (is_required == 0) {
9908                 return;
9909         }
9910
9911         /* Fan failure is indicated by SPIO 5 */
9912         bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
9913
9914         /* set to active low mode */
9915         val = REG_RD(sc, MISC_REG_SPIO_INT);
9916         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
9917         REG_WR(sc, MISC_REG_SPIO_INT, val);
9918
9919         /* enable interrupt to signal the IGU */
9920         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
9921         val |= MISC_SPIO_SPIO5;
9922         REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
9923 }
9924
9925 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
9926 {
9927         uint32_t val;
9928
9929         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
9930         if (!CHIP_IS_E1x(sc)) {
9931                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
9932         } else {
9933                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
9934         }
9935         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
9936         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
9937         /*
9938          * mask read length error interrupts in brb for parser
9939          * (parsing unit and 'checksum and crc' unit)
9940          * these errors are legal (PU reads fixed length and CAC can cause
9941          * read length error on truncated packets)
9942          */
9943         REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
9944         REG_WR(sc, QM_REG_QM_INT_MASK, 0);
9945         REG_WR(sc, TM_REG_TM_INT_MASK, 0);
9946         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
9947         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
9948         REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
9949         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
9950         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
9951         REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
9952         REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
9953         REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
9954         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
9955         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
9956         REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
9957         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
9958         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
9959         REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
9960         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
9961         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
9962
9963         val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
9964                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
9965                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
9966         if (!CHIP_IS_E1x(sc)) {
9967                 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
9968                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
9969         }
9970         REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
9971
9972         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
9973         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
9974         REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
9975         /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
9976
9977         if (!CHIP_IS_E1x(sc)) {
9978 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
9979                 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
9980         }
9981
9982         REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
9983         REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
9984         /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
9985         REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
9986 }
9987
9988 /**
9989  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
9990  *
9991  * @sc:     driver handle
9992  */
9993 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
9994 {
9995         uint8_t abs_func_id;
9996         uint32_t val;
9997
9998         PMD_DRV_LOG(DEBUG, "starting common init for func %d", SC_ABS_FUNC(sc));
9999
10000         /*
10001          * take the RESET lock to protect undi_unload flow from accessing
10002          * registers while we are resetting the chip
10003          */
10004         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10005
10006         bnx2x_reset_common(sc);
10007
10008         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10009
10010         val = 0xfffc;
10011         if (CHIP_IS_E3(sc)) {
10012                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10013                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10014         }
10015
10016         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10017
10018         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10019
10020         ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10021
10022         if (!CHIP_IS_E1x(sc)) {
10023 /*
10024  * 4-port mode or 2-port mode we need to turn off master-enable for
10025  * everyone. After that we turn it back on for self. So, we disregard
10026  * multi-function, and always disable all functions on the given path,
10027  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10028  */
10029                 for (abs_func_id = SC_PATH(sc);
10030                      abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10031                         if (abs_func_id == SC_ABS_FUNC(sc)) {
10032                                 REG_WR(sc,
10033                                        PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10034                                        1);
10035                                 continue;
10036                         }
10037
10038                         bnx2x_pretend_func(sc, abs_func_id);
10039
10040                         /* clear pf enable */
10041                         bnx2x_pf_disable(sc);
10042
10043                         bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10044                 }
10045         }
10046
10047         ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10048
10049         ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10050         bnx2x_init_pxp(sc);
10051
10052 #ifdef __BIG_ENDIAN
10053         REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10054         REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10055         REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10056         REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10057         REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10058         /* make sure this value is 0 */
10059         REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10060
10061         //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10062         REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10063         REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10064         REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10065         REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10066 #endif
10067
10068         ecore_ilt_init_page_size(sc, INITOP_SET);
10069
10070         if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10071                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10072         }
10073
10074         /* let the HW do it's magic... */
10075         DELAY(100000);
10076
10077         /* finish PXP init */
10078
10079         val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10080         if (val != 1) {
10081                 PMD_DRV_LOG(NOTICE, "PXP2 CFG failed");
10082                 return -1;
10083         }
10084         val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10085         if (val != 1) {
10086                 PMD_DRV_LOG(NOTICE, "PXP2 RD_INIT failed");
10087                 return -1;
10088         }
10089
10090         /*
10091          * Timer bug workaround for E2 only. We need to set the entire ILT to have
10092          * entries with value "0" and valid bit on. This needs to be done by the
10093          * first PF that is loaded in a path (i.e. common phase)
10094          */
10095         if (!CHIP_IS_E1x(sc)) {
10096 /*
10097  * In E2 there is a bug in the timers block that can cause function 6 / 7
10098  * (i.e. vnic3) to start even if it is marked as "scan-off".
10099  * This occurs when a different function (func2,3) is being marked
10100  * as "scan-off". Real-life scenario for example: if a driver is being
10101  * load-unloaded while func6,7 are down. This will cause the timer to access
10102  * the ilt, translate to a logical address and send a request to read/write.
10103  * Since the ilt for the function that is down is not valid, this will cause
10104  * a translation error which is unrecoverable.
10105  * The Workaround is intended to make sure that when this happens nothing
10106  * fatal will occur. The workaround:
10107  *  1.  First PF driver which loads on a path will:
10108  *      a.  After taking the chip out of reset, by using pretend,
10109  *          it will write "0" to the following registers of
10110  *          the other vnics.
10111  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10112  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10113  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10114  *          And for itself it will write '1' to
10115  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10116  *          dmae-operations (writing to pram for example.)
10117  *          note: can be done for only function 6,7 but cleaner this
10118  *            way.
10119  *      b.  Write zero+valid to the entire ILT.
10120  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10121  *          VNIC3 (of that port). The range allocated will be the
10122  *          entire ILT. This is needed to prevent  ILT range error.
10123  *  2.  Any PF driver load flow:
10124  *      a.  ILT update with the physical addresses of the allocated
10125  *          logical pages.
10126  *      b.  Wait 20msec. - note that this timeout is needed to make
10127  *          sure there are no requests in one of the PXP internal
10128  *          queues with "old" ILT addresses.
10129  *      c.  PF enable in the PGLC.
10130  *      d.  Clear the was_error of the PF in the PGLC. (could have
10131  *          occurred while driver was down)
10132  *      e.  PF enable in the CFC (WEAK + STRONG)
10133  *      f.  Timers scan enable
10134  *  3.  PF driver unload flow:
10135  *      a.  Clear the Timers scan_en.
10136  *      b.  Polling for scan_on=0 for that PF.
10137  *      c.  Clear the PF enable bit in the PXP.
10138  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10139  *      e.  Write zero+valid to all ILT entries (The valid bit must
10140  *          stay set)
10141  *      f.  If this is VNIC 3 of a port then also init
10142  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10143  *          to the last enrty in the ILT.
10144  *
10145  *      Notes:
10146  *      Currently the PF error in the PGLC is non recoverable.
10147  *      In the future the there will be a recovery routine for this error.
10148  *      Currently attention is masked.
10149  *      Having an MCP lock on the load/unload process does not guarantee that
10150  *      there is no Timer disable during Func6/7 enable. This is because the
10151  *      Timers scan is currently being cleared by the MCP on FLR.
