New upstream version 16.11.9
[deb_dpdk.git] / drivers / net / bnx2x / bnx2x.c
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015 QLogic Corporation.
10  * All rights reserved.
11  * www.qlogic.com
12  *
13  * See LICENSE.bnx2x_pmd for copyright and licensing details.
14  */
15
16 #define BNX2X_DRIVER_VERSION "1.78.18"
17
18 #include "bnx2x.h"
19 #include "bnx2x_vfpf.h"
20 #include "ecore_sp.h"
21 #include "ecore_init.h"
22 #include "ecore_init_ops.h"
23
24 #include "rte_version.h"
25
26 #include <sys/types.h>
27 #include <sys/stat.h>
28 #include <fcntl.h>
29 #include <zlib.h>
30
31 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
32 #define BNX2X_PMD_VERSION_MAJOR 1
33 #define BNX2X_PMD_VERSION_MINOR 0
34 #define BNX2X_PMD_VERSION_REVISION 1
35 #define BNX2X_PMD_VERSION_PATCH 1
36
37 static inline const char *
38 bnx2x_pmd_version(void)
39 {
40         static char version[32];
41
42         snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
43                         BNX2X_PMD_VER_PREFIX,
44                         BNX2X_DRIVER_VERSION,
45                         BNX2X_PMD_VERSION_MAJOR,
46                         BNX2X_PMD_VERSION_MINOR,
47                         BNX2X_PMD_VERSION_REVISION,
48                         BNX2X_PMD_VERSION_PATCH);
49
50         return version;
51 }
52
53 static z_stream zlib_stream;
54
55 #define EVL_VLID_MASK 0x0FFF
56
57 #define BNX2X_DEF_SB_ATT_IDX 0x0001
58 #define BNX2X_DEF_SB_IDX     0x0002
59
60 /*
61  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
62  * function HW initialization.
63  */
64 #define FLR_WAIT_USEC     10000 /* 10 msecs */
65 #define FLR_WAIT_INTERVAL 50    /* usecs */
66 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)   /* 200 */
67
68 struct pbf_pN_buf_regs {
69         int pN;
70         uint32_t init_crd;
71         uint32_t crd;
72         uint32_t crd_freed;
73 };
74
75 struct pbf_pN_cmd_regs {
76         int pN;
77         uint32_t lines_occup;
78         uint32_t lines_freed;
79 };
80
81 /* resources needed for unloading a previously loaded device */
82
83 #define BNX2X_PREV_WAIT_NEEDED 1
84 rte_spinlock_t bnx2x_prev_mtx;
85 struct bnx2x_prev_list_node {
86         LIST_ENTRY(bnx2x_prev_list_node) node;
87         uint8_t bus;
88         uint8_t slot;
89         uint8_t path;
90         uint8_t aer;
91         uint8_t undi;
92 };
93
94 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
95         = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
96
97 static int load_count[2][3] = { { 0 } };
98         /* per-path: 0-common, 1-port0, 2-port1 */
99
100 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
101                                 uint8_t cmng_type);
102 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
103 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
104                               uint8_t port);
105 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
106 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
107 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
108 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
109 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
110                                      uint8_t print);
111 static void bnx2x_int_disable(struct bnx2x_softc *sc);
112 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
113 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
114 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
115                                  struct bnx2x_fastpath *fp,
116                                  uint16_t rx_bd_prod, uint16_t rx_cq_prod);
117 static void bnx2x_link_report_locked(struct bnx2x_softc *sc);
118 static void bnx2x_link_report(struct bnx2x_softc *sc);
119 void bnx2x_link_status_update(struct bnx2x_softc *sc);
120 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
121 static void bnx2x_free_mem(struct bnx2x_softc *sc);
122 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
123 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
124 static __attribute__ ((noinline))
125 int bnx2x_nic_load(struct bnx2x_softc *sc);
126
127 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
128 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp);
129 static void bnx2x_periodic_stop(struct bnx2x_softc *sc);
130 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
131                          uint8_t storm, uint16_t index, uint8_t op,
132                          uint8_t update);
133
134 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
135 {
136         int res;
137
138         mb();
139         res = ((*addr) & (1UL << nr)) != 0;
140         mb();
141         return res;
142 }
143
144 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
145 {
146         __sync_fetch_and_or(addr, (1UL << nr));
147 }
148
149 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
150 {
151         __sync_fetch_and_and(addr, ~(1UL << nr));
152 }
153
154 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
155 {
156         unsigned long mask = (1UL << nr);
157         return __sync_fetch_and_and(addr, ~mask) & mask;
158 }
159
160 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
161 {
162         return __sync_val_compare_and_swap(addr, old, new);
163 }
164
165 int
166 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
167               const char *msg, uint32_t align)
168 {
169         char mz_name[RTE_MEMZONE_NAMESIZE];
170         const struct rte_memzone *z;
171
172         dma->sc = sc;
173         if (IS_PF(sc))
174                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
175                         rte_get_timer_cycles());
176         else
177                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
178                         rte_get_timer_cycles());
179
180         /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
181         z = rte_memzone_reserve_aligned(mz_name, (uint64_t) (size),
182                                         SOCKET_ID_ANY,
183                                         0, align);
184         if (z == NULL) {
185                 PMD_DRV_LOG(ERR, sc, "DMA alloc failed for %s", msg);
186                 return -ENOMEM;
187         }
188         dma->paddr = (uint64_t) z->phys_addr;
189         dma->vaddr = z->addr;
190
191         PMD_DRV_LOG(DEBUG, sc,
192                     "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
193
194         return 0;
195 }
196
197 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
198 {
199         uint32_t lock_status;
200         uint32_t resource_bit = (1 << resource);
201         int func = SC_FUNC(sc);
202         uint32_t hw_lock_control_reg;
203         int cnt;
204
205 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
206         if (resource)
207                 PMD_INIT_FUNC_TRACE(sc);
208 #else
209         PMD_INIT_FUNC_TRACE(sc);
210 #endif
211
212         /* validate the resource is within range */
213         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
214                 PMD_DRV_LOG(NOTICE, sc,
215                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
216                             resource);
217                 return -1;
218         }
219
220         if (func <= 5) {
221                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
222         } else {
223                 hw_lock_control_reg =
224                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
225         }
226
227         /* validate the resource is not already taken */
228         lock_status = REG_RD(sc, hw_lock_control_reg);
229         if (lock_status & resource_bit) {
230                 PMD_DRV_LOG(NOTICE, sc,
231                             "resource in use (status 0x%x bit 0x%x)",
232                             lock_status, resource_bit);
233                 return -1;
234         }
235
236         /* try every 5ms for 5 seconds */
237         for (cnt = 0; cnt < 1000; cnt++) {
238                 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
239                 lock_status = REG_RD(sc, hw_lock_control_reg);
240                 if (lock_status & resource_bit) {
241                         return 0;
242                 }
243                 DELAY(5000);
244         }
245
246         PMD_DRV_LOG(NOTICE, sc, "Resource 0x%x resource_bit 0x%x lock timeout!",
247                     resource, resource_bit);
248         return -1;
249 }
250
251 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
252 {
253         uint32_t lock_status;
254         uint32_t resource_bit = (1 << resource);
255         int func = SC_FUNC(sc);
256         uint32_t hw_lock_control_reg;
257
258 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
259         if (resource)
260                 PMD_INIT_FUNC_TRACE(sc);
261 #else
262         PMD_INIT_FUNC_TRACE(sc);
263 #endif
264
265         /* validate the resource is within range */
266         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
267                 PMD_DRV_LOG(NOTICE, sc,
268                             "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
269                             " resource_bit 0x%x", resource, resource_bit);
270                 return -1;
271         }
272
273         if (func <= 5) {
274                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
275         } else {
276                 hw_lock_control_reg =
277                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
278         }
279
280         /* validate the resource is currently taken */
281         lock_status = REG_RD(sc, hw_lock_control_reg);
282         if (!(lock_status & resource_bit)) {
283                 PMD_DRV_LOG(NOTICE, sc,
284                             "resource not in use (status 0x%x bit 0x%x)",
285                             lock_status, resource_bit);
286                 return -1;
287         }
288
289         REG_WR(sc, hw_lock_control_reg, resource_bit);
290         return 0;
291 }
292
293 static void bnx2x_acquire_phy_lock(struct bnx2x_softc *sc)
294 {
295         BNX2X_PHY_LOCK(sc);
296         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
297 }
298
299 static void bnx2x_release_phy_lock(struct bnx2x_softc *sc)
300 {
301         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
302         BNX2X_PHY_UNLOCK(sc);
303 }
304
305 /* copy command into DMAE command memory and set DMAE command Go */
306 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
307 {
308         uint32_t cmd_offset;
309         uint32_t i;
310
311         cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
312         for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
313                 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
314         }
315
316         REG_WR(sc, dmae_reg_go_c[idx], 1);
317 }
318
319 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
320 {
321         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
322                           DMAE_COMMAND_C_TYPE_ENABLE);
323 }
324
325 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
326 {
327         return opcode & ~DMAE_COMMAND_SRC_RESET;
328 }
329
330 uint32_t
331 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
332                 uint8_t with_comp, uint8_t comp_type)
333 {
334         uint32_t opcode = 0;
335
336         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
337                    (dst_type << DMAE_COMMAND_DST_SHIFT));
338
339         opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
340
341         opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
342
343         opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
344                    (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
345
346         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
347
348 #ifdef __BIG_ENDIAN
349         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
350 #else
351         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
352 #endif
353
354         if (with_comp) {
355                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
356         }
357
358         return opcode;
359 }
360
361 static void
362 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
363                         uint8_t src_type, uint8_t dst_type)
364 {
365         memset(dmae, 0, sizeof(struct dmae_command));
366
367         /* set the opcode */
368         dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
369                                        TRUE, DMAE_COMP_PCI);
370
371         /* fill in the completion parameters */
372         dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
373         dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
374         dmae->comp_val = DMAE_COMP_VAL;
375 }
376
377 /* issue a DMAE command over the init channel and wait for completion */
378 static int
379 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
380 {
381         uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
382         int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
383
384         /* reset completion */
385         *wb_comp = 0;
386
387         /* post the command on the channel used for initializations */
388         bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
389
390         /* wait for completion */
391         DELAY(500);
392
393         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
394                 if (!timeout ||
395                     (sc->recovery_state != BNX2X_RECOVERY_DONE &&
396                      sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
397                         PMD_DRV_LOG(INFO, sc, "DMAE timeout!");
398                         return DMAE_TIMEOUT;
399                 }
400
401                 timeout--;
402                 DELAY(50);
403         }
404
405         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
406                 PMD_DRV_LOG(INFO, sc, "DMAE PCI error!");
407                 return DMAE_PCI_ERROR;
408         }
409
410         return 0;
411 }
412
413 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
414 {
415         struct dmae_command dmae;
416         uint32_t *data;
417         uint32_t i;
418         int rc;
419
420         if (!sc->dmae_ready) {
421                 data = BNX2X_SP(sc, wb_data[0]);
422
423                 for (i = 0; i < len32; i++) {
424                         data[i] = REG_RD(sc, (src_addr + (i * 4)));
425                 }
426
427                 return;
428         }
429
430         /* set opcode and fixed command fields */
431         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
432
433         /* fill in addresses and len */
434         dmae.src_addr_lo = (src_addr >> 2);     /* GRC addr has dword resolution */
435         dmae.src_addr_hi = 0;
436         dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
437         dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
438         dmae.len = len32;
439
440         /* issue the command and wait for completion */
441         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
442                 rte_panic("DMAE failed (%d)", rc);
443         };
444 }
445
446 void
447 bnx2x_write_dmae(struct bnx2x_softc *sc, phys_addr_t dma_addr, uint32_t dst_addr,
448                uint32_t len32)
449 {
450         struct dmae_command dmae;
451         int rc;
452
453         if (!sc->dmae_ready) {
454                 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
455                 return;
456         }
457
458         /* set opcode and fixed command fields */
459         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
460
461         /* fill in addresses and len */
462         dmae.src_addr_lo = U64_LO(dma_addr);
463         dmae.src_addr_hi = U64_HI(dma_addr);
464         dmae.dst_addr_lo = (dst_addr >> 2);     /* GRC addr has dword resolution */
465         dmae.dst_addr_hi = 0;
466         dmae.len = len32;
467
468         /* issue the command and wait for completion */
469         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
470                 rte_panic("DMAE failed (%d)", rc);
471         }
472 }
473
474 static void
475 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr,
476                         uint32_t addr, uint32_t len)
477 {
478         uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
479         uint32_t offset = 0;
480
481         while (len > dmae_wr_max) {
482                 bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
483                                (addr + offset), /* dst GRC address */
484                                dmae_wr_max);
485                 offset += (dmae_wr_max * 4);
486                 len -= dmae_wr_max;
487         }
488
489         bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
490                        (addr + offset), /* dst GRC address */
491                        len);
492 }
493
494 void
495 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
496                        uint32_t cid)
497 {
498         /* ustorm cxt validation */
499         cxt->ustorm_ag_context.cdu_usage =
500             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
501                                    CDU_REGION_NUMBER_UCM_AG,
502                                    ETH_CONNECTION_TYPE);
503         /* xcontext validation */
504         cxt->xstorm_ag_context.cdu_reserved =
505             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
506                                    CDU_REGION_NUMBER_XCM_AG,
507                                    ETH_CONNECTION_TYPE);
508 }
509
510 static void
511 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
512                             uint8_t sb_index, uint8_t ticks)
513 {
514         uint32_t addr =
515             (BAR_CSTRORM_INTMEM +
516              CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
517
518         REG_WR8(sc, addr, ticks);
519 }
520
521 static void
522 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
523                             uint8_t sb_index, uint8_t disable)
524 {
525         uint32_t enable_flag =
526             (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
527         uint32_t addr =
528             (BAR_CSTRORM_INTMEM +
529              CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
530         uint8_t flags;
531
532         /* clear and set */
533         flags = REG_RD8(sc, addr);
534         flags &= ~HC_INDEX_DATA_HC_ENABLED;
535         flags |= enable_flag;
536         REG_WR8(sc, addr, flags);
537 }
538
539 void
540 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
541                              uint8_t sb_index, uint8_t disable, uint16_t usec)
542 {
543         uint8_t ticks = (usec / 4);
544
545         bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
546
547         disable = (disable) ? 1 : ((usec) ? 0 : 1);
548         bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
549 }
550
551 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
552 {
553         return REG_RD(sc, reg_addr);
554 }
555
556 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
557 {
558         REG_WR(sc, reg_addr, val);
559 }
560
561 void
562 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
563                    __rte_unused const elink_log_id_t elink_log_id, ...)
564 {
565         PMD_DRV_LOG(DEBUG, sc, "ELINK EVENT LOG (%d)", elink_log_id);
566 }
567
568 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
569 {
570         uint32_t spio_reg;
571
572         /* Only 2 SPIOs are configurable */
573         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
574                 PMD_DRV_LOG(NOTICE, sc, "Invalid SPIO 0x%x", spio);
575                 return -1;
576         }
577
578         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
579
580         /* read SPIO and mask except the float bits */
581         spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
582
583         switch (mode) {
584         case MISC_SPIO_OUTPUT_LOW:
585                 /* clear FLOAT and set CLR */
586                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
587                 spio_reg |= (spio << MISC_SPIO_CLR_POS);
588                 break;
589
590         case MISC_SPIO_OUTPUT_HIGH:
591                 /* clear FLOAT and set SET */
592                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
593                 spio_reg |= (spio << MISC_SPIO_SET_POS);
594                 break;
595
596         case MISC_SPIO_INPUT_HI_Z:
597                 /* set FLOAT */
598                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
599                 break;
600
601         default:
602                 break;
603         }
604
605         REG_WR(sc, MISC_REG_SPIO, spio_reg);
606         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
607
608         return 0;
609 }
610
611 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
612 {
613         /* The GPIO should be swapped if swap register is set and active */
614         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
615                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
616         int gpio_shift = gpio_num;
617         if (gpio_port)
618                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
619
620         uint32_t gpio_mask = (1 << gpio_shift);
621         uint32_t gpio_reg;
622
623         if (gpio_num > MISC_REGISTERS_GPIO_3) {
624                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
625                 return -1;
626         }
627
628         /* read GPIO value */
629         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
630
631         /* get the requested pin value */
632         return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
633 }
634
635 static int
636 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
637 {
638         /* The GPIO should be swapped if swap register is set and active */
639         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
640                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
641         int gpio_shift = gpio_num;
642         if (gpio_port)
643                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
644
645         uint32_t gpio_mask = (1 << gpio_shift);
646         uint32_t gpio_reg;
647
648         if (gpio_num > MISC_REGISTERS_GPIO_3) {
649                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
650                 return -1;
651         }
652
653         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
654
655         /* read GPIO and mask except the float bits */
656         gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
657
658         switch (mode) {
659         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
660                 /* clear FLOAT and set CLR */
661                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
662                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
663                 break;
664
665         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
666                 /* clear FLOAT and set SET */
667                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
668                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
669                 break;
670
671         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
672                 /* set FLOAT */
673                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
674                 break;
675
676         default:
677                 break;
678         }
679
680         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
681         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
682
683         return 0;
684 }
685
686 static int
687 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
688 {
689         uint32_t gpio_reg;
690
691         /* any port swapping should be handled by caller */
692
693         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
694
695         /* read GPIO and mask except the float bits */
696         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
697         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
698         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
699         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
700
701         switch (mode) {
702         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
703                 /* set CLR */
704                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
705                 break;
706
707         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
708                 /* set SET */
709                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
710                 break;
711
712         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
713                 /* set FLOAT */
714                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
715                 break;
716
717         default:
718                 PMD_DRV_LOG(NOTICE, sc,
719                             "Invalid GPIO mode assignment %d", mode);
720                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
721                 return -1;
722         }
723
724         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
725         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
726
727         return 0;
728 }
729
730 static int
731 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
732                    uint8_t port)
733 {
734         /* The GPIO should be swapped if swap register is set and active */
735         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
736                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
737         int gpio_shift = gpio_num;
738         if (gpio_port)
739                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
740
741         uint32_t gpio_mask = (1 << gpio_shift);
742         uint32_t gpio_reg;
743
744         if (gpio_num > MISC_REGISTERS_GPIO_3) {
745                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
746                 return -1;
747         }
748
749         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
750
751         /* read GPIO int */
752         gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
753
754         switch (mode) {
755         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
756                 /* clear SET and set CLR */
757                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
758                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
759                 break;
760
761         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
762                 /* clear CLR and set SET */
763                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
764                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
765                 break;
766
767         default:
768                 break;
769         }
770
771         REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
772         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
773
774         return 0;
775 }
776
777 uint32_t
778 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
779 {
780         return bnx2x_gpio_read(sc, gpio_num, port);
781 }
782
783 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,   /* 0=low 1=high */
784                             uint8_t port)
785 {
786         return bnx2x_gpio_write(sc, gpio_num, mode, port);
787 }
788
789 uint8_t
790 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
791                          uint8_t mode /* 0=low 1=high */ )
792 {
793         return bnx2x_gpio_mult_write(sc, pins, mode);
794 }
795
796 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,       /* 0=low 1=high */
797                                 uint8_t port)
798 {
799         return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
800 }
801
802 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
803 {
804         REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
805                     (SC_FUNC(sc) * sizeof(uint32_t))), 1);
806 }
807
808 /* send the MCP a request, block until there is a reply */
809 uint32_t
810 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
811 {
812         int mb_idx = SC_FW_MB_IDX(sc);
813         uint32_t seq;
814         uint32_t rc = 0;
815         uint32_t cnt = 1;
816         uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
817
818         seq = ++sc->fw_seq;
819         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
820         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
821
822         PMD_DRV_LOG(DEBUG, sc,
823                     "wrote command 0x%08x to FW MB param 0x%08x",
824                     (command | seq), param);
825
826         /* Let the FW do it's magic. GIve it up to 5 seconds... */
827         do {
828                 DELAY(delay * 1000);
829                 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
830         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
831
832         /* is this a reply to our command? */
833         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
834                 rc &= FW_MSG_CODE_MASK;
835         } else {
836                 /* Ruh-roh! */
837                 PMD_DRV_LOG(NOTICE, sc, "FW failed to respond!");
838                 rc = 0;
839         }
840
841         return rc;
842 }
843
844 static uint32_t
845 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
846 {
847         return elink_cb_fw_command(sc, command, param);
848 }
849
850 static void
851 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
852                            phys_addr_t mapping)
853 {
854         REG_WR(sc, addr, U64_LO(mapping));
855         REG_WR(sc, (addr + 4), U64_HI(mapping));
856 }
857
858 static void
859 storm_memset_spq_addr(struct bnx2x_softc *sc, phys_addr_t mapping,
860                       uint16_t abs_fid)
861 {
862         uint32_t addr = (XSEM_REG_FAST_MEMORY +
863                          XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
864         __storm_memset_dma_mapping(sc, addr, mapping);
865 }
866
867 static void
868 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
869 {
870         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
871                 pf_id);
872         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
873                 pf_id);
874         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
875                 pf_id);
876         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
877                 pf_id);
878 }
879
880 static void
881 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
882 {
883         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
884                 enable);
885         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
886                 enable);
887         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
888                 enable);
889         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
890                 enable);
891 }
892
893 static void
894 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
895                      uint16_t pfid)
896 {
897         uint32_t addr;
898         size_t size;
899
900         addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
901         size = sizeof(struct event_ring_data);
902         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
903 }
904
905 static void
906 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
907 {
908         uint32_t addr = (BAR_CSTRORM_INTMEM +
909                          CSTORM_EVENT_RING_PROD_OFFSET(pfid));
910         REG_WR16(sc, addr, eq_prod);
911 }
912
913 /*
914  * Post a slowpath command.
915  *
916  * A slowpath command is used to propogate a configuration change through
917  * the controller in a controlled manner, allowing each STORM processor and
918  * other H/W blocks to phase in the change.  The commands sent on the
919  * slowpath are referred to as ramrods.  Depending on the ramrod used the
920  * completion of the ramrod will occur in different ways.  Here's a
921  * breakdown of ramrods and how they complete:
922  *
923  * RAMROD_CMD_ID_ETH_PORT_SETUP
924  *   Used to setup the leading connection on a port.  Completes on the
925  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
926  *
927  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
928  *   Used to setup an additional connection on a port.  Completes on the
929  *   RCQ of the multi-queue/RSS connection being initialized.
930  *
931  * RAMROD_CMD_ID_ETH_STAT_QUERY
932  *   Used to force the storm processors to update the statistics database
933  *   in host memory.  This ramrod is send on the leading connection CID and
934  *   completes as an index increment of the CSTORM on the default status
935  *   block.
936  *
937  * RAMROD_CMD_ID_ETH_UPDATE
938  *   Used to update the state of the leading connection, usually to udpate
939  *   the RSS indirection table.  Completes on the RCQ of the leading
940  *   connection. (Not currently used under FreeBSD until OS support becomes
941  *   available.)
942  *
943  * RAMROD_CMD_ID_ETH_HALT
944  *   Used when tearing down a connection prior to driver unload.  Completes
945  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
946  *   use this on the leading connection.
947  *
948  * RAMROD_CMD_ID_ETH_SET_MAC
949  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
950  *   the RCQ of the leading connection.
951  *
952  * RAMROD_CMD_ID_ETH_CFC_DEL
953  *   Used when tearing down a conneciton prior to driver unload.  Completes
954  *   on the RCQ of the leading connection (since the current connection
955  *   has been completely removed from controller memory).
956  *
957  * RAMROD_CMD_ID_ETH_PORT_DEL
958  *   Used to tear down the leading connection prior to driver unload,
959  *   typically fp[0].  Completes as an index increment of the CSTORM on the
960  *   default status block.
961  *
962  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
963  *   Used for connection offload.  Completes on the RCQ of the multi-queue
964  *   RSS connection that is being offloaded.  (Not currently used under
965  *   FreeBSD.)
966  *
967  * There can only be one command pending per function.
968  *
969  * Returns:
970  *   0 = Success, !0 = Failure.
971  */
972
973 /* must be called under the spq lock */
974 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
975 {
976         struct eth_spe *next_spe = sc->spq_prod_bd;
977
978         if (sc->spq_prod_bd == sc->spq_last_bd) {
979                 /* wrap back to the first eth_spq */
980                 sc->spq_prod_bd = sc->spq;
981                 sc->spq_prod_idx = 0;
982         } else {
983                 sc->spq_prod_bd++;
984                 sc->spq_prod_idx++;
985         }
986
987         return next_spe;
988 }
989
990 /* must be called under the spq lock */
991 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
992 {
993         int func = SC_FUNC(sc);
994
995         /*
996          * Make sure that BD data is updated before writing the producer.
997          * BD data is written to the memory, the producer is read from the
998          * memory, thus we need a full memory barrier to ensure the ordering.
999          */
1000         mb();
1001
1002         REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
1003                  sc->spq_prod_idx);
1004
1005         mb();
1006 }
1007
1008 /**
1009  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
1010  *
1011  * @cmd:      command to check
1012  * @cmd_type: command type
1013  */
1014 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
1015 {
1016         if ((cmd_type == NONE_CONNECTION_TYPE) ||
1017             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
1018             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
1019             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
1020             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
1021             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
1022             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1023                 return TRUE;
1024         } else {
1025                 return FALSE;
1026         }
1027 }
1028
1029 /**
1030  * bnx2x_sp_post - place a single command on an SP ring
1031  *
1032  * @sc:         driver handle
1033  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1034  * @cid:        SW CID the command is related to
1035  * @data_hi:    command private data address (high 32 bits)
1036  * @data_lo:    command private data address (low 32 bits)
1037  * @cmd_type:   command type (e.g. NONE, ETH)
1038  *
1039  * SP data is handled as if it's always an address pair, thus data fields are
1040  * not swapped to little endian in upper functions. Instead this function swaps
1041  * data as if it's two uint32 fields.