10152  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10153  *      there is error before clearing it. But the flow above is simpler and
10154  *      more general.
10155  *      All ILT entries are written by zero+valid and not just PF6/7
10156  *      ILT entries since in the future the ILT entries allocation for
10157  *      PF-s might be dynamic.
10158  */
10159                 struct ilt_client_info ilt_cli;
10160                 struct ecore_ilt ilt;
10161
10162                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10163                 memset(&ilt, 0, sizeof(struct ecore_ilt));
10164
10165 /* initialize dummy TM client */
10166                 ilt_cli.start = 0;
10167                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10168                 ilt_cli.client_num = ILT_CLIENT_TM;
10169
10170 /*
10171  * Step 1: set zeroes to all ilt page entries with valid bit on
10172  * Step 2: set the timers first/last ilt entry to point
10173  * to the entire range to prevent ILT range error for 3rd/4th
10174  * vnic (this code assumes existence of the vnic)
10175  *
10176  * both steps performed by call to ecore_ilt_client_init_op()
10177  * with dummy TM client
10178  *
10179  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10180  * and his brother are split registers
10181  */
10182
10183                 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10184                 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10185                 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10186
10187                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10188                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10189                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10190         }
10191
10192         REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10193         REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10194
10195         if (!CHIP_IS_E1x(sc)) {
10196                 int factor = 0;
10197
10198                 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10199                 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10200
10201 /* let the HW do it's magic... */
10202                 do {
10203                         DELAY(200000);
10204                         val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10205                 } while (factor-- && (val != 1));
10206
10207                 if (val != 1) {
10208                         PMD_DRV_LOG(NOTICE, "ATC_INIT failed");
10209                         return -1;
10210                 }
10211         }
10212
10213         ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10214
10215         /* clean the DMAE memory */
10216         sc->dmae_ready = 1;
10217         ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10218
10219         ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10220
10221         ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10222
10223         ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10224
10225         ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10226
10227         bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10228         bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10229         bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10230         bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10231
10232         ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10233
10234         /* QM queues pointers table */
10235         ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10236
10237         /* soft reset pulse */
10238         REG_WR(sc, QM_REG_SOFT_RESET, 1);
10239         REG_WR(sc, QM_REG_SOFT_RESET, 0);
10240
10241         if (CNIC_SUPPORT(sc))
10242                 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10243
10244         ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10245         REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10246
10247         if (!CHIP_REV_IS_SLOW(sc)) {
10248 /* enable hw interrupt from doorbell Q */
10249                 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10250         }
10251
10252         ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10253
10254         ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10255         REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10256         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10257
10258         if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10259                 if (IS_MF_AFEX(sc)) {
10260                         /*
10261                          * configure that AFEX and VLAN headers must be
10262                          * received in AFEX mode
10263                          */
10264                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10265                         REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10266                         REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10267                         REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10268                         REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10269                 } else {
10270                         /*
10271                          * Bit-map indicating which L2 hdrs may appear
10272                          * after the basic Ethernet header
10273                          */
10274                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10275                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10276                 }
10277         }
10278
10279         ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10280         ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10281         ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10282         ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10283
10284         if (!CHIP_IS_E1x(sc)) {
10285 /* reset VFC memories */
10286                 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10287                        VFC_MEMORIES_RST_REG_CAM_RST |
10288                        VFC_MEMORIES_RST_REG_RAM_RST);
10289                 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10290                        VFC_MEMORIES_RST_REG_CAM_RST |
10291                        VFC_MEMORIES_RST_REG_RAM_RST);
10292
10293                 DELAY(20000);
10294         }
10295
10296         ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10297         ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10298         ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10299         ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10300
10301         /* sync semi rtc */
10302         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10303         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10304
10305         ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10306         ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10307         ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10308
10309         if (!CHIP_IS_E1x(sc)) {
10310                 if (IS_MF_AFEX(sc)) {
10311                         /*
10312                          * configure that AFEX and VLAN headers must be
10313                          * sent in AFEX mode
10314                          */
10315                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10316                         REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10317                         REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10318                         REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10319                         REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10320                 } else {
10321                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10322                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10323                 }
10324         }
10325
10326         REG_WR(sc, SRC_REG_SOFT_RST, 1);
10327
10328         ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10329
10330         if (CNIC_SUPPORT(sc)) {
10331                 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10332                 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10333                 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10334                 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10335                 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10336                 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10337                 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10338                 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10339                 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10340                 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10341         }
10342         REG_WR(sc, SRC_REG_SOFT_RST, 0);
10343
10344         if (sizeof(union cdu_context) != 1024) {
10345 /* we currently assume that a context is 1024 bytes */
10346                 PMD_DRV_LOG(NOTICE,
10347                             "please adjust the size of cdu_context(%ld)",
10348                             (long)sizeof(union cdu_context));
10349         }
10350
10351         ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10352         val = (4 << 24) + (0 << 12) + 1024;
10353         REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10354
10355         ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10356
10357         REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10358         /* enable context validation interrupt from CFC */
10359         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10360
10361         /* set the thresholds to prevent CFC/CDU race */
10362         REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10363         ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10364
10365         if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10366                 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10367         }
10368
10369         ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10370         ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10371
10372         /* Reset PCIE errors for debug */
10373         REG_WR(sc, 0x2814, 0xffffffff);
10374         REG_WR(sc, 0x3820, 0xffffffff);
10375
10376         if (!CHIP_IS_E1x(sc)) {
10377                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10378                        (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10379                         PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10380                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10381                        (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10382                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10383                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10384                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10385                        (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10386                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10387                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10388         }
10389
10390         ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10391
10392         /* in E3 this done in per-port section */
10393         if (!CHIP_IS_E3(sc))
10394                 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10395
10396         if (CHIP_IS_E1H(sc)) {
10397 /* not applicable for E2 (and above ...) */
10398                 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10399         }
10400
10401         if (CHIP_REV_IS_SLOW(sc)) {
10402                 DELAY(200000);
10403         }
10404
10405         /* finish CFC init */
10406         val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10407         if (val != 1) {
10408                 PMD_DRV_LOG(NOTICE, "CFC LL_INIT failed");
10409                 return -1;
10410         }
10411         val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10412         if (val != 1) {
10413                 PMD_DRV_LOG(NOTICE, "CFC AC_INIT failed");
10414                 return -1;
10415         }
10416         val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10417         if (val != 1) {
10418                 PMD_DRV_LOG(NOTICE, "CFC CAM_INIT failed");
10419                 return -1;
10420         }
10421         REG_WR(sc, CFC_REG_DEBUG0, 0);
10422
10423         bnx2x_setup_fan_failure_detection(sc);
10424
10425         /* clear PXP2 attentions */
10426         REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10427
10428         bnx2x_enable_blocks_attention(sc);
10429
10430         if (!CHIP_REV_IS_SLOW(sc)) {
10431                 ecore_enable_blocks_parity(sc);
10432         }
10433
10434         if (!BNX2X_NOMCP(sc)) {
10435                 if (CHIP_IS_E1x(sc)) {
10436                         bnx2x_common_init_phy(sc);
10437                 }
10438         }
10439
10440         return 0;
10441 }
10442
10443 /**
10444  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10445  *
10446  * @sc:     driver handle
10447  */
10448 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10449 {
10450         int rc = bnx2x_init_hw_common(sc);
10451
10452         if (rc) {
10453                 return rc;
10454         }
10455
10456         /* In E2 2-PORT mode, same ext phy is used for the two paths */
10457         if (!BNX2X_NOMCP(sc)) {
10458                 bnx2x_common_init_phy(sc);
10459         }
10460
10461         return 0;
10462 }
10463
10464 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10465 {
10466         int port = SC_PORT(sc);
10467         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10468         uint32_t low, high;
10469         uint32_t val;
10470
10471         PMD_DRV_LOG(DEBUG, "starting port init for port %d", port);
10472
10473         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10474
10475         ecore_init_block(sc, BLOCK_MISC, init_phase);
10476         ecore_init_block(sc, BLOCK_PXP, init_phase);
10477         ecore_init_block(sc, BLOCK_PXP2, init_phase);
10478
10479         /*
10480          * Timers bug workaround: disables the pf_master bit in pglue at
10481          * common phase, we need to enable it here before any dmae access are
10482          * attempted. Therefore we manually added the enable-master to the
10483          * port phase (it also happens in the function phase)
10484          */
10485         if (!CHIP_IS_E1x(sc)) {
10486                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10487         }
10488
10489         ecore_init_block(sc, BLOCK_ATC, init_phase);
10490         ecore_init_block(sc, BLOCK_DMAE, init_phase);
10491         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10492         ecore_init_block(sc, BLOCK_QM, init_phase);
10493
10494         ecore_init_block(sc, BLOCK_TCM, init_phase);
10495         ecore_init_block(sc, BLOCK_UCM, init_phase);
10496         ecore_init_block(sc, BLOCK_CCM, init_phase);
10497         ecore_init_block(sc, BLOCK_XCM, init_phase);
10498
10499         /* QM cid (connection) count */
10500         ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10501
10502         if (CNIC_SUPPORT(sc)) {
10503                 ecore_init_block(sc, BLOCK_TM, init_phase);
10504                 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10505                 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10506         }
10507
10508         ecore_init_block(sc, BLOCK_DORQ, init_phase);
10509
10510         ecore_init_block(sc, BLOCK_BRB1, init_phase);
10511
10512         if (CHIP_IS_E1H(sc)) {
10513                 if (IS_MF(sc)) {
10514                         low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10515                 } else if (sc->mtu > 4096) {
10516                         if (BNX2X_ONE_PORT(sc)) {
10517                                 low = 160;
10518                         } else {
10519                                 val = sc->mtu;
10520                                 /* (24*1024 + val*4)/256 */
10521                                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10522                         }
10523                 } else {
10524                         low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10525                 }
10526                 high = (low + 56);      /* 14*1024/256 */
10527                 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10528                 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10529         }
10530
10531         if (CHIP_IS_MODE_4_PORT(sc)) {
10532                 REG_WR(sc, SC_PORT(sc) ?
10533                        BRB1_REG_MAC_GUARANTIED_1 :
10534                        BRB1_REG_MAC_GUARANTIED_0, 40);
10535         }
10536
10537         ecore_init_block(sc, BLOCK_PRS, init_phase);
10538         if (CHIP_IS_E3B0(sc)) {
10539                 if (IS_MF_AFEX(sc)) {
10540                         /* configure headers for AFEX mode */
10541                         if (SC_PORT(sc)) {
10542                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10543                                        0xE);
10544                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10545                                        0x6);
10546                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10547                         } else {
10548                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10549                                        0xE);
10550                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10551                                        0x6);
10552                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10553                         }
10554                 } else {
10555                         /* Ovlan exists only if we are in multi-function +
10556                          * switch-dependent mode, in switch-independent there
10557                          * is no ovlan headers
10558                          */
10559                         REG_WR(sc, SC_PORT(sc) ?
10560                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10561                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10562                                (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10563                 }
10564         }
10565
10566         ecore_init_block(sc, BLOCK_TSDM, init_phase);
10567         ecore_init_block(sc, BLOCK_CSDM, init_phase);
10568         ecore_init_block(sc, BLOCK_USDM, init_phase);
10569         ecore_init_block(sc, BLOCK_XSDM, init_phase);
10570
10571         ecore_init_block(sc, BLOCK_TSEM, init_phase);
10572         ecore_init_block(sc, BLOCK_USEM, init_phase);
10573         ecore_init_block(sc, BLOCK_CSEM, init_phase);
10574         ecore_init_block(sc, BLOCK_XSEM, init_phase);
10575
10576         ecore_init_block(sc, BLOCK_UPB, init_phase);
10577         ecore_init_block(sc, BLOCK_XPB, init_phase);
10578
10579         ecore_init_block(sc, BLOCK_PBF, init_phase);
10580
10581         if (CHIP_IS_E1x(sc)) {
10582 /* configure PBF to work without PAUSE mtu 9000 */
10583                 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10584
10585 /* update threshold */
10586                 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10587 /* update init credit */
10588                 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10589                        (9040 / 16) + 553 - 22);
10590
10591 /* probe changes */
10592                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10593                 DELAY(50);
10594                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10595         }
10596
10597         if (CNIC_SUPPORT(sc)) {
10598                 ecore_init_block(sc, BLOCK_SRC, init_phase);
10599         }
10600
10601         ecore_init_block(sc, BLOCK_CDU, init_phase);
10602         ecore_init_block(sc, BLOCK_CFC, init_phase);
10603         ecore_init_block(sc, BLOCK_HC, init_phase);
10604         ecore_init_block(sc, BLOCK_IGU, init_phase);
10605         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10606         /* init aeu_mask_attn_func_0/1:
10607          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10608          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10609          *             bits 4-7 are used for "per vn group attention" */
10610         val = IS_MF(sc) ? 0xF7 : 0x7;
10611         val |= 0x10;
10612         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10613
10614         ecore_init_block(sc, BLOCK_NIG, init_phase);
10615
10616         if (!CHIP_IS_E1x(sc)) {
10617 /* Bit-map indicating which L2 hdrs may appear after the
10618  * basic Ethernet header
10619  */
10620                 if (IS_MF_AFEX(sc)) {
10621                         REG_WR(sc, SC_PORT(sc) ?
10622                                NIG_REG_P1_HDRS_AFTER_BASIC :
10623                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10624                 } else {