1042  */
1043 int
1044 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1045             uint32_t data_lo, int cmd_type)
1046 {
1047         struct eth_spe *spe;
1048         uint16_t type;
1049         int common;
1050
1051         common = bnx2x_is_contextless_ramrod(command, cmd_type);
1052
1053         if (common) {
1054                 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1055                         PMD_DRV_LOG(INFO, sc, "EQ ring is full!");
1056                         return -1;
1057                 }
1058         } else {
1059                 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1060                         PMD_DRV_LOG(INFO, sc, "SPQ ring is full!");
1061                         return -1;
1062                 }
1063         }
1064
1065         spe = bnx2x_sp_get_next(sc);
1066
1067         /* CID needs port number to be encoded int it */
1068         spe->hdr.conn_and_cmd_data =
1069             htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1070
1071         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1072
1073         /* TBD: Check if it works for VFs */
1074         type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1075                  SPE_HDR_FUNCTION_ID);
1076
1077         spe->hdr.type = htole16(type);
1078
1079         spe->data.update_data_addr.hi = htole32(data_hi);
1080         spe->data.update_data_addr.lo = htole32(data_lo);
1081
1082         /*
1083          * It's ok if the actual decrement is issued towards the memory
1084          * somewhere between the lock and unlock. Thus no more explict
1085          * memory barrier is needed.
1086          */
1087         if (common) {
1088                 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1089         } else {
1090                 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1091         }
1092
1093         PMD_DRV_LOG(DEBUG, sc,
1094                     "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1095                     "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1096                     sc->spq_prod_idx,
1097                     (uint32_t) U64_HI(sc->spq_dma.paddr),
1098                     (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1099                                 (uint8_t *) sc->spq_prod_bd -
1100                                 (uint8_t *) sc->spq), command, common,
1101                     HW_CID(sc, cid), data_hi, data_lo, type,
1102                     atomic_load_acq_long(&sc->cq_spq_left),
1103                     atomic_load_acq_long(&sc->eq_spq_left));
1104
1105         bnx2x_sp_prod_update(sc);
1106
1107         return 0;
1108 }
1109
1110 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1111 {
1112         SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1113                  sc->fw_drv_pulse_wr_seq);
1114 }
1115
1116 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1117 {
1118         uint16_t hw_cons;
1119         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1120
1121         if (unlikely(!txq)) {
1122                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1123                 return 0;
1124         }
1125
1126         mb();                   /* status block fields can change */
1127         hw_cons = le16toh(*fp->tx_cons_sb);
1128         return hw_cons != txq->tx_pkt_head;
1129 }
1130
1131 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1132 {
1133         /* expand this for multi-cos if ever supported */
1134         return bnx2x_tx_queue_has_work(fp);
1135 }
1136
1137 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1138 {
1139         uint16_t rx_cq_cons_sb;
1140         struct bnx2x_rx_queue *rxq;
1141         rxq = fp->sc->rx_queues[fp->index];
1142         if (unlikely(!rxq)) {
1143                 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1144                 return 0;
1145         }
1146
1147         mb();                   /* status block fields can change */
1148         rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1149         if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1150                      MAX_RCQ_ENTRIES(rxq)))
1151                 rx_cq_cons_sb++;
1152         return rxq->rx_cq_head != rx_cq_cons_sb;
1153 }
1154
1155 static void
1156 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1157              union eth_rx_cqe *rr_cqe)
1158 {
1159 #ifdef RTE_LIBRTE_BNX2X_DEBUG
1160         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1161 #endif
1162         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1163         enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1164         struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1165
1166         PMD_DRV_LOG(DEBUG, sc,
1167                     "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1168                     fp->index, cid, command, sc->state,
1169                     rr_cqe->ramrod_cqe.ramrod_type);
1170
1171         switch (command) {
1172         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1173                 PMD_DRV_LOG(DEBUG, sc, "got UPDATE ramrod. CID %d", cid);
1174                 drv_cmd = ECORE_Q_CMD_UPDATE;
1175                 break;
1176
1177         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1178                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] setup ramrod", cid);
1179                 drv_cmd = ECORE_Q_CMD_SETUP;
1180                 break;
1181
1182         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1183                 PMD_DRV_LOG(DEBUG, sc,
1184                             "got MULTI[%d] tx-only setup ramrod", cid);
1185                 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1186                 break;
1187
1188         case (RAMROD_CMD_ID_ETH_HALT):
1189                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] halt ramrod", cid);
1190                 drv_cmd = ECORE_Q_CMD_HALT;
1191                 break;
1192
1193         case (RAMROD_CMD_ID_ETH_TERMINATE):
1194                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] teminate ramrod", cid);
1195                 drv_cmd = ECORE_Q_CMD_TERMINATE;
1196                 break;
1197
1198         case (RAMROD_CMD_ID_ETH_EMPTY):
1199                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] empty ramrod", cid);
1200                 drv_cmd = ECORE_Q_CMD_EMPTY;
1201                 break;
1202
1203         default:
1204                 PMD_DRV_LOG(DEBUG, sc,
1205                             "ERROR: unexpected MC reply (%d)"
1206                             "on fp[%d]", command, fp->index);
1207                 return;
1208         }
1209
1210         if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1211             q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1212                 /*
1213                  * q_obj->complete_cmd() failure means that this was
1214                  * an unexpected completion.
1215                  *
1216                  * In this case we don't want to increase the sc->spq_left
1217                  * because apparently we haven't sent this command the first
1218                  * place.
1219                  */
1220                 // rte_panic("Unexpected SP completion");
1221                 return;
1222         }
1223
1224         atomic_add_acq_long(&sc->cq_spq_left, 1);
1225
1226         PMD_DRV_LOG(DEBUG, sc, "sc->cq_spq_left 0x%lx",
1227                     atomic_load_acq_long(&sc->cq_spq_left));
1228 }
1229
1230 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1231 {
1232         struct bnx2x_rx_queue *rxq;
1233         uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1234         uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1235
1236         rxq = sc->rx_queues[fp->index];
1237         if (!rxq) {
1238                 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1239                 return 0;
1240         }
1241
1242         /* CQ "next element" is of the size of the regular element */
1243         hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1244         if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1245                      USABLE_RCQ_ENTRIES_PER_PAGE)) {
1246                 hw_cq_cons++;
1247         }
1248
1249         bd_cons = rxq->rx_bd_head;
1250         bd_prod = rxq->rx_bd_tail;
1251         bd_prod_fw = bd_prod;
1252         sw_cq_cons = rxq->rx_cq_head;
1253         sw_cq_prod = rxq->rx_cq_tail;
1254
1255         /*
1256          * Memory barrier necessary as speculative reads of the rx
1257          * buffer can be ahead of the index in the status block
1258          */
1259         rmb();
1260
1261         while (sw_cq_cons != hw_cq_cons) {
1262                 union eth_rx_cqe *cqe;
1263                 struct eth_fast_path_rx_cqe *cqe_fp;
1264                 uint8_t cqe_fp_flags;
1265                 enum eth_rx_cqe_type cqe_fp_type;
1266
1267                 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1268                 bd_prod = RX_BD(bd_prod, rxq);
1269                 bd_cons = RX_BD(bd_cons, rxq);
1270
1271                 cqe = &rxq->cq_ring[comp_ring_cons];
1272                 cqe_fp = &cqe->fast_path_cqe;
1273                 cqe_fp_flags = cqe_fp->type_error_flags;
1274                 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1275
1276                 /* is this a slowpath msg? */
1277                 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1278                         bnx2x_sp_event(sc, fp, cqe);
1279                         goto next_cqe;
1280                 }
1281
1282                 /* is this an error packet? */
1283                 if (unlikely(cqe_fp_flags &
1284                              ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1285                         PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1286                                    cqe_fp_flags, sw_cq_cons);
1287                         goto next_rx;
1288                 }
1289
1290                 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1291
1292 next_rx:
1293                 bd_cons = NEXT_RX_BD(bd_cons);
1294                 bd_prod = NEXT_RX_BD(bd_prod);
1295                 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1296
1297 next_cqe:
1298                 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1299                 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1300
1301         }                       /* while work to do */
1302
1303         rxq->rx_bd_head = bd_cons;
1304         rxq->rx_bd_tail = bd_prod_fw;
1305         rxq->rx_cq_head = sw_cq_cons;
1306         rxq->rx_cq_tail = sw_cq_prod;
1307
1308         /* Update producers */
1309         bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1310
1311         return sw_cq_cons != hw_cq_cons;
1312 }
1313
1314 static uint16_t
1315 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1316                 uint16_t pkt_idx, uint16_t bd_idx)
1317 {
1318         struct eth_tx_start_bd *tx_start_bd =
1319             &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1320         uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1321         struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1322
1323         if (likely(tx_mbuf != NULL)) {
1324                 rte_pktmbuf_free_seg(tx_mbuf);
1325         } else {
1326                 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1327                            fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1328         }
1329
1330         txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1331         txq->nb_tx_avail += nbd;
1332
1333         while (nbd--)
1334                 bd_idx = NEXT_TX_BD(bd_idx);
1335
1336         return bd_idx;
1337 }
1338
1339 /* processes transmit completions */
1340 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1341 {
1342         uint16_t bd_cons, hw_cons, sw_cons;
1343         __rte_unused uint16_t tx_bd_avail;
1344
1345         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1346
1347         if (unlikely(!txq)) {
1348                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1349                 return 0;
1350         }
1351
1352         bd_cons = txq->tx_bd_head;
1353         hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1354         sw_cons = txq->tx_pkt_head;
1355
1356         while (sw_cons != hw_cons) {
1357                 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1358                 sw_cons++;
1359         }
1360
1361         txq->tx_pkt_head = sw_cons;
1362         txq->tx_bd_head = bd_cons;
1363
1364         tx_bd_avail = txq->nb_tx_avail;
1365
1366         PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1367                    "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1368                    fp->index, tx_bd_avail, hw_cons,
1369                    txq->tx_pkt_head, txq->tx_pkt_tail,
1370                    txq->tx_bd_head, txq->tx_bd_tail);
1371         return TRUE;
1372 }
1373
1374 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1375 {
1376         struct bnx2x_fastpath *fp;
1377         int i, count;
1378
1379         /* wait until all TX fastpath tasks have completed */
1380         for (i = 0; i < sc->num_queues; i++) {
1381                 fp = &sc->fp[i];
1382
1383                 count = 1000;
1384
1385                 while (bnx2x_has_tx_work(fp)) {
1386                         bnx2x_txeof(sc, fp);
1387
1388                         if (count == 0) {
1389                                 PMD_TX_LOG(ERR,
1390                                            "Timeout waiting for fp[%d] "
1391                                            "transmits to complete!", i);
1392                                 rte_panic("tx drain failure");
1393                                 return;
1394                         }
1395
1396                         count--;
1397                         DELAY(1000);
1398                         rmb();
1399                 }
1400         }
1401
1402         return;
1403 }
1404
1405 static int
1406 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1407                  int mac_type, uint8_t wait_for_comp)
1408 {
1409         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1410         int rc;
1411
1412         /* wait for completion of requested */
1413         if (wait_for_comp) {
1414                 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1415         }
1416
1417         /* Set the mac type of addresses we want to clear */
1418         bnx2x_set_bit(mac_type, &vlan_mac_flags);
1419
1420         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1421         if (rc < 0)
1422                 PMD_DRV_LOG(ERR, sc, "Failed to delete MACs (%d)", rc);
1423
1424         return rc;
1425 }
1426
1427 static int
1428 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1429                         unsigned long *rx_accept_flags,
1430                         unsigned long *tx_accept_flags)
1431 {
1432         /* Clear the flags first */
1433         *rx_accept_flags = 0;
1434         *tx_accept_flags = 0;
1435
1436         switch (rx_mode) {
1437         case BNX2X_RX_MODE_NONE:
1438                 /*
1439                  * 'drop all' supersedes any accept flags that may have been
1440                  * passed to the function.
1441                  */
1442                 break;
1443
1444         case BNX2X_RX_MODE_NORMAL:
1445                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1446                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1447                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1448
1449                 /* internal switching mode */
1450                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1451                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1452                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1453
1454                 break;
1455
1456         case BNX2X_RX_MODE_ALLMULTI:
1457                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1458                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1459                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1460
1461                 /* internal switching mode */
1462                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1463                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1464                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1465
1466                 break;
1467
1468         case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1469         case BNX2X_RX_MODE_PROMISC:
1470                 /*
1471                  * According to deffinition of SI mode, iface in promisc mode
1472                  * should receive matched and unmatched (in resolution of port)
1473                  * unicast packets.
1474                  */
1475                 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1476                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1477                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1478                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1479
1480                 /* internal switching mode */
1481                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1482                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1483
1484                 if (IS_MF_SI(sc)) {
1485                         bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1486                 } else {
1487                         bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1488                 }
1489
1490                 break;
1491
1492         default:
1493                 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1494                 return -1;
1495         }
1496
1497         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1498         if (rx_mode != BNX2X_RX_MODE_NONE) {
1499                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1500                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1501         }
1502
1503         return 0;
1504 }
1505
1506 static int
1507 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1508                   unsigned long rx_mode_flags,
1509                   unsigned long rx_accept_flags,
1510                   unsigned long tx_accept_flags, unsigned long ramrod_flags)
1511 {
1512         struct ecore_rx_mode_ramrod_params ramrod_param;
1513         int rc;
1514
1515         memset(&ramrod_param, 0, sizeof(ramrod_param));
1516
1517         /* Prepare ramrod parameters */
1518         ramrod_param.cid = 0;
1519         ramrod_param.cl_id = cl_id;
1520         ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1521         ramrod_param.func_id = SC_FUNC(sc);
1522
1523         ramrod_param.pstate = &sc->sp_state;
1524         ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1525
1526         ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1527         ramrod_param.rdata_mapping =
1528             (phys_addr_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1529             bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1530
1531         ramrod_param.ramrod_flags = ramrod_flags;
1532         ramrod_param.rx_mode_flags = rx_mode_flags;
1533
1534         ramrod_param.rx_accept_flags = rx_accept_flags;
1535         ramrod_param.tx_accept_flags = tx_accept_flags;
1536
1537         rc = ecore_config_rx_mode(sc, &ramrod_param);
1538         if (rc < 0) {
1539                 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1540                 return rc;
1541         }
1542
1543         return 0;
1544 }
1545
1546 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1547 {
1548         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1549         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1550         int rc;
1551
1552         rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1553                                    &tx_accept_flags);
1554         if (rc) {
1555                 return rc;
1556         }
1557
1558         bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1559         bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1560         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1561
1562         return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1563                                  rx_accept_flags, tx_accept_flags,
1564                                  ramrod_flags);
1565 }
1566
1567 /* returns the "mcp load_code" according to global load_count array */
1568 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1569 {
1570         int path = SC_PATH(sc);
1571         int port = SC_PORT(sc);
1572
1573         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1574                     path, load_count[path][0], load_count[path][1],
1575                     load_count[path][2]);
1576
1577         load_count[path][0]++;
1578         load_count[path][1 + port]++;
1579         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1580                     path, load_count[path][0], load_count[path][1],
1581                     load_count[path][2]);
1582         if (load_count[path][0] == 1)
1583                 return FW_MSG_CODE_DRV_LOAD_COMMON;
1584         else if (load_count[path][1 + port] == 1)
1585                 return FW_MSG_CODE_DRV_LOAD_PORT;
1586         else
1587                 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1588 }
1589
1590 /* returns the "mcp load_code" according to global load_count array */
1591 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1592 {
1593         int port = SC_PORT(sc);
1594         int path = SC_PATH(sc);
1595
1596         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1597                     path, load_count[path][0], load_count[path][1],
1598                     load_count[path][2]);
1599         load_count[path][0]--;
1600         load_count[path][1 + port]--;
1601         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1602                     path, load_count[path][0], load_count[path][1],
1603                     load_count[path][2]);
1604         if (load_count[path][0] == 0) {
1605                 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1606         } else if (load_count[path][1 + port] == 0) {
1607                 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1608         } else {
1609                 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1610         }
1611 }
1612
1613 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1614 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1615 {
1616         uint32_t reset_code = 0;
1617
1618         /* Select the UNLOAD request mode */
1619         if (unload_mode == UNLOAD_NORMAL) {
1620                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1621         } else {
1622                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1623         }
1624
1625         /* Send the request to the MCP */
1626         if (!BNX2X_NOMCP(sc)) {
1627                 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1628         } else {
1629                 reset_code = bnx2x_nic_unload_no_mcp(sc);
1630         }
1631
1632         return reset_code;
1633 }
1634
1635 /* send UNLOAD_DONE command to the MCP */
1636 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1637 {
1638         uint32_t reset_param =
1639             keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1640
1641         /* Report UNLOAD_DONE to MCP */
1642         if (!BNX2X_NOMCP(sc)) {
1643                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1644         }
1645 }
1646
1647 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1648 {
1649         int tout = 50;
1650
1651         if (!sc->port.pmf) {
1652                 return 0;
1653         }
1654
1655         /*
1656          * (assumption: No Attention from MCP at this stage)
1657          * PMF probably in the middle of TX disable/enable transaction
1658          * 1. Sync IRS for default SB
1659          * 2. Sync SP queue - this guarantees us that attention handling started
1660          * 3. Wait, that TX disable/enable transaction completes
1661          *
1662          * 1+2 guarantee that if DCBX attention was scheduled it already changed
1663          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1664          * received completion for the transaction the state is TX_STOPPED.
1665          * State will return to STARTED after completion of TX_STOPPED-->STARTED
1666          * transaction.
1667          */
1668
1669         while (ecore_func_get_state(sc, &sc->func_obj) !=
1670                ECORE_F_STATE_STARTED && tout--) {
1671                 DELAY(20000);
1672         }
1673
1674         if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1675                 /*
1676                  * Failed to complete the transaction in a "good way"
1677                  * Force both transactions with CLR bit.
1678                  */
1679                 struct ecore_func_state_params func_params = { NULL };
1680
1681                 PMD_DRV_LOG(NOTICE, sc, "Unexpected function state! "
1682                             "Forcing STARTED-->TX_STOPPED-->STARTED");
1683
1684                 func_params.f_obj = &sc->func_obj;
1685                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1686
1687                 /* STARTED-->TX_STOPPED */
1688                 func_params.cmd = ECORE_F_CMD_TX_STOP;
1689                 ecore_func_state_change(sc, &func_params);
1690
1691                 /* TX_STOPPED-->STARTED */
1692                 func_params.cmd = ECORE_F_CMD_TX_START;
1693                 return ecore_func_state_change(sc, &func_params);
1694         }
1695
1696         return 0;
1697 }
1698
1699 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1700 {
1701         struct bnx2x_fastpath *fp = &sc->fp[index];
1702         struct ecore_queue_state_params q_params = { NULL };
1703         int rc;
1704
1705         PMD_DRV_LOG(DEBUG, sc, "stopping queue %d cid %d", index, fp->index);
1706
1707         q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1708         /* We want to wait for completion in this context */
1709         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1710
1711         /* Stop the primary connection: */
1712
1713         /* ...halt the connection */
1714         q_params.cmd = ECORE_Q_CMD_HALT;
1715         rc = ecore_queue_state_change(sc, &q_params);
1716         if (rc) {
1717                 return rc;
1718         }
1719
1720         /* ...terminate the connection */
1721         q_params.cmd = ECORE_Q_CMD_TERMINATE;
1722         memset(&q_params.params.terminate, 0,
1723                sizeof(q_params.params.terminate));
1724         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1725         rc = ecore_queue_state_change(sc, &q_params);
1726         if (rc) {
1727                 return rc;
1728         }
1729
1730         /* ...delete cfc entry */
1731         q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1732         memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1733         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1734         return ecore_queue_state_change(sc, &q_params);
1735 }
1736
1737 /* wait for the outstanding SP commands */
1738 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1739 {
1740         unsigned long tmp;
1741         int tout = 5000;        /* wait for 5 secs tops */
1742
1743         while (tout--) {
1744                 mb();
1745                 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1746                         return TRUE;
1747                 }
1748
1749                 DELAY(1000);
1750         }
1751
1752         mb();
1753
1754         tmp = atomic_load_acq_long(&sc->sp_state);
1755         if (tmp & mask) {
1756                 PMD_DRV_LOG(INFO, sc, "Filtering completion timed out: "
1757                             "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1758                 return FALSE;
1759         }
1760
1761         return FALSE;
1762 }
1763
1764 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1765 {
1766         struct ecore_func_state_params func_params = { NULL };
1767         int rc;
1768
1769         /* prepare parameters for function state transitions */
1770         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1771         func_params.f_obj = &sc->func_obj;
1772         func_params.cmd = ECORE_F_CMD_STOP;
1773
1774         /*
1775          * Try to stop the function the 'good way'. If it fails (in case
1776          * of a parity error during bnx2x_chip_cleanup()) and we are
1777          * not in a debug mode, perform a state transaction in order to
1778          * enable further HW_RESET transaction.
1779          */
1780         rc = ecore_func_state_change(sc, &func_params);
1781         if (rc) {
1782                 PMD_DRV_LOG(NOTICE, sc, "FUNC_STOP ramrod failed. "
1783                             "Running a dry transaction");
1784                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1785                 return ecore_func_state_change(sc, &func_params);
1786         }
1787
1788         return 0;
1789 }
1790
1791 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1792 {
1793         struct ecore_func_state_params func_params = { NULL };
1794
1795         /* Prepare parameters for function state transitions */
1796         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1797
1798         func_params.f_obj = &sc->func_obj;
1799         func_params.cmd = ECORE_F_CMD_HW_RESET;
1800
1801         func_params.params.hw_init.load_phase = load_code;
1802
1803         return ecore_func_state_change(sc, &func_params);
1804 }
1805
1806 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1807 {
1808         if (disable_hw) {
1809                 /* prevent the HW from sending interrupts */
1810                 bnx2x_int_disable(sc);
1811         }
1812 }
1813
1814 static void
1815 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1816 {
1817         int port = SC_PORT(sc);
1818         struct ecore_mcast_ramrod_params rparam = { NULL };
1819         uint32_t reset_code;
1820         int i, rc = 0;
1821
1822         bnx2x_drain_tx_queues(sc);
1823
1824         /* give HW time to discard old tx messages */
1825         DELAY(1000);
1826
1827         /* Clean all ETH MACs */
1828         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1829                               FALSE);
1830         if (rc < 0) {
1831                 PMD_DRV_LOG(NOTICE, sc,
1832                             "Failed to delete all ETH MACs (%d)", rc);
1833         }
1834
1835         /* Clean up UC list  */
1836         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1837                               TRUE);
1838         if (rc < 0) {
1839                 PMD_DRV_LOG(NOTICE, sc,
1840                             "Failed to delete UC MACs list (%d)", rc);
1841         }
1842
1843         /* Disable LLH */
1844         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1845
1846         /* Set "drop all" to stop Rx */
1847
1848         /*
1849          * We need to take the if_maddr_lock() here in order to prevent
1850          * a race between the completion code and this code.
1851          */
1852
1853         if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1854                 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1855         } else {
1856                 bnx2x_set_storm_rx_mode(sc);
1857         }
1858
1859         /* Clean up multicast configuration */
1860         rparam.mcast_obj = &sc->mcast_obj;
1861         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1862         if (rc < 0) {
1863                 PMD_DRV_LOG(NOTICE, sc,
1864                             "Failed to send DEL MCAST command (%d)", rc);
1865         }
1866
1867         /*
1868          * Send the UNLOAD_REQUEST to the MCP. This will return if
1869          * this function should perform FUNCTION, PORT, or COMMON HW
1870          * reset.
1871          */
1872         reset_code = bnx2x_send_unload_req(sc, unload_mode);
1873
1874         /*
1875          * (assumption: No Attention from MCP at this stage)
1876          * PMF probably in the middle of TX disable/enable transaction
1877          */
1878         rc = bnx2x_func_wait_started(sc);
1879         if (rc) {
1880                 PMD_DRV_LOG(NOTICE, sc, "bnx2x_func_wait_started failed");
1881         }
1882
1883         /*
1884          * Close multi and leading connections
1885          * Completions for ramrods are collected in a synchronous way
1886          */
1887         for (i = 0; i < sc->num_queues; i++) {
1888                 if (bnx2x_stop_queue(sc, i)) {
1889                         goto unload_error;
1890                 }
1891         }
1892
1893         /*
1894          * If SP settings didn't get completed so far - something
1895          * very wrong has happen.
1896          */
1897         if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1898                 PMD_DRV_LOG(NOTICE, sc, "Common slow path ramrods got stuck!");
1899         }
1900
1901 unload_error:
1902
1903         rc = bnx2x_func_stop(sc);
1904         if (rc) {
1905                 PMD_DRV_LOG(NOTICE, sc, "Function stop failed!");
1906         }
1907
1908         /* disable HW interrupts */
1909         bnx2x_int_disable_sync(sc, TRUE);
1910
1911         /* Reset the chip */
1912         rc = bnx2x_reset_hw(sc, reset_code);
1913         if (rc) {
1914                 PMD_DRV_LOG(NOTICE, sc, "Hardware reset failed");
1915         }
1916
1917         /* Report UNLOAD_DONE to MCP */
1918         bnx2x_send_unload_done(sc, keep_link);
1919 }
1920
1921 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1922 {
1923         uint32_t val;
1924
1925         PMD_DRV_LOG(DEBUG, sc, "Disabling 'close the gates'");
1926
1927         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1928         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1929                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1930         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1931 }
1932
1933 /*
1934  * Cleans the object that have internal lists without sending
1935  * ramrods. Should be run when interrutps are disabled.