10625                         REG_WR(sc, SC_PORT(sc) ?
10626                                NIG_REG_P1_HDRS_AFTER_BASIC :
10627                                NIG_REG_P0_HDRS_AFTER_BASIC,
10628                                IS_MF_SD(sc) ? 7 : 6);
10629                 }
10630
10631                 if (CHIP_IS_E3(sc)) {
10632                         REG_WR(sc, SC_PORT(sc) ?
10633                                NIG_REG_LLH1_MF_MODE :
10634                                NIG_REG_LLH_MF_MODE, IS_MF(sc));
10635                 }
10636         }
10637         if (!CHIP_IS_E3(sc)) {
10638                 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10639         }
10640
10641         /* 0x2 disable mf_ov, 0x1 enable */
10642         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10643                (IS_MF_SD(sc) ? 0x1 : 0x2));
10644
10645         if (!CHIP_IS_E1x(sc)) {
10646                 val = 0;
10647                 switch (sc->devinfo.mf_info.mf_mode) {
10648                 case MULTI_FUNCTION_SD:
10649                         val = 1;
10650                         break;
10651                 case MULTI_FUNCTION_SI:
10652                 case MULTI_FUNCTION_AFEX:
10653                         val = 2;
10654                         break;
10655                 }
10656
10657                 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10658                             NIG_REG_LLH0_CLS_TYPE), val);
10659         }
10660         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10661         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10662         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10663
10664         /* If SPIO5 is set to generate interrupts, enable it for this port */
10665         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10666         if (val & MISC_SPIO_SPIO5) {
10667                 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10668                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10669                 val = REG_RD(sc, reg_addr);
10670                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10671                 REG_WR(sc, reg_addr, val);
10672         }
10673
10674         return 0;
10675 }
10676
10677 static uint32_t
10678 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10679                        uint32_t expected, uint32_t poll_count)
10680 {
10681         uint32_t cur_cnt = poll_count;
10682         uint32_t val;
10683
10684         while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10685                 DELAY(FLR_WAIT_INTERVAL);
10686         }
10687
10688         return val;
10689 }
10690
10691 static int
10692 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10693                               __rte_unused const char *msg, uint32_t poll_cnt)
10694 {
10695         uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10696
10697         if (val != 0) {
10698                 PMD_DRV_LOG(NOTICE, "%s usage count=%d", msg, val);
10699                 return -1;
10700         }
10701
10702         return 0;
10703 }
10704
10705 /* Common routines with VF FLR cleanup */
10706 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10707 {
10708         /* adjust polling timeout */
10709         if (CHIP_REV_IS_EMUL(sc)) {
10710                 return FLR_POLL_CNT * 2000;
10711         }
10712
10713         if (CHIP_REV_IS_FPGA(sc)) {
10714                 return FLR_POLL_CNT * 120;
10715         }
10716
10717         return FLR_POLL_CNT;
10718 }
10719
10720 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10721 {
10722         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10723         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10724                                           CFC_REG_NUM_LCIDS_INSIDE_PF,
10725                                           "CFC PF usage counter timed out",
10726                                           poll_cnt)) {
10727                 return -1;
10728         }
10729
10730         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10731         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10732                                           DORQ_REG_PF_USAGE_CNT,
10733                                           "DQ PF usage counter timed out",
10734                                           poll_cnt)) {
10735                 return -1;
10736         }
10737
10738         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10739         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10740                                           QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10741                                           "QM PF usage counter timed out",
10742                                           poll_cnt)) {
10743                 return -1;
10744         }
10745
10746         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10747         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10748                                           TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10749                                           "Timers VNIC usage counter timed out",
10750                                           poll_cnt)) {
10751                 return -1;
10752         }
10753
10754         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10755                                           TM_REG_LIN0_NUM_SCANS +
10756                                           4 * SC_PORT(sc),
10757                                           "Timers NUM_SCANS usage counter timed out",
10758                                           poll_cnt)) {
10759                 return -1;
10760         }
10761
10762         /* Wait DMAE PF usage counter to zero */
10763         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10764                                           dmae_reg_go_c[INIT_DMAE_C(sc)],
10765                                           "DMAE dommand register timed out",
10766                                           poll_cnt)) {
10767                 return -1;
10768         }
10769
10770         return 0;
10771 }
10772
10773 #define OP_GEN_PARAM(param)                                            \
10774         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10775 #define OP_GEN_TYPE(type)                                           \
10776         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10777 #define OP_GEN_AGG_VECT(index)                                             \
10778         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10779
10780 static int
10781 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10782                      uint32_t poll_cnt)
10783 {
10784         uint32_t op_gen_command = 0;
10785         uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10786                               CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10787         int ret = 0;
10788
10789         if (REG_RD(sc, comp_addr)) {
10790                 PMD_DRV_LOG(NOTICE,
10791                             "Cleanup complete was not 0 before sending");
10792                 return -1;
10793         }
10794
10795         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10796         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10797         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10798         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10799
10800         REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10801
10802         if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10803                 PMD_DRV_LOG(NOTICE, "FW final cleanup did not succeed");
10804                 PMD_DRV_LOG(DEBUG, "At timeout completion address contained %x",
10805                             (REG_RD(sc, comp_addr)));
10806                 rte_panic("FLR cleanup failed");
10807                 return -1;
10808         }
10809
10810         /* Zero completion for nxt FLR */
10811         REG_WR(sc, comp_addr, 0);
10812
10813         return ret;
10814 }
10815
10816 static void
10817 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10818                        uint32_t poll_count)
10819 {
10820         uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10821         uint32_t cur_cnt = poll_count;
10822
10823         crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10824         crd = crd_start = REG_RD(sc, regs->crd);
10825         init_crd = REG_RD(sc, regs->init_crd);
10826
10827         while ((crd != init_crd) &&
10828                ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10829                 (init_crd - crd_start))) {
10830                 if (cur_cnt--) {
10831                         DELAY(FLR_WAIT_INTERVAL);
10832                         crd = REG_RD(sc, regs->crd);
10833                         crd_freed = REG_RD(sc, regs->crd_freed);
10834                 } else {
10835                         break;
10836                 }
10837         }
10838 }
10839
10840 static void
10841 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10842                        uint32_t poll_count)
10843 {
10844         uint32_t occup, to_free, freed, freed_start;
10845         uint32_t cur_cnt = poll_count;
10846
10847         occup = to_free = REG_RD(sc, regs->lines_occup);
10848         freed = freed_start = REG_RD(sc, regs->lines_freed);
10849
10850         while (occup &&
10851                ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10852                 to_free)) {
10853                 if (cur_cnt--) {
10854                         DELAY(FLR_WAIT_INTERVAL);
10855                         occup = REG_RD(sc, regs->lines_occup);
10856                         freed = REG_RD(sc, regs->lines_freed);
10857                 } else {
10858                         break;
10859                 }
10860         }
10861 }
10862
10863 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10864 {
10865         struct pbf_pN_cmd_regs cmd_regs[] = {
10866                 {0, (CHIP_IS_E3B0(sc)) ?
10867                  PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
10868                  (CHIP_IS_E3B0(sc)) ?
10869                  PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
10870                 {1, (CHIP_IS_E3B0(sc)) ?
10871                  PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
10872                  (CHIP_IS_E3B0(sc)) ?
10873                  PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
10874                 {4, (CHIP_IS_E3B0(sc)) ?
10875                  PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
10876                  (CHIP_IS_E3B0(sc)) ?
10877                  PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
10878                  PBF_REG_P4_TQ_LINES_FREED_CNT}
10879         };
10880
10881         struct pbf_pN_buf_regs buf_regs[] = {
10882                 {0, (CHIP_IS_E3B0(sc)) ?