1936  */
1937 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1938 {
1939         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1940         struct ecore_mcast_ramrod_params rparam = { NULL };
1941         struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1942         int rc;
1943
1944         /* Cleanup MACs' object first... */
1945
1946         /* Wait for completion of requested */
1947         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1948         /* Perform a dry cleanup */
1949         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1950
1951         /* Clean ETH primary MAC */
1952         bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1953         rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1954                                  &ramrod_flags);
1955         if (rc != 0) {
1956                 PMD_DRV_LOG(NOTICE, sc, "Failed to clean ETH MACs (%d)", rc);
1957         }
1958
1959         /* Cleanup UC list */
1960         vlan_mac_flags = 0;
1961         bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1962         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1963         if (rc != 0) {
1964                 PMD_DRV_LOG(NOTICE, sc,
1965                             "Failed to clean UC list MACs (%d)", rc);
1966         }
1967
1968         /* Now clean mcast object... */
1969
1970         rparam.mcast_obj = &sc->mcast_obj;
1971         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1972
1973         /* Add a DEL command... */
1974         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1975         if (rc < 0) {
1976                 PMD_DRV_LOG(NOTICE, sc,
1977                             "Failed to send DEL MCAST command (%d)", rc);
1978         }
1979
1980         /* now wait until all pending commands are cleared */
1981
1982         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1983         while (rc != 0) {
1984                 if (rc < 0) {
1985                         PMD_DRV_LOG(NOTICE, sc,
1986                                     "Failed to clean MCAST object (%d)", rc);
1987                         return;
1988                 }
1989
1990                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1991         }
1992 }
1993
1994 /* stop the controller */
1995 __attribute__ ((noinline))
1996 int
1997 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1998 {
1999         uint8_t global = FALSE;
2000         uint32_t val;
2001
2002         PMD_DRV_LOG(DEBUG, sc, "Starting NIC unload...");
2003
2004         /* stop the periodic callout */
2005         bnx2x_periodic_stop(sc);
2006
2007         /* mark driver as unloaded in shmem2 */
2008         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
2009                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
2010                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
2011                           val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2012         }
2013
2014         if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
2015             (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
2016                 /*
2017                  * We can get here if the driver has been unloaded
2018                  * during parity error recovery and is either waiting for a
2019                  * leader to complete or for other functions to unload and
2020                  * then ifconfig down has been issued. In this case we want to
2021                  * unload and let other functions to complete a recovery
2022                  * process.
2023                  */
2024                 sc->recovery_state = BNX2X_RECOVERY_DONE;
2025                 sc->is_leader = 0;
2026                 bnx2x_release_leader_lock(sc);
2027                 mb();
2028
2029                 PMD_DRV_LOG(NOTICE, sc, "Can't unload in closed or error state");
2030                 return -1;
2031         }
2032
2033         /*
2034          * Nothing to do during unload if previous bnx2x_nic_load()
2035          * did not completed succesfully - all resourses are released.
2036          */
2037         if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2038                 return 0;
2039         }
2040
2041         sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2042         mb();
2043
2044         sc->rx_mode = BNX2X_RX_MODE_NONE;
2045         bnx2x_set_rx_mode(sc);
2046         mb();
2047
2048         if (IS_PF(sc)) {
2049                 /* set ALWAYS_ALIVE bit in shmem */
2050                 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2051
2052                 bnx2x_drv_pulse(sc);
2053
2054                 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2055                 bnx2x_save_statistics(sc);
2056         }
2057
2058         /* wait till consumers catch up with producers in all queues */
2059         bnx2x_drain_tx_queues(sc);
2060
2061         /* if VF indicate to PF this function is going down (PF will delete sp
2062          * elements and clear initializations
2063          */
2064         if (IS_VF(sc)) {
2065                 bnx2x_vf_unload(sc);
2066         } else if (unload_mode != UNLOAD_RECOVERY) {
2067                 /* if this is a normal/close unload need to clean up chip */
2068                 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2069         } else {
2070                 /* Send the UNLOAD_REQUEST to the MCP */
2071                 bnx2x_send_unload_req(sc, unload_mode);
2072
2073                 /*
2074                  * Prevent transactions to host from the functions on the
2075                  * engine that doesn't reset global blocks in case of global
2076                  * attention once gloabl blocks are reset and gates are opened
2077                  * (the engine which leader will perform the recovery
2078                  * last).
2079                  */
2080                 if (!CHIP_IS_E1x(sc)) {
2081                         bnx2x_pf_disable(sc);
2082                 }
2083
2084                 /* disable HW interrupts */
2085                 bnx2x_int_disable_sync(sc, TRUE);
2086
2087                 /* Report UNLOAD_DONE to MCP */
2088                 bnx2x_send_unload_done(sc, FALSE);
2089         }
2090
2091         /*
2092          * At this stage no more interrupts will arrive so we may safely clean
2093          * the queue'able objects here in case they failed to get cleaned so far.
2094          */
2095         if (IS_PF(sc)) {
2096                 bnx2x_squeeze_objects(sc);
2097         }
2098
2099         /* There should be no more pending SP commands at this stage */
2100         sc->sp_state = 0;
2101
2102         sc->port.pmf = 0;
2103
2104         if (IS_PF(sc)) {
2105                 bnx2x_free_mem(sc);
2106         }
2107
2108         bnx2x_free_fw_stats_mem(sc);
2109
2110         sc->state = BNX2X_STATE_CLOSED;
2111
2112         /*
2113          * Check if there are pending parity attentions. If there are - set
2114          * RECOVERY_IN_PROGRESS.
2115          */
2116         if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2117                 bnx2x_set_reset_in_progress(sc);
2118
2119                 /* Set RESET_IS_GLOBAL if needed */
2120                 if (global) {
2121                         bnx2x_set_reset_global(sc);
2122                 }
2123         }
2124
2125         /*
2126          * The last driver must disable a "close the gate" if there is no
2127          * parity attention or "process kill" pending.
2128          */
2129         if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2130             bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2131                 bnx2x_disable_close_the_gate(sc);
2132         }
2133
2134         PMD_DRV_LOG(DEBUG, sc, "Ended NIC unload");
2135
2136         return 0;
2137 }
2138
2139 /*
2140  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2141  * visible to the controller.
2142  *
2143  * If an mbuf is submitted to this routine and cannot be given to the
2144  * controller (e.g. it has too many fragments) then the function may free
2145  * the mbuf and return to the caller.
2146  *
2147  * Returns:
2148  *     int: Number of TX BDs used for the mbuf
2149  *
2150  *   Note the side effect that an mbuf may be freed if it causes a problem.
2151  */
2152 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2153 {
2154         struct eth_tx_start_bd *tx_start_bd;
2155         uint16_t bd_prod, pkt_prod;
2156         struct bnx2x_softc *sc;
2157         uint32_t nbds = 0;
2158
2159         sc = txq->sc;
2160         bd_prod = txq->tx_bd_tail;
2161         pkt_prod = txq->tx_pkt_tail;
2162
2163         txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2164
2165         tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2166
2167         tx_start_bd->addr =
2168             rte_cpu_to_le_64(rte_mbuf_data_dma_addr(m0));
2169         tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2170         tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2171         tx_start_bd->general_data =
2172             (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2173
2174         tx_start_bd->nbd = rte_cpu_to_le_16(2);
2175
2176         if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2177                 tx_start_bd->vlan_or_ethertype =
2178                     rte_cpu_to_le_16(m0->vlan_tci);
2179                 tx_start_bd->bd_flags.as_bitfield |=
2180                     (X_ETH_OUTBAND_VLAN <<
2181                      ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2182         } else {
2183                 if (IS_PF(sc))
2184                         tx_start_bd->vlan_or_ethertype =
2185                             rte_cpu_to_le_16(pkt_prod);
2186                 else {
2187                         struct ether_hdr *eh =
2188                             rte_pktmbuf_mtod(m0, struct ether_hdr *);
2189
2190                         tx_start_bd->vlan_or_ethertype =
2191                             rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2192                 }
2193         }
2194
2195         bd_prod = NEXT_TX_BD(bd_prod);
2196         if (IS_VF(sc)) {
2197                 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2198                 const struct ether_hdr *eh =
2199                     rte_pktmbuf_mtod(m0, struct ether_hdr *);
2200                 uint8_t mac_type = UNICAST_ADDRESS;
2201
2202                 tx_parse_bd =
2203                     &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2204                 if (is_multicast_ether_addr(&eh->d_addr)) {
2205                         if (is_broadcast_ether_addr(&eh->d_addr))
2206                                 mac_type = BROADCAST_ADDRESS;
2207                         else
2208                                 mac_type = MULTICAST_ADDRESS;
2209                 }
2210                 tx_parse_bd->parsing_data =
2211                     (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2212
2213                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2214                            &eh->d_addr.addr_bytes[0], 2);
2215                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2216                            &eh->d_addr.addr_bytes[2], 2);
2217                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2218                            &eh->d_addr.addr_bytes[4], 2);
2219                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2220                            &eh->s_addr.addr_bytes[0], 2);
2221                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2222                            &eh->s_addr.addr_bytes[2], 2);
2223                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2224                            &eh->s_addr.addr_bytes[4], 2);
2225
2226                 tx_parse_bd->data.mac_addr.dst_hi =
2227                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2228                 tx_parse_bd->data.mac_addr.dst_mid =
2229                     rte_cpu_to_be_16(tx_parse_bd->data.
2230                                      mac_addr.dst_mid);
2231                 tx_parse_bd->data.mac_addr.dst_lo =
2232                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2233                 tx_parse_bd->data.mac_addr.src_hi =
2234                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2235                 tx_parse_bd->data.mac_addr.src_mid =
2236                     rte_cpu_to_be_16(tx_parse_bd->data.
2237                                      mac_addr.src_mid);
2238                 tx_parse_bd->data.mac_addr.src_lo =
2239                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2240
2241                 PMD_TX_LOG(DEBUG,
2242                            "PBD dst %x %x %x src %x %x %x p_data %x",
2243                            tx_parse_bd->data.mac_addr.dst_hi,
2244                            tx_parse_bd->data.mac_addr.dst_mid,
2245                            tx_parse_bd->data.mac_addr.dst_lo,
2246                            tx_parse_bd->data.mac_addr.src_hi,
2247                            tx_parse_bd->data.mac_addr.src_mid,
2248                            tx_parse_bd->data.mac_addr.src_lo,
2249                            tx_parse_bd->parsing_data);
2250         }
2251
2252         PMD_TX_LOG(DEBUG,
2253                    "start bd: nbytes %d flags %x vlan %x\n",
2254                    tx_start_bd->nbytes,
2255                    tx_start_bd->bd_flags.as_bitfield,
2256                    tx_start_bd->vlan_or_ethertype);
2257
2258         bd_prod = NEXT_TX_BD(bd_prod);
2259         pkt_prod++;
2260
2261         if (TX_IDX(bd_prod) < 2)
2262                 nbds++;
2263
2264         txq->nb_tx_avail -= 2;
2265         txq->tx_bd_tail = bd_prod;
2266         txq->tx_pkt_tail = pkt_prod;
2267
2268         return nbds + 2;
2269 }
2270
2271 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2272 {
2273         return L2_ILT_LINES(sc);
2274 }
2275
2276 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2277 {
2278         struct ilt_client_info *ilt_client;
2279         struct ecore_ilt *ilt = sc->ilt;
2280         uint16_t line = 0;
2281
2282         PMD_INIT_FUNC_TRACE(sc);
2283
2284         ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2285
2286         /* CDU */
2287         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2288         ilt_client->client_num = ILT_CLIENT_CDU;
2289         ilt_client->page_size = CDU_ILT_PAGE_SZ;
2290         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2291         ilt_client->start = line;
2292         line += bnx2x_cid_ilt_lines(sc);
2293
2294         if (CNIC_SUPPORT(sc)) {
2295                 line += CNIC_ILT_LINES;
2296         }
2297
2298         ilt_client->end = (line - 1);
2299
2300         /* QM */
2301         if (QM_INIT(sc->qm_cid_count)) {
2302                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2303                 ilt_client->client_num = ILT_CLIENT_QM;
2304                 ilt_client->page_size = QM_ILT_PAGE_SZ;
2305                 ilt_client->flags = 0;
2306                 ilt_client->start = line;
2307
2308                 /* 4 bytes for each cid */
2309                 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2310                                      QM_ILT_PAGE_SZ);
2311
2312                 ilt_client->end = (line - 1);
2313         }
2314
2315         if (CNIC_SUPPORT(sc)) {
2316                 /* SRC */
2317                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2318                 ilt_client->client_num = ILT_CLIENT_SRC;
2319                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2320                 ilt_client->flags = 0;
2321                 ilt_client->start = line;
2322                 line += SRC_ILT_LINES;
2323                 ilt_client->end = (line - 1);
2324
2325                 /* TM */
2326                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2327                 ilt_client->client_num = ILT_CLIENT_TM;
2328                 ilt_client->page_size = TM_ILT_PAGE_SZ;
2329                 ilt_client->flags = 0;
2330                 ilt_client->start = line;
2331                 line += TM_ILT_LINES;
2332                 ilt_client->end = (line - 1);
2333         }
2334
2335         assert((line <= ILT_MAX_LINES));
2336 }
2337
2338 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2339 {
2340         int i;
2341
2342         for (i = 0; i < sc->num_queues; i++) {
2343                 /* get the Rx buffer size for RX frames */
2344                 sc->fp[i].rx_buf_size =
2345                     (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2346         }
2347 }
2348
2349 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2350 {
2351
2352         sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2353
2354         return sc->ilt == NULL;
2355 }
2356
2357 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2358 {
2359         sc->ilt->lines = rte_calloc("",
2360                                     sizeof(struct ilt_line), ILT_MAX_LINES,
2361                                     RTE_CACHE_LINE_SIZE);
2362         return sc->ilt->lines == NULL;
2363 }
2364
2365 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2366 {
2367         rte_free(sc->ilt);
2368         sc->ilt = NULL;
2369 }
2370
2371 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2372 {
2373         if (sc->ilt->lines != NULL) {
2374                 rte_free(sc->ilt->lines);
2375                 sc->ilt->lines = NULL;
2376         }
2377 }
2378
2379 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2380 {
2381         uint32_t i;
2382
2383         for (i = 0; i < L2_ILT_LINES(sc); i++) {
2384                 sc->context[i].vcxt = NULL;
2385                 sc->context[i].size = 0;
2386         }
2387
2388         ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2389
2390         bnx2x_free_ilt_lines_mem(sc);
2391 }
2392
2393 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2394 {
2395         int context_size;
2396         int allocated;
2397         int i;
2398         char cdu_name[RTE_MEMZONE_NAMESIZE];
2399
2400         /*
2401          * Allocate memory for CDU context:
2402          * This memory is allocated separately and not in the generic ILT
2403          * functions because CDU differs in few aspects:
2404          * 1. There can be multiple entities allocating memory for context -
2405          * regular L2, CNIC, and SRIOV drivers. Each separately controls
2406          * its own ILT lines.
2407          * 2. Since CDU page-size is not a single 4KB page (which is the case
2408          * for the other ILT clients), to be efficient we want to support
2409          * allocation of sub-page-size in the last entry.
2410          * 3. Context pointers are used by the driver to pass to FW / update
2411          * the context (for the other ILT clients the pointers are used just to
2412          * free the memory during unload).
2413          */
2414         context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2415         for (i = 0, allocated = 0; allocated < context_size; i++) {
2416                 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2417                                           (context_size - allocated));
2418
2419                 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2420                 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2421                                   &sc->context[i].vcxt_dma,
2422                                   cdu_name, BNX2X_PAGE_SIZE) != 0) {
2423                         bnx2x_free_mem(sc);
2424                         return -1;
2425                 }
2426
2427                 sc->context[i].vcxt =
2428                     (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2429
2430                 allocated += sc->context[i].size;
2431         }
2432
2433         bnx2x_alloc_ilt_lines_mem(sc);
2434
2435         if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2436                 PMD_DRV_LOG(NOTICE, sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2437                 bnx2x_free_mem(sc);
2438                 return -1;
2439         }
2440
2441         return 0;
2442 }
2443
2444 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2445 {
2446         sc->fw_stats_num = 0;
2447
2448         sc->fw_stats_req_size = 0;
2449         sc->fw_stats_req = NULL;
2450         sc->fw_stats_req_mapping = 0;
2451
2452         sc->fw_stats_data_size = 0;
2453         sc->fw_stats_data = NULL;
2454         sc->fw_stats_data_mapping = 0;
2455 }
2456
2457 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2458 {
2459         uint8_t num_queue_stats;
2460         int num_groups, vf_headroom = 0;
2461
2462         /* number of queues for statistics is number of eth queues */
2463         num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2464
2465         /*
2466          * Total number of FW statistics requests =
2467          *   1 for port stats + 1 for PF stats + num of queues
2468          */
2469         sc->fw_stats_num = (2 + num_queue_stats);
2470
2471         /*
2472          * Request is built from stats_query_header and an array of
2473          * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2474          * rules. The real number or requests is configured in the
2475          * stats_query_header.
2476          */
2477         num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2478         if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2479                 num_groups++;
2480
2481         sc->fw_stats_req_size =
2482             (sizeof(struct stats_query_header) +
2483              (num_groups * sizeof(struct stats_query_cmd_group)));
2484
2485         /*
2486          * Data for statistics requests + stats_counter.
2487          * stats_counter holds per-STORM counters that are incremented when
2488          * STORM has finished with the current request. Memory for FCoE
2489          * offloaded statistics are counted anyway, even if they will not be sent.
2490          * VF stats are not accounted for here as the data of VF stats is stored
2491          * in memory allocated by the VF, not here.
2492          */
2493         sc->fw_stats_data_size =
2494             (sizeof(struct stats_counter) +
2495              sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2496              /* sizeof(struct fcoe_statistics_params) + */
2497              (sizeof(struct per_queue_stats) * num_queue_stats));
2498
2499         if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2500                           &sc->fw_stats_dma, "fw_stats",
2501                           RTE_CACHE_LINE_SIZE) != 0) {
2502                 bnx2x_free_fw_stats_mem(sc);
2503                 return -1;
2504         }
2505
2506         /* set up the shortcuts */
2507
2508         sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2509         sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2510
2511         sc->fw_stats_data =
2512             (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2513                                          sc->fw_stats_req_size);
2514         sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2515                                      sc->fw_stats_req_size);
2516
2517         return 0;
2518 }
2519
2520 /*
2521  * Bits map:
2522  * 0-7  - Engine0 load counter.
2523  * 8-15 - Engine1 load counter.
2524  * 16   - Engine0 RESET_IN_PROGRESS bit.
2525  * 17   - Engine1 RESET_IN_PROGRESS bit.
2526  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2527  *        function on the engine
2528  * 19   - Engine1 ONE_IS_LOADED.
2529  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2530  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2531  *        for just the one belonging to its engine).
2532  */
2533 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2534 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2535 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2536 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2537 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2538 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2539 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2540 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2541
2542 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2543 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2544 {
2545         uint32_t val;
2546         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2547         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2548         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2549         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2550 }
2551
2552 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2553 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2554 {
2555         uint32_t val;
2556         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2557         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2558         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2559         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2560 }
2561
2562 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2563 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2564 {
2565         return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2566 }
2567
2568 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2569 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2570 {
2571         uint32_t val;
2572         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2573             BNX2X_PATH0_RST_IN_PROG_BIT;
2574
2575         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2576
2577         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2578         /* Clear the bit */
2579         val &= ~bit;
2580         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2581
2582         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2583 }
2584
2585 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2586 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2587 {
2588         uint32_t val;
2589         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2590             BNX2X_PATH0_RST_IN_PROG_BIT;
2591
2592         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2593
2594         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2595         /* Set the bit */
2596         val |= bit;
2597         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2598
2599         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2600 }
2601
2602 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2603 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2604 {
2605         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2606         uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2607             BNX2X_PATH0_RST_IN_PROG_BIT;
2608
2609         /* return false if bit is set */
2610         return (val & bit) ? FALSE : TRUE;
2611 }
2612
2613 /* get the load status for an engine, should be run under rtnl lock */
2614 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2615 {
2616         uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2617             BNX2X_PATH0_LOAD_CNT_MASK;
2618         uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2619             BNX2X_PATH0_LOAD_CNT_SHIFT;
2620         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2621
2622         val = ((val & mask) >> shift);
2623
2624         return val != 0;
2625 }
2626
2627 /* set pf load mark */
2628 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2629 {
2630         uint32_t val;
2631         uint32_t val1;
2632         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2633             BNX2X_PATH0_LOAD_CNT_MASK;
2634         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2635             BNX2X_PATH0_LOAD_CNT_SHIFT;
2636
2637         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2638
2639         PMD_INIT_FUNC_TRACE(sc);
2640
2641         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2642
2643         /* get the current counter value */
2644         val1 = ((val & mask) >> shift);
2645
2646         /* set bit of this PF */
2647         val1 |= (1 << SC_ABS_FUNC(sc));
2648
2649         /* clear the old value */
2650         val &= ~mask;
2651
2652         /* set the new one */
2653         val |= ((val1 << shift) & mask);
2654
2655         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2656
2657         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2658 }
2659
2660 /* clear pf load mark */
2661 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2662 {
2663         uint32_t val1, val;
2664         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2665             BNX2X_PATH0_LOAD_CNT_MASK;
2666         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2667             BNX2X_PATH0_LOAD_CNT_SHIFT;
2668
2669         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2670         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2671
2672         /* get the current counter value */
2673         val1 = (val & mask) >> shift;
2674
2675         /* clear bit of that PF */
2676         val1 &= ~(1 << SC_ABS_FUNC(sc));
2677
2678         /* clear the old value */
2679         val &= ~mask;
2680
2681         /* set the new one */
2682         val |= ((val1 << shift) & mask);
2683
2684         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2685         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2686         return val1 != 0;
2687 }
2688
2689 /* send load requrest to mcp and analyze response */
2690 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2691 {
2692         PMD_INIT_FUNC_TRACE(sc);
2693
2694         /* init fw_seq */
2695         sc->fw_seq =
2696             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2697              DRV_MSG_SEQ_NUMBER_MASK);
2698
2699         PMD_DRV_LOG(DEBUG, sc, "initial fw_seq 0x%04x", sc->fw_seq);
2700
2701 #ifdef BNX2X_PULSE
2702         /* get the current FW pulse sequence */
2703         sc->fw_drv_pulse_wr_seq =
2704             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2705              DRV_PULSE_SEQ_MASK);
2706 #else
2707         /* set ALWAYS_ALIVE bit in shmem */
2708         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2709         bnx2x_drv_pulse(sc);
2710 #endif
2711
2712         /* load request */
2713         (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2714                                       DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2715
2716         /* if the MCP fails to respond we must abort */
2717         if (!(*load_code)) {
2718                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure!");
2719                 return -1;
2720         }
2721
2722         /* if MCP refused then must abort */
2723         if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2724                 PMD_DRV_LOG(NOTICE, sc, "MCP refused load request");
2725                 return -1;
2726         }
2727
2728         return 0;
2729 }
2730
2731 /*
2732  * Check whether another PF has already loaded FW to chip. In virtualized
2733  * environments a pf from anoth VM may have already initialized the device
2734  * including loading FW.
2735  */
2736 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2737 {
2738         uint32_t my_fw, loaded_fw;
2739
2740         /* is another pf loaded on this engine? */
2741         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2742             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2743                 /* build my FW version dword */
2744                 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2745                          (BNX2X_5710_FW_MINOR_VERSION << 8) +
2746                          (BNX2X_5710_FW_REVISION_VERSION << 16) +
2747                          (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2748
2749                 /* read loaded FW from chip */
2750                 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2751                 PMD_DRV_LOG(DEBUG, sc, "loaded FW 0x%08x / my FW 0x%08x",
2752                             loaded_fw, my_fw);
2753
2754                 /* abort nic load if version mismatch */
2755                 if (my_fw != loaded_fw) {
2756                         PMD_DRV_LOG(NOTICE, sc,
2757                                     "FW 0x%08x already loaded (mine is 0x%08x)",
2758                                     loaded_fw, my_fw);
2759                         return -1;
2760                 }
2761         }
2762
2763         return 0;
2764 }
2765
2766 /* mark PMF if applicable */
2767 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2768 {
2769         uint32_t ncsi_oem_data_addr;
2770
2771         PMD_INIT_FUNC_TRACE(sc);
2772
2773         if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2774             (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2775             (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2776                 /*
2777                  * Barrier here for ordering between the writing to sc->port.pmf here
2778                  * and reading it from the periodic task.
2779                  */
2780                 sc->port.pmf = 1;
2781                 mb();
2782         } else {
2783                 sc->port.pmf = 0;
2784         }
2785
2786         PMD_DRV_LOG(DEBUG, sc, "pmf %d", sc->port.pmf);
2787
2788         if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2789                 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2790                         ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2791                         if (ncsi_oem_data_addr) {
2792                                 REG_WR(sc,
2793                                        (ncsi_oem_data_addr +
2794                                         offsetof(struct glob_ncsi_oem_data,
2795                                                  driver_version)), 0);
2796                         }
2797                 }
2798         }
2799 }
2800
2801 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2802 {
2803         int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2804         int abs_func;
2805         int vn;
2806
2807         if (BNX2X_NOMCP(sc)) {
2808                 return;         /* what should be the default bvalue in this case */
2809         }
2810
2811         /*
2812          * The formula for computing the absolute function number is...