10883                  PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
10884                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
10885                  (CHIP_IS_E3B0(sc)) ?
10886                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
10887                  PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
10888                 {1, (CHIP_IS_E3B0(sc)) ?
10889                  PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
10890                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
10891                  (CHIP_IS_E3B0(sc)) ?
10892                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
10893                  PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
10894                 {4, (CHIP_IS_E3B0(sc)) ?
10895                  PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
10896                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
10897                  (CHIP_IS_E3B0(sc)) ?
10898                  PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
10899                  PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
10900         };
10901
10902         uint32_t i;
10903
10904         /* Verify the command queues are flushed P0, P1, P4 */
10905         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
10906                 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
10907         }
10908
10909         /* Verify the transmission buffers are flushed P0, P1, P4 */
10910         for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
10911                 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
10912         }
10913 }
10914
10915 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
10916 {
10917         __rte_unused uint32_t val;
10918
10919         val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
10920         PMD_DRV_LOG(DEBUG, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
10921
10922         val = REG_RD(sc, PBF_REG_DISABLE_PF);
10923         PMD_DRV_LOG(DEBUG, "PBF_REG_DISABLE_PF is 0x%x", val);
10924
10925         val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
10926         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
10927
10928         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
10929         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
10930
10931         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
10932         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
10933
10934         val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
10935         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
10936
10937         val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
10938         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
10939
10940         val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
10941         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
10942                     val);
10943 }
10944
10945 /**
10946  *      bnx2x_pf_flr_clnup
10947  *      a. re-enable target read on the PF
10948  *      b. poll cfc per function usgae counter
10949  *      c. poll the qm perfunction usage counter
10950  *      d. poll the tm per function usage counter
10951  *      e. poll the tm per function scan-done indication
10952  *      f. clear the dmae channel associated wit hthe PF
10953  *      g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
10954  *      h. call the common flr cleanup code with -1 (pf indication)
10955  */
10956 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
10957 {
10958         uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
10959
10960         /* Re-enable PF target read access */
10961         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10962
10963         /* Poll HW usage counters */
10964         if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
10965                 return -1;
10966         }
10967
10968         /* Zero the igu 'trailing edge' and 'leading edge' */
10969
10970         /* Send the FW cleanup command */
10971         if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
10972                 return -1;
10973         }
10974
10975         /* ATC cleanup */
10976
10977         /* Verify TX hw is flushed */
10978         bnx2x_tx_hw_flushed(sc, poll_cnt);
10979
10980         /* Wait 100ms (not adjusted according to platform) */
10981         DELAY(100000);
10982
10983         /* Verify no pending pci transactions */
10984         if (bnx2x_is_pcie_pending(sc)) {
10985                 PMD_DRV_LOG(NOTICE, "PCIE Transactions still pending");
10986         }
10987
10988         /* Debug */
10989         bnx2x_hw_enable_status(sc);
10990
10991         /*
10992          * Master enable - Due to WB DMAE writes performed before this
10993          * register is re-initialized as part of the regular function init
10994          */
10995         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10996
10997         return 0;
10998 }
10999
11000 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11001 {
11002         int port = SC_PORT(sc);
11003         int func = SC_FUNC(sc);
11004         int init_phase = PHASE_PF0 + func;
11005         struct ecore_ilt *ilt = sc->ilt;
11006         uint16_t cdu_ilt_start;
11007         uint32_t addr, val;
11008         uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11009         int main_mem_width, rc;
11010         uint32_t i;
11011
11012         PMD_DRV_LOG(DEBUG, "starting func init for func %d", func);
11013
11014         /* FLR cleanup */
11015         if (!CHIP_IS_E1x(sc)) {
11016                 rc = bnx2x_pf_flr_clnup(sc);
11017                 if (rc) {
11018                         PMD_DRV_LOG(NOTICE, "FLR cleanup failed!");
11019                         return rc;
11020                 }
11021         }
11022
11023         /* set MSI reconfigure capability */
11024         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11025                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11026                 val = REG_RD(sc, addr);
11027                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11028                 REG_WR(sc, addr, val);
11029         }
11030
11031         ecore_init_block(sc, BLOCK_PXP, init_phase);
11032         ecore_init_block(sc, BLOCK_PXP2, init_phase);
11033
11034         ilt = sc->ilt;
11035         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11036
11037         for (i = 0; i < L2_ILT_LINES(sc); i++) {
11038                 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11039                 ilt->lines[cdu_ilt_start + i].page_mapping =
11040                     (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11041                 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11042         }
11043         ecore_ilt_init_op(sc, INITOP_SET);
11044
11045         REG_WR(sc, PRS_REG_NIC_MODE, 1);
11046
11047         if (!CHIP_IS_E1x(sc)) {
11048                 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11049
11050 /* Turn on a single ISR mode in IGU if driver is going to use
11051  * INT#x or MSI
11052  */
11053                 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11054                     || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11055                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11056                 }
11057
11058 /*
11059  * Timers workaround bug: function init part.
11060  * Need to wait 20msec after initializing ILT,
11061  * needed to make sure there are no requests in
11062  * one of the PXP internal queues with "old" ILT addresses
11063  */
11064                 DELAY(20000);
11065
11066 /*
11067  * Master enable - Due to WB DMAE writes performed before this
11068  * register is re-initialized as part of the regular function
11069  * init
11070  */
11071                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11072 /* Enable the function in IGU */
11073                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11074         }
11075
11076         sc->dmae_ready = 1;
11077
11078         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11079
11080         if (!CHIP_IS_E1x(sc))
11081                 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11082
11083         ecore_init_block(sc, BLOCK_ATC, init_phase);
11084         ecore_init_block(sc, BLOCK_DMAE, init_phase);
11085         ecore_init_block(sc, BLOCK_NIG, init_phase);
11086         ecore_init_block(sc, BLOCK_SRC, init_phase);
11087         ecore_init_block(sc, BLOCK_MISC, init_phase);
11088         ecore_init_block(sc, BLOCK_TCM, init_phase);
11089         ecore_init_block(sc, BLOCK_UCM, init_phase);
11090         ecore_init_block(sc, BLOCK_CCM, init_phase);
11091         ecore_init_block(sc, BLOCK_XCM, init_phase);
11092         ecore_init_block(sc, BLOCK_TSEM, init_phase);
11093         ecore_init_block(sc, BLOCK_USEM, init_phase);
11094         ecore_init_block(sc, BLOCK_CSEM, init_phase);
11095         ecore_init_block(sc, BLOCK_XSEM, init_phase);
11096
11097         if (!CHIP_IS_E1x(sc))
11098                 REG_WR(sc, QM_REG_PF_EN, 1);
11099
11100         if (!CHIP_IS_E1x(sc)) {
11101                 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11102                 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11103                 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11104                 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11105         }
11106         ecore_init_block(sc, BLOCK_QM, init_phase);
11107
11108         ecore_init_block(sc, BLOCK_TM, init_phase);
11109         ecore_init_block(sc, BLOCK_DORQ, init_phase);
11110
11111         ecore_init_block(sc, BLOCK_BRB1, init_phase);
11112         ecore_init_block(sc, BLOCK_PRS, init_phase);
11113         ecore_init_block(sc, BLOCK_TSDM, init_phase);
11114         ecore_init_block(sc, BLOCK_CSDM, init_phase);
11115         ecore_init_block(sc, BLOCK_USDM, init_phase);
11116         ecore_init_block(sc, BLOCK_XSDM, init_phase);
11117         ecore_init_block(sc, BLOCK_UPB, init_phase);
11118         ecore_init_block(sc, BLOCK_XPB, init_phase);
11119         ecore_init_block(sc, BLOCK_PBF, init_phase);
11120         if (!CHIP_IS_E1x(sc))
11121                 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11122
11123         ecore_init_block(sc, BLOCK_CDU, init_phase);
11124
11125         ecore_init_block(sc, BLOCK_CFC, init_phase);
11126
11127         if (!CHIP_IS_E1x(sc))
11128                 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11129
11130         if (IS_MF(sc)) {
11131                 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11132                 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11133         }
11134
11135         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11136
11137         /* HC init per function */
11138         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11139                 if (CHIP_IS_E1H(sc)) {
11140                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11141
11142                         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11143                         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11144                 }
11145                 ecore_init_block(sc, BLOCK_HC, init_phase);
11146
11147         } else {
11148                 uint32_t num_segs, sb_idx, prod_offset;
11149
11150                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11151
11152                 if (!CHIP_IS_E1x(sc)) {
11153                         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11154                         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11155                 }
11156
11157                 ecore_init_block(sc, BLOCK_IGU, init_phase);
11158
11159                 if (!CHIP_IS_E1x(sc)) {
11160                         int dsb_idx = 0;
11161         /**
11162          * Producer memory:
11163          * E2 mode: address 0-135 match to the mapping memory;
11164          * 136 - PF0 default prod; 137 - PF1 default prod;
11165          * 138 - PF2 default prod; 139 - PF3 default prod;
11166          * 140 - PF0 attn prod;    141 - PF1 attn prod;
11167          * 142 - PF2 attn prod;    143 - PF3 attn prod;
11168          * 144-147 reserved.