2813          * For 2 port configuration (4 functions per port):
2814          *   abs_func = 2 * vn + SC_PORT + SC_PATH
2815          * For 4 port configuration (2 functions per port):
2816          *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2817          */
2818         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2819                 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2820                 if (abs_func >= E1H_FUNC_MAX) {
2821                         break;
2822                 }
2823                 sc->devinfo.mf_info.mf_config[vn] =
2824                     MFCFG_RD(sc, func_mf_config[abs_func].config);
2825         }
2826
2827         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2828             FUNC_MF_CFG_FUNC_DISABLED) {
2829                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
2830                 sc->flags |= BNX2X_MF_FUNC_DIS;
2831         } else {
2832                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
2833                 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2834         }
2835 }
2836
2837 /* acquire split MCP access lock register */
2838 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2839 {
2840         uint32_t j, val;
2841
2842         for (j = 0; j < 1000; j++) {
2843                 val = (1UL << 31);
2844                 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2845                 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2846                 if (val & (1L << 31))
2847                         break;
2848
2849                 DELAY(5000);
2850         }
2851
2852         if (!(val & (1L << 31))) {
2853                 PMD_DRV_LOG(NOTICE, sc, "Cannot acquire MCP access lock register");
2854                 return -1;
2855         }
2856
2857         return 0;
2858 }
2859
2860 /* release split MCP access lock register */
2861 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2862 {
2863         REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2864 }
2865
2866 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2867 {
2868         int port = SC_PORT(sc);
2869         uint32_t ext_phy_config;
2870
2871         /* mark the failure */
2872         ext_phy_config =
2873             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2874
2875         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2876         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2877         SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2878                  ext_phy_config);
2879
2880         /* log the failure */
2881         PMD_DRV_LOG(INFO, sc,
2882                     "Fan Failure has caused the driver to shutdown "
2883                     "the card to prevent permanent damage. "
2884                     "Please contact OEM Support for assistance");
2885
2886         rte_panic("Schedule task to handle fan failure");
2887 }
2888
2889 /* this function is called upon a link interrupt */
2890 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2891 {
2892         uint32_t pause_enabled = 0;
2893         struct host_port_stats *pstats;
2894         int cmng_fns;
2895
2896         /* Make sure that we are synced with the current statistics */
2897         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2898
2899         elink_link_update(&sc->link_params, &sc->link_vars);
2900
2901         if (sc->link_vars.link_up) {
2902
2903                 /* dropless flow control */
2904                 if (sc->dropless_fc) {
2905                         pause_enabled = 0;
2906
2907                         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2908                                 pause_enabled = 1;
2909                         }
2910
2911                         REG_WR(sc,
2912                                (BAR_USTRORM_INTMEM +
2913                                 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2914                                pause_enabled);
2915                 }
2916
2917                 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2918                         pstats = BNX2X_SP(sc, port_stats);
2919                         /* reset old mac stats */
2920                         memset(&(pstats->mac_stx[0]), 0,
2921                                sizeof(struct mac_stx));
2922                 }
2923
2924                 if (sc->state == BNX2X_STATE_OPEN) {
2925                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2926                 }
2927         }
2928
2929         if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2930                 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2931
2932                 if (cmng_fns != CMNG_FNS_NONE) {
2933                         bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2934                         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2935                 }
2936         }
2937
2938         bnx2x_link_report_locked(sc);
2939
2940         if (IS_MF(sc)) {
2941                 bnx2x_link_sync_notify(sc);
2942         }
2943 }
2944
2945 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2946 {
2947         int port = SC_PORT(sc);
2948         uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2949             MISC_REG_AEU_MASK_ATTN_FUNC_0;
2950         uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2951             NIG_REG_MASK_INTERRUPT_PORT0;
2952         uint32_t aeu_mask;
2953         uint32_t nig_mask = 0;
2954         uint32_t reg_addr;
2955         uint32_t igu_acked;
2956         uint32_t cnt;
2957
2958         if (sc->attn_state & asserted) {
2959                 PMD_DRV_LOG(ERR, sc, "IGU ERROR attn=0x%08x", asserted);
2960         }
2961
2962         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2963
2964         aeu_mask = REG_RD(sc, aeu_addr);
2965
2966         aeu_mask &= ~(asserted & 0x3ff);
2967
2968         REG_WR(sc, aeu_addr, aeu_mask);
2969
2970         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2971
2972         sc->attn_state |= asserted;
2973
2974         if (asserted & ATTN_HARD_WIRED_MASK) {
2975                 if (asserted & ATTN_NIG_FOR_FUNC) {
2976
2977                         bnx2x_acquire_phy_lock(sc);
2978                         /* save nig interrupt mask */
2979                         nig_mask = REG_RD(sc, nig_int_mask_addr);
2980
2981                         /* If nig_mask is not set, no need to call the update function */
2982                         if (nig_mask) {
2983                                 REG_WR(sc, nig_int_mask_addr, 0);
2984
2985                                 bnx2x_link_attn(sc);
2986                         }
2987
2988                         /* handle unicore attn? */
2989                 }
2990
2991                 if (asserted & ATTN_SW_TIMER_4_FUNC) {
2992                         PMD_DRV_LOG(DEBUG, sc, "ATTN_SW_TIMER_4_FUNC!");
2993                 }
2994
2995                 if (asserted & GPIO_2_FUNC) {
2996                         PMD_DRV_LOG(DEBUG, sc, "GPIO_2_FUNC!");
2997                 }
2998
2999                 if (asserted & GPIO_3_FUNC) {
3000                         PMD_DRV_LOG(DEBUG, sc, "GPIO_3_FUNC!");
3001                 }
3002
3003                 if (asserted & GPIO_4_FUNC) {
3004                         PMD_DRV_LOG(DEBUG, sc, "GPIO_4_FUNC!");
3005                 }
3006
3007                 if (port == 0) {
3008                         if (asserted & ATTN_GENERAL_ATTN_1) {
3009                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_1!");
3010                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3011                         }
3012                         if (asserted & ATTN_GENERAL_ATTN_2) {
3013                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_2!");
3014                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3015                         }
3016                         if (asserted & ATTN_GENERAL_ATTN_3) {
3017                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_3!");
3018                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3019                         }
3020                 } else {
3021                         if (asserted & ATTN_GENERAL_ATTN_4) {
3022                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_4!");
3023                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3024                         }
3025                         if (asserted & ATTN_GENERAL_ATTN_5) {
3026                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_5!");
3027                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3028                         }
3029                         if (asserted & ATTN_GENERAL_ATTN_6) {
3030                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_6!");
3031                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3032                         }
3033                 }
3034         }
3035         /* hardwired */
3036         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3037                 reg_addr =
3038                     (HC_REG_COMMAND_REG + port * 32 +
3039                      COMMAND_REG_ATTN_BITS_SET);
3040         } else {
3041                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3042         }
3043
3044         PMD_DRV_LOG(DEBUG, sc, "about to mask 0x%08x at %s addr 0x%08x",
3045                     asserted,
3046                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3047                     reg_addr);
3048         REG_WR(sc, reg_addr, asserted);
3049
3050         /* now set back the mask */
3051         if (asserted & ATTN_NIG_FOR_FUNC) {
3052                 /*
3053                  * Verify that IGU ack through BAR was written before restoring
3054                  * NIG mask. This loop should exit after 2-3 iterations max.
3055                  */
3056                 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3057                         cnt = 0;
3058
3059                         do {
3060                                 igu_acked =
3061                                     REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3062                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3063                                  && (++cnt < MAX_IGU_ATTN_ACK_TO));
3064
3065                         if (!igu_acked) {
3066                                 PMD_DRV_LOG(ERR, sc,
3067                                             "Failed to verify IGU ack on time");
3068                         }
3069
3070                         mb();
3071                 }
3072
3073                 REG_WR(sc, nig_int_mask_addr, nig_mask);
3074
3075                 bnx2x_release_phy_lock(sc);
3076         }
3077 }
3078
3079 static void
3080 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3081                      __rte_unused const char *blk)
3082 {
3083         PMD_DRV_LOG(INFO, sc, "%s%s", idx ? ", " : "", blk);
3084 }
3085
3086 static int
3087 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3088                               uint8_t print)
3089 {
3090         uint32_t cur_bit = 0;
3091         int i = 0;
3092
3093         for (i = 0; sig; i++) {
3094                 cur_bit = ((uint32_t) 0x1 << i);
3095                 if (sig & cur_bit) {
3096                         switch (cur_bit) {
3097                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3098                                 if (print)
3099                                         bnx2x_print_next_block(sc, par_num++,
3100                                                              "BRB");
3101                                 break;
3102                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3103                                 if (print)
3104                                         bnx2x_print_next_block(sc, par_num++,
3105                                                              "PARSER");
3106                                 break;
3107                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3108                                 if (print)
3109                                         bnx2x_print_next_block(sc, par_num++,
3110                                                              "TSDM");
3111                                 break;
3112                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3113                                 if (print)
3114                                         bnx2x_print_next_block(sc, par_num++,
3115                                                              "SEARCHER");
3116                                 break;
3117                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3118                                 if (print)
3119                                         bnx2x_print_next_block(sc, par_num++,
3120                                                              "TCM");
3121                                 break;
3122                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3123                                 if (print)
3124                                         bnx2x_print_next_block(sc, par_num++,
3125                                                              "TSEMI");
3126                                 break;
3127                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3128                                 if (print)
3129                                         bnx2x_print_next_block(sc, par_num++,
3130                                                              "XPB");
3131                                 break;
3132                         }
3133
3134                         /* Clear the bit */
3135                         sig &= ~cur_bit;
3136                 }
3137         }
3138
3139         return par_num;
3140 }
3141
3142 static int
3143 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3144                               uint8_t * global, uint8_t print)
3145 {
3146         int i = 0;
3147         uint32_t cur_bit = 0;
3148         for (i = 0; sig; i++) {
3149                 cur_bit = ((uint32_t) 0x1 << i);
3150                 if (sig & cur_bit) {
3151                         switch (cur_bit) {
3152                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3153                                 if (print)
3154                                         bnx2x_print_next_block(sc, par_num++,
3155                                                              "PBF");
3156                                 break;
3157                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3158                                 if (print)
3159                                         bnx2x_print_next_block(sc, par_num++,
3160                                                              "QM");
3161                                 break;
3162                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3163                                 if (print)
3164                                         bnx2x_print_next_block(sc, par_num++,
3165                                                              "TM");
3166                                 break;
3167                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3168                                 if (print)
3169                                         bnx2x_print_next_block(sc, par_num++,
3170                                                              "XSDM");
3171                                 break;
3172                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3173                                 if (print)
3174                                         bnx2x_print_next_block(sc, par_num++,
3175                                                              "XCM");
3176                                 break;
3177                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3178                                 if (print)
3179                                         bnx2x_print_next_block(sc, par_num++,
3180                                                              "XSEMI");
3181                                 break;
3182                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3183                                 if (print)
3184                                         bnx2x_print_next_block(sc, par_num++,
3185                                                              "DOORBELLQ");
3186                                 break;
3187                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3188                                 if (print)
3189                                         bnx2x_print_next_block(sc, par_num++,
3190                                                              "NIG");
3191                                 break;
3192                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3193                                 if (print)
3194                                         bnx2x_print_next_block(sc, par_num++,
3195                                                              "VAUX PCI CORE");
3196                                 *global = TRUE;
3197                                 break;
3198                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3199                                 if (print)
3200                                         bnx2x_print_next_block(sc, par_num++,
3201                                                              "DEBUG");
3202                                 break;
3203                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3204                                 if (print)
3205                                         bnx2x_print_next_block(sc, par_num++,
3206                                                              "USDM");
3207                                 break;
3208                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3209                                 if (print)
3210                                         bnx2x_print_next_block(sc, par_num++,
3211                                                              "UCM");
3212                                 break;
3213                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3214                                 if (print)
3215                                         bnx2x_print_next_block(sc, par_num++,
3216                                                              "USEMI");
3217                                 break;
3218                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3219                                 if (print)
3220                                         bnx2x_print_next_block(sc, par_num++,
3221                                                              "UPB");
3222                                 break;
3223                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3224                                 if (print)
3225                                         bnx2x_print_next_block(sc, par_num++,
3226                                                              "CSDM");
3227                                 break;
3228                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3229                                 if (print)
3230                                         bnx2x_print_next_block(sc, par_num++,
3231                                                              "CCM");
3232                                 break;
3233                         }
3234
3235                         /* Clear the bit */
3236                         sig &= ~cur_bit;
3237                 }
3238         }
3239
3240         return par_num;
3241 }
3242
3243 static int
3244 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3245                               uint8_t print)
3246 {
3247         uint32_t cur_bit = 0;
3248         int i = 0;
3249
3250         for (i = 0; sig; i++) {
3251                 cur_bit = ((uint32_t) 0x1 << i);
3252                 if (sig & cur_bit) {
3253                         switch (cur_bit) {
3254                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3255                                 if (print)
3256                                         bnx2x_print_next_block(sc, par_num++,
3257                                                              "CSEMI");
3258                                 break;
3259                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3260                                 if (print)
3261                                         bnx2x_print_next_block(sc, par_num++,
3262                                                              "PXP");
3263                                 break;
3264                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3265                                 if (print)
3266                                         bnx2x_print_next_block(sc, par_num++,
3267                                                              "PXPPCICLOCKCLIENT");
3268                                 break;
3269                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3270                                 if (print)
3271                                         bnx2x_print_next_block(sc, par_num++,
3272                                                              "CFC");
3273                                 break;
3274                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3275                                 if (print)
3276                                         bnx2x_print_next_block(sc, par_num++,
3277                                                              "CDU");
3278                                 break;
3279                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3280                                 if (print)
3281                                         bnx2x_print_next_block(sc, par_num++,
3282                                                              "DMAE");
3283                                 break;
3284                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3285                                 if (print)
3286                                         bnx2x_print_next_block(sc, par_num++,
3287                                                              "IGU");
3288                                 break;
3289                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3290                                 if (print)
3291                                         bnx2x_print_next_block(sc, par_num++,
3292                                                              "MISC");
3293                                 break;
3294                         }
3295
3296                         /* Clear the bit */
3297                         sig &= ~cur_bit;
3298                 }
3299         }
3300
3301         return par_num;
3302 }
3303
3304 static int
3305 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3306                               uint8_t * global, uint8_t print)
3307 {
3308         uint32_t cur_bit = 0;