11169          *
11170          * E1.5 mode - In backward compatible mode;
11171          * for non default SB; each even line in the memory
11172          * holds the U producer and each odd line hold
11173          * the C producer. The first 128 producers are for
11174          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11175          * producers are for the DSB for each PF.
11176          * Each PF has five segments: (the order inside each
11177          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11178          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11179          * 144-147 attn prods;
11180          */
11181                         /* non-default-status-blocks */
11182                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11183                             IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11184                         for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11185                                 prod_offset = (sc->igu_base_sb + sb_idx) *
11186                                     num_segs;
11187
11188                                 for (i = 0; i < num_segs; i++) {
11189                                         addr = IGU_REG_PROD_CONS_MEMORY +
11190                                             (prod_offset + i) * 4;
11191                                         REG_WR(sc, addr, 0);
11192                                 }
11193                                 /* send consumer update with value 0 */
11194                                 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11195                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11196                                 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11197                         }
11198
11199                         /* default-status-blocks */
11200                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11201                             IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11202
11203                         if (CHIP_IS_MODE_4_PORT(sc))
11204                                 dsb_idx = SC_FUNC(sc);
11205                         else
11206                                 dsb_idx = SC_VN(sc);
11207
11208                         prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11209                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
11210                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
11211
11212                         /*
11213                          * igu prods come in chunks of E1HVN_MAX (4) -
11214                          * does not matters what is the current chip mode
11215                          */
11216                         for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11217                                 addr = IGU_REG_PROD_CONS_MEMORY +
11218                                     (prod_offset + i) * 4;
11219                                 REG_WR(sc, addr, 0);
11220                         }
11221                         /* send consumer update with 0 */
11222                         if (CHIP_INT_MODE_IS_BC(sc)) {
11223                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11224                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11225                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11226                                            CSTORM_ID, 0, IGU_INT_NOP, 1);
11227                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11228                                            XSTORM_ID, 0, IGU_INT_NOP, 1);
11229                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11230                                            TSTORM_ID, 0, IGU_INT_NOP, 1);
11231                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11232                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11233                         } else {
11234                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11235                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11236                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11237                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11238                         }
11239                         bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11240
11241                         /* !!! these should become driver const once
11242                            rf-tool supports split-68 const */
11243                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11244                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11245                         REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11246                         REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11247                         REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11248                         REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11249                 }
11250         }
11251
11252         /* Reset PCIE errors for debug */
11253         REG_WR(sc, 0x2114, 0xffffffff);
11254         REG_WR(sc, 0x2120, 0xffffffff);
11255
11256         if (CHIP_IS_E1x(sc)) {
11257                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;    /*dwords */
11258                 main_mem_base = HC_REG_MAIN_MEMORY +
11259                     SC_PORT(sc) * (main_mem_size * 4);
11260                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11261                 main_mem_width = 8;
11262
11263                 val = REG_RD(sc, main_mem_prty_clr);
11264                 if (val) {
11265                         PMD_DRV_LOG(DEBUG,
11266                                     "Parity errors in HC block during function init (0x%x)!",
11267                                     val);
11268                 }
11269
11270 /* Clear "false" parity errors in MSI-X table */
11271                 for (i = main_mem_base;
11272                      i < main_mem_base + main_mem_size * 4;
11273                      i += main_mem_width) {
11274                         bnx2x_read_dmae(sc, i, main_mem_width / 4);
11275                         bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11276                                        i, main_mem_width / 4);
11277                 }
11278 /* Clear HC parity attention */
11279                 REG_RD(sc, main_mem_prty_clr);
11280         }
11281
11282         /* Enable STORMs SP logging */
11283         REG_WR8(sc, BAR_USTRORM_INTMEM +
11284                 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11285         REG_WR8(sc, BAR_TSTRORM_INTMEM +
11286                 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11287         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11288                 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11289         REG_WR8(sc, BAR_XSTRORM_INTMEM +
11290                 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11291
11292         elink_phy_probe(&sc->link_params);
11293
11294         return 0;
11295 }
11296
11297 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11298 {
11299         if (!BNX2X_NOMCP(sc)) {
11300                 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11301         } else {
11302                 if (!CHIP_REV_IS_SLOW(sc)) {
11303                         PMD_DRV_LOG(WARNING,
11304                                     "Bootcode is missing - cannot reset link");
11305                 }
11306         }
11307 }
11308
11309 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11310 {
11311         int port = SC_PORT(sc);
11312         uint32_t val;
11313
11314         /* reset physical Link */
11315         bnx2x_link_reset(sc);
11316
11317         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11318
11319         /* Do not rcv packets to BRB */
11320         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11321         /* Do not direct rcv packets that are not for MCP to the BRB */
11322         REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11323                     NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11324
11325         /* Configure AEU */
11326         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11327
11328         DELAY(100000);
11329
11330         /* Check for BRB port occupancy */
11331         val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11332         if (val) {
11333                 PMD_DRV_LOG(DEBUG,
11334                             "BRB1 is not empty, %d blocks are occupied", val);
11335         }
11336 }
11337
11338 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11339 {
11340         int reg;
11341         uint32_t wb_write[2];
11342
11343         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11344
11345         wb_write[0] = ONCHIP_ADDR1(addr);
11346         wb_write[1] = ONCHIP_ADDR2(addr);
11347         REG_WR_DMAE(sc, reg, wb_write, 2);
11348 }
11349
11350 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11351 {
11352         uint32_t i, base = FUNC_ILT_BASE(func);
11353         for (i = base; i < base + ILT_PER_FUNC; i++) {
11354                 bnx2x_ilt_wr(sc, i, 0);
11355         }
11356 }
11357
11358 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11359 {
11360         struct bnx2x_fastpath *fp;
11361         int port = SC_PORT(sc);
11362         int func = SC_FUNC(sc);
11363         int i;
11364
11365         /* Disable the function in the FW */
11366         REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11367         REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11368         REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11369         REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11370
11371         /* FP SBs */
11372         FOR_EACH_ETH_QUEUE(sc, i) {
11373                 fp = &sc->fp[i];
11374                 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11375                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11376                         SB_DISABLED);
11377         }
11378
11379         /* SP SB */
11380         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11381                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11382
11383         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11384                 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11385                        0);
11386         }
11387
11388         /* Configure IGU */
11389         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11390                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11391                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11392         } else {
11393                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11394                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11395         }
11396
11397         if (CNIC_LOADED(sc)) {
11398 /* Disable Timer scan */
11399                 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11400 /*
11401  * Wait for at least 10ms and up to 2 second for the timers
11402  * scan to complete
11403  */
11404                 for (i = 0; i < 200; i++) {
11405                         DELAY(10000);
11406                         if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11407                                 break;
11408                 }
11409         }
11410
11411         /* Clear ILT */
11412         bnx2x_clear_func_ilt(sc, func);
11413
11414         /*
11415          * Timers workaround bug for E2: if this is vnic-3,
11416          * we need to set the entire ilt range for this timers.
11417          */
11418         if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11419                 struct ilt_client_info ilt_cli;
11420 /* use dummy TM client */
11421                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11422                 ilt_cli.start = 0;
11423                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11424                 ilt_cli.client_num = ILT_CLIENT_TM;
11425
11426                 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11427         }
11428
11429         /* this assumes that reset_port() called before reset_func() */
11430         if (!CHIP_IS_E1x(sc)) {
11431                 bnx2x_pf_disable(sc);
11432         }
11433
11434         sc->dmae_ready = 0;
11435 }
11436
11437 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11438 {
11439         rte_free(sc->init_ops);
11440         rte_free(sc->init_ops_offsets);
11441         rte_free(sc->init_data);
11442         rte_free(sc->iro_array);
11443 }
11444
11445 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11446 {
11447         uint32_t len, i;
11448         uint8_t *p = sc->firmware;
11449         uint32_t off[24];
11450
11451         for (i = 0; i < 24; ++i)
11452                 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11453
11454         len = off[0];
11455         sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11456         if (!sc->init_ops)
11457                 goto alloc_failed;
11458         bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11459
11460         len = off[2];
11461         sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11462         if (!sc->init_ops_offsets)
11463                 goto alloc_failed;
11464         bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11465
11466         len = off[4];
11467         sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11468         if (!sc->init_data)
11469                 goto alloc_failed;
11470         bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11471
11472         sc->tsem_int_table_data = p + off[7];
11473         sc->tsem_pram_data = p + off[9];
11474         sc->usem_int_table_data = p + off[11];
11475         sc->usem_pram_data = p + off[13];
11476         sc->csem_int_table_data = p + off[15];
11477         sc->csem_pram_data = p + off[17];
11478         sc->xsem_int_table_data = p + off[19];
11479         sc->xsem_pram_data = p + off[21];
11480
11481         len = off[22];
11482         sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11483         if (!sc->iro_array)
11484                 goto alloc_failed;
11485         bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11486
11487         return 0;
11488
11489 alloc_failed:
11490         bnx2x_release_firmware(sc);
11491         return -1;
11492 }
11493
11494 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11495 {
11496 #define MIN_PREFIX_SIZE (10)
11497
11498         int n = MIN_PREFIX_SIZE;
11499         uint16_t xlen;
11500
11501         if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11502             len <= MIN_PREFIX_SIZE) {
11503                 return -1;
11504         }
11505
11506         /* optional extra fields are present */
11507         if (zbuf[3] & 0x4) {
11508                 xlen = zbuf[13];
11509                 xlen <<= 8;
11510                 xlen += zbuf[12];
11511
11512                 n += xlen;
11513         }
11514         /* file name is present */
11515         if (zbuf[3] & 0x8) {
11516                 while ((zbuf[n++] != 0) && (n < len)) ;
11517         }
11518
11519         return n;
11520 }
11521
11522 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11523 {
11524         int ret;
11525         int data_begin = cut_gzip_prefix(zbuf, len);
11526
11527         PMD_DRV_LOG(DEBUG, "ecore_gunzip %d", len);
11528
11529         if (data_begin <= 0) {
11530                 PMD_DRV_LOG(NOTICE, "bad gzip prefix");
11531                 return -1;
11532         }
11533
11534         memset(&zlib_stream, 0, sizeof(zlib_stream));
11535         zlib_stream.next_in = zbuf + data_begin;
11536         zlib_stream.avail_in = len - data_begin;
11537         zlib_stream.next_out = sc->gz_buf;
11538         zlib_stream.avail_out = FW_BUF_SIZE;
11539
11540         ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11541         if (ret != Z_OK) {
11542                 PMD_DRV_LOG(NOTICE, "zlib inflateInit2 error");
11543                 return ret;
11544         }
11545
11546         ret = inflate(&zlib_stream, Z_FINISH);
11547         if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11548                 PMD_DRV_LOG(NOTICE, "zlib inflate error: %d %s", ret,
11549                             zlib_stream.msg);
11550         }
11551
11552         sc->gz_outlen = zlib_stream.total_out;
11553         if (sc->gz_outlen & 0x3) {
11554                 PMD_DRV_LOG(NOTICE, "firmware is not aligned. gz_outlen == %d",
11555                             sc->gz_outlen);
11556         }
11557         sc->gz_outlen >>= 2;
11558
11559         inflateEnd(&zlib_stream);
11560
11561         if (ret == Z_STREAM_END)
11562                 return 0;
11563
11564         return ret;
11565 }
11566
11567 static void
11568 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11569                           uint32_t addr, uint32_t len)
11570 {
11571         bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11572 }
11573
11574 void
11575 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11576                           uint32_t * data)
11577 {
11578         uint8_t i;
11579         for (i = 0; i < size / 4; i++) {
11580                 REG_WR(sc, addr + (i * 4), data[i]);
11581         }
11582 }
11583
11584 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11585 {
11586         uint32_t phy_type_idx = ext_phy_type >> 8;
11587         static const char *types[] =
11588             { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11589                 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11590                 "BNX2X-8727",
11591                 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11592         };
11593
11594         if (phy_type_idx < 12)
11595                 return types[phy_type_idx];
11596         else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11597                 return types[12];
11598         else
11599                 return types[13];
11600 }
11601
11602 static const char *get_state(uint32_t state)
11603 {
11604         uint32_t state_idx = state >> 12;
11605         static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11606                 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11607                 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11608                 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11609                 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11610         };
11611
11612         if (state_idx <= 0xF)
11613                 return states[state_idx];
11614         else
11615                 return states[0x10];
11616 }
11617
11618 static const char *get_recovery_state(uint32_t state)
11619 {
11620         static const char *states[] = { "NONE", "DONE", "INIT",
11621                 "WAIT", "FAILED", "NIC_LOADING"
11622         };
11623         return states[state];
11624 }
11625
11626 static const char *get_rx_mode(uint32_t mode)
11627 {
11628         static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11629                 "PROMISC", "MAX_MULTICAST", "ERROR"
11630         };
11631
11632         if (mode < 0x4)
11633                 return modes[mode];
11634         else if (BNX2X_MAX_MULTICAST == mode)
11635                 return modes[4];
11636         else
11637                 return modes[5];
11638 }
11639
11640 #define BNX2X_INFO_STR_MAX 256
11641 static const char *get_bnx2x_flags(uint32_t flags)
11642 {
11643         int i;
11644         static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11645                 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11646                 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11647                 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11648         };
11649         static char flag_str[BNX2X_INFO_STR_MAX];
11650         memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11651
11652         for (i = 0; i < 5; i++)
11653                 if (flags & (1 << i)) {
11654                         strcat(flag_str, flag[i]);
11655                         flags ^= (1 << i);
11656                 }
11657         if (flags) {
11658                 static char unknown[BNX2X_INFO_STR_MAX];
11659                 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11660                 strcat(flag_str, unknown);
11661         }
11662         return flag_str;
11663 }
11664
11665 /*
11666  * Prints useful adapter info.
11667  */
11668 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11669 {
11670         int i = 0;
11671         __rte_unused uint32_t ext_phy_type;
11672
11673         PMD_INIT_FUNC_TRACE();
11674         if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11675                 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(REG_RD(sc,
11676                                                               sc->
11677                                                               devinfo.shmem_base
11678                                                               + offsetof(struct
11679                                                                          shmem_region,
11680                                                                          dev_info.port_hw_config
11681                                                                          [0].external_phy_config)));
11682         else
11683                 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(REG_RD(sc,
11684                                                                 sc->
11685                                                                 devinfo.shmem_base
11686                                                                 +
11687                                                                 offsetof(struct
11688                                                                          shmem_region,
11689                                                                          dev_info.port_hw_config
11690                                                                          [0].external_phy_config)));
11691
11692         PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11693         /* Hardware chip info. */
11694         PMD_INIT_LOG(DEBUG, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11695         PMD_INIT_LOG(DEBUG, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11696                      (CHIP_METAL(sc) >> 4));
11697
11698         /* Bus info. */
11699         PMD_INIT_LOG(DEBUG, "%12s : %d, ", "Bus PCIe", sc->devinfo.pcie_link_width);
11700         switch (sc->devinfo.pcie_link_speed) {
11701         case 1:
11702                 PMD_INIT_LOG(DEBUG, "%23s", "2.5 Gbps");
11703                 break;
11704         case 2:
11705                 PMD_INIT_LOG(DEBUG, "%21s", "5 Gbps");
11706                 break;
11707         case 4:
11708                 PMD_INIT_LOG(DEBUG, "%21s", "8 Gbps");
11709                 break;
11710         default:
11711                 PMD_INIT_LOG(DEBUG, "%33s", "Unknown link speed");
11712         }
11713
11714         /* Device features. */
11715         PMD_INIT_LOG(DEBUG, "%12s : ", "Flags");
11716
11717         /* Miscellaneous flags. */
11718         if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11719                 PMD_INIT_LOG(DEBUG, "%18s", "MSI");
11720                 i++;
11721         }
11722
11723         if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11724                 if (i > 0)
11725                         PMD_INIT_LOG(DEBUG, "|");
11726                 PMD_INIT_LOG(DEBUG, "%20s", "MSI-X");
11727                 i++;
11728         }
11729
11730         if (IS_PF(sc)) {
11731                 PMD_INIT_LOG(DEBUG, "%12s : ", "Queues");
11732                 switch (sc->sp->rss_rdata.rss_mode) {
11733                 case ETH_RSS_MODE_DISABLED:
11734                         PMD_INIT_LOG(DEBUG, "%19s", "None");
11735                         break;
11736                 case ETH_RSS_MODE_REGULAR:
11737                         PMD_INIT_LOG(DEBUG, "%18s : %d", "RSS", sc->num_queues);
11738                         break;
11739                 default:
11740                         PMD_INIT_LOG(DEBUG, "%22s", "Unknown");
11741                         break;
11742                 }
11743         }
11744
11745         /* RTE and Driver versions */
11746         PMD_INIT_LOG(DEBUG, "%12s : %s", "DPDK",
11747                      rte_version());
11748         PMD_INIT_LOG(DEBUG, "%12s : %s", "Driver",
11749                      bnx2x_pmd_version());
11750
11751         /* Firmware versions and device features. */
11752         PMD_INIT_LOG(DEBUG, "%12s : %d.%d.%d",
11753                      "Firmware",
11754                      BNX2X_5710_FW_MAJOR_VERSION,
11755                      BNX2X_5710_FW_MINOR_VERSION,
11756                      BNX2X_5710_FW_REVISION_VERSION);
11757         PMD_INIT_LOG(DEBUG, "%12s : %s",
11758                      "Bootcode", sc->devinfo.bc_ver_str);
11759
11760         PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11761         PMD_INIT_LOG(DEBUG, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11762         PMD_INIT_LOG(DEBUG, "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11763         PMD_INIT_LOG(DEBUG, "%12s : %s", "DMAE Is",
11764                      (sc->dmae_ready ? "Ready" : "Not Ready"));
11765         PMD_INIT_LOG(DEBUG, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11766         PMD_INIT_LOG(DEBUG, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11767         PMD_INIT_LOG(DEBUG, "%12s : %u", "MTU", sc->mtu);
11768         PMD_INIT_LOG(DEBUG, "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11769         PMD_INIT_LOG(DEBUG, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11770                         sc->link_params.mac_addr[0],
11771                         sc->link_params.mac_addr[1],
11772                         sc->link_params.mac_addr[2],
11773                         sc->link_params.mac_addr[3],
11774                         sc->link_params.mac_addr[4],
11775                         sc->link_params.mac_addr[5]);
11776         PMD_INIT_LOG(DEBUG, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11777         PMD_INIT_LOG(DEBUG, "%12s : %s", "State", get_state(sc->state));
11778         if (sc->recovery_state)
11779                 PMD_INIT_LOG(DEBUG, "%12s : %s", "Recovery",
11780                              get_recovery_state(sc->recovery_state));
11781         PMD_INIT_LOG(DEBUG, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11782                      sc->cq_spq_left, sc->eq_spq_left);
11783         PMD_INIT_LOG(DEBUG, "%12s : %x", "Switch", sc->link_params.switch_cfg);
11784         PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11785 }