3309         int i = 0;
3310
3311         for (i = 0; sig; i++) {
3312                 cur_bit = ((uint32_t) 0x1 << i);
3313                 if (sig & cur_bit) {
3314                         switch (cur_bit) {
3315                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3316                                 if (print)
3317                                         bnx2x_print_next_block(sc, par_num++,
3318                                                              "MCP ROM");
3319                                 *global = TRUE;
3320                                 break;
3321                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3322                                 if (print)
3323                                         bnx2x_print_next_block(sc, par_num++,
3324                                                              "MCP UMP RX");
3325                                 *global = TRUE;
3326                                 break;
3327                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3328                                 if (print)
3329                                         bnx2x_print_next_block(sc, par_num++,
3330                                                              "MCP UMP TX");
3331                                 *global = TRUE;
3332                                 break;
3333                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3334                                 if (print)
3335                                         bnx2x_print_next_block(sc, par_num++,
3336                                                              "MCP SCPAD");
3337                                 *global = TRUE;
3338                                 break;
3339                         }
3340
3341                         /* Clear the bit */
3342                         sig &= ~cur_bit;
3343                 }
3344         }
3345
3346         return par_num;
3347 }
3348
3349 static int
3350 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3351                               uint8_t print)
3352 {
3353         uint32_t cur_bit = 0;
3354         int i = 0;
3355
3356         for (i = 0; sig; i++) {
3357                 cur_bit = ((uint32_t) 0x1 << i);
3358                 if (sig & cur_bit) {
3359                         switch (cur_bit) {
3360                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3361                                 if (print)
3362                                         bnx2x_print_next_block(sc, par_num++,
3363                                                              "PGLUE_B");
3364                                 break;
3365                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3366                                 if (print)
3367                                         bnx2x_print_next_block(sc, par_num++,
3368                                                              "ATC");
3369                                 break;
3370                         }
3371
3372                         /* Clear the bit */
3373                         sig &= ~cur_bit;
3374                 }
3375         }
3376
3377         return par_num;
3378 }
3379
3380 static uint8_t
3381 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3382                 uint32_t * sig)
3383 {
3384         int par_num = 0;
3385
3386         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3387             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3388             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3389             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3390             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3391                 PMD_DRV_LOG(ERR, sc,
3392                             "Parity error: HW block parity attention:"
3393                             "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3394                             (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3395                             (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3396                             (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3397                             (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3398                             (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3399
3400                 if (print)
3401                         PMD_DRV_LOG(INFO, sc, "Parity errors detected in blocks: ");
3402
3403                 par_num =
3404                     bnx2x_check_blocks_with_parity0(sc, sig[0] &
3405                                                   HW_PRTY_ASSERT_SET_0,
3406                                                   par_num, print);
3407                 par_num =
3408                     bnx2x_check_blocks_with_parity1(sc, sig[1] &
3409                                                   HW_PRTY_ASSERT_SET_1,
3410                                                   par_num, global, print);
3411                 par_num =
3412                     bnx2x_check_blocks_with_parity2(sc, sig[2] &
3413                                                   HW_PRTY_ASSERT_SET_2,
3414                                                   par_num, print);
3415                 par_num =
3416                     bnx2x_check_blocks_with_parity3(sc, sig[3] &
3417                                                   HW_PRTY_ASSERT_SET_3,
3418                                                   par_num, global, print);
3419                 par_num =
3420                     bnx2x_check_blocks_with_parity4(sc, sig[4] &
3421                                                   HW_PRTY_ASSERT_SET_4,
3422                                                   par_num, print);
3423
3424                 if (print)
3425                         PMD_DRV_LOG(INFO, sc, "");
3426
3427                 return TRUE;
3428         }
3429
3430         return FALSE;
3431 }
3432
3433 static uint8_t
3434 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3435 {
3436         struct attn_route attn = { {0} };
3437         int port = SC_PORT(sc);
3438
3439         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3440         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3441         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3442         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3443
3444         if (!CHIP_IS_E1x(sc))
3445                 attn.sig[4] =
3446                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3447
3448         return bnx2x_parity_attn(sc, global, print, attn.sig);
3449 }
3450
3451 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3452 {
3453         uint32_t val;
3454
3455         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3456                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3457                 PMD_DRV_LOG(INFO, sc, "ERROR: PGLUE hw attention 0x%08x", val);
3458                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3459                         PMD_DRV_LOG(INFO, sc,
3460                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3461                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3462                         PMD_DRV_LOG(INFO, sc,
3463                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3464                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3465                         PMD_DRV_LOG(INFO, sc,
3466                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3467                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3468                         PMD_DRV_LOG(INFO, sc,
3469                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3470                 if (val &
3471                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3472                         PMD_DRV_LOG(INFO, sc,
3473                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3474                 if (val &
3475                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3476                         PMD_DRV_LOG(INFO, sc,
3477                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3478                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3479                         PMD_DRV_LOG(INFO, sc,
3480                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3481                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3482                         PMD_DRV_LOG(INFO, sc,
3483                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3484                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3485                         PMD_DRV_LOG(INFO, sc,
3486                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3487         }
3488
3489         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3490                 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3491                 PMD_DRV_LOG(INFO, sc, "ERROR: ATC hw attention 0x%08x", val);
3492                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3493                         PMD_DRV_LOG(INFO, sc,
3494                                     "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3495                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3496                         PMD_DRV_LOG(INFO, sc,
3497                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3498                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3499                         PMD_DRV_LOG(INFO, sc,
3500                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3501                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3502                         PMD_DRV_LOG(INFO, sc,
3503                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3504                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3505                         PMD_DRV_LOG(INFO, sc,
3506                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3507                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3508                         PMD_DRV_LOG(INFO, sc,
3509                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3510         }
3511
3512         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3513                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3514                 PMD_DRV_LOG(INFO, sc,
3515                             "ERROR: FATAL parity attention set4 0x%08x",
3516                             (uint32_t) (attn &
3517                                         (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3518                                          |
3519                                          AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3520         }
3521 }
3522
3523 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3524 {
3525         int port = SC_PORT(sc);
3526
3527         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3528 }
3529
3530 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3531 {
3532         int port = SC_PORT(sc);
3533
3534         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3535 }
3536
3537 /*
3538  * called due to MCP event (on pmf):
3539  *   reread new bandwidth configuration
3540  *   configure FW
3541  *   notify others function about the change
3542  */
3543 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3544 {
3545         if (sc->link_vars.link_up) {
3546                 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3547                 bnx2x_link_sync_notify(sc);
3548         }
3549
3550         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3551 }
3552
3553 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3554 {
3555         bnx2x_config_mf_bw(sc);
3556         bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3557 }
3558
3559 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3560 {
3561         bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3562 }
3563
3564 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3565
3566 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3567 {
3568         struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3569
3570         strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3571                 ETH_STAT_INFO_VERSION_LEN);
3572
3573         sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3574                                               DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3575                                               ether_stat->mac_local + MAC_PAD,
3576                                               MAC_PAD, ETH_ALEN);
3577
3578         ether_stat->mtu_size = sc->mtu;
3579
3580         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3581         ether_stat->promiscuous_mode = 0;       // (flags & PROMISC) ? 1 : 0;
3582
3583         ether_stat->txq_size = sc->tx_ring_size;
3584         ether_stat->rxq_size = sc->rx_ring_size;
3585 }
3586
3587 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3588 {
3589         enum drv_info_opcode op_code;
3590         uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3591
3592         /* if drv_info version supported by MFW doesn't match - send NACK */
3593         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3594                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3595                 return;
3596         }
3597
3598         op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3599                    DRV_INFO_CONTROL_OP_CODE_SHIFT);
3600
3601         memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3602
3603         switch (op_code) {
3604         case ETH_STATS_OPCODE:
3605                 bnx2x_drv_info_ether_stat(sc);
3606                 break;
3607         case FCOE_STATS_OPCODE:
3608         case ISCSI_STATS_OPCODE:
3609         default:
3610                 /* if op code isn't supported - send NACK */
3611                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3612                 return;
3613         }
3614
3615         /*
3616          * If we got drv_info attn from MFW then these fields are defined in
3617          * shmem2 for sure
3618          */
3619         SHMEM2_WR(sc, drv_info_host_addr_lo,
3620                   U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3621         SHMEM2_WR(sc, drv_info_host_addr_hi,
3622                   U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3623
3624         bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3625 }
3626
3627 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3628 {
3629         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3630 /*
3631  * This is the only place besides the function initialization
3632  * where the sc->flags can change so it is done without any
3633  * locks
3634  */
3635                 if (sc->devinfo.
3636                     mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3637                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
3638                         sc->flags |= BNX2X_MF_FUNC_DIS;
3639                         bnx2x_e1h_disable(sc);
3640                 } else {
3641                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
3642                         sc->flags &= ~BNX2X_MF_FUNC_DIS;
3643                         bnx2x_e1h_enable(sc);
3644                 }
3645                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3646         }
3647
3648         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3649                 bnx2x_config_mf_bw(sc);
3650                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3651         }
3652
3653         /* Report results to MCP */
3654         if (dcc_event)
3655                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3656         else
3657                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3658 }
3659
3660 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3661 {
3662         int port = SC_PORT(sc);
3663         uint32_t val;
3664
3665         sc->port.pmf = 1;
3666
3667         /*
3668          * We need the mb() to ensure the ordering between the writing to
3669          * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3670          */
3671         mb();
3672
3673         /* enable nig attention */
3674         val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3675         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3676                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3677                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3678         } else if (!CHIP_IS_E1x(sc)) {
3679                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3680                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3681         }
3682
3683         bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3684 }
3685
3686 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3687 {
3688         char last_idx;
3689         int i, rc = 0;
3690         __rte_unused uint32_t row0, row1, row2, row3;
3691
3692         /* XSTORM */
3693         last_idx =
3694             REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3695         if (last_idx)
3696                 PMD_DRV_LOG(ERR, sc, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3697
3698         /* print the asserts */
3699         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3700
3701                 row0 =
3702                     REG_RD(sc,
3703                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3704                 row1 =
3705                     REG_RD(sc,
3706                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3707                            4);
3708                 row2 =
3709                     REG_RD(sc,
3710                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3711                            8);
3712                 row3 =
3713                     REG_RD(sc,
3714                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3715                            12);
3716
3717                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3718                         PMD_DRV_LOG(ERR, sc,
3719                                     "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3720                                     i, row3, row2, row1, row0);
3721                         rc++;
3722                 } else {
3723                         break;
3724                 }
3725         }
3726
3727         /* TSTORM */
3728         last_idx =
3729             REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3730         if (last_idx) {
3731                 PMD_DRV_LOG(ERR, sc, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3732         }
3733
3734         /* print the asserts */
3735         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3736
3737                 row0 =
3738                     REG_RD(sc,
3739                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3740                 row1 =
3741                     REG_RD(sc,
3742                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3743                            4);
3744                 row2 =
3745                     REG_RD(sc,
3746                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3747                            8);
3748                 row3 =
3749                     REG_RD(sc,
3750                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3751                            12);
3752
3753                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3754                         PMD_DRV_LOG(ERR, sc,
3755                                     "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3756                                     i, row3, row2, row1, row0);
3757                         rc++;
3758                 } else {
3759                         break;
3760                 }
3761         }
3762
3763         /* CSTORM */
3764         last_idx =
3765             REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3766         if (last_idx) {
3767                 PMD_DRV_LOG(ERR, sc, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3768         }
3769
3770         /* print the asserts */
3771         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3772
3773                 row0 =
3774                     REG_RD(sc,
3775                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3776                 row1 =
3777                     REG_RD(sc,
3778                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3779                            4);
3780                 row2 =
3781                     REG_RD(sc,
3782                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3783                            8);
3784                 row3 =
3785                     REG_RD(sc,
3786                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3787                            12);
3788
3789                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3790                         PMD_DRV_LOG(ERR, sc,
3791                                     "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3792                                     i, row3, row2, row1, row0);
3793                         rc++;
3794                 } else {
3795                         break;
3796                 }
3797         }
3798
3799         /* USTORM */
3800         last_idx =
3801             REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3802         if (last_idx) {
3803                 PMD_DRV_LOG(ERR, sc, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3804         }
3805
3806         /* print the asserts */
3807         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3808
3809                 row0 =
3810                     REG_RD(sc,
3811                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3812                 row1 =
3813                     REG_RD(sc,
3814                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3815                            4);
3816                 row2 =
3817                     REG_RD(sc,
3818                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3819                            8);
3820                 row3 =
3821                     REG_RD(sc,
3822                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3823                            12);
3824
3825                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3826                         PMD_DRV_LOG(ERR, sc,
3827                                     "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3828                                     i, row3, row2, row1, row0);
3829                         rc++;
3830                 } else {
3831                         break;
3832                 }
3833         }
3834
3835         return rc;
3836 }
3837
3838 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3839 {
3840         int func = SC_FUNC(sc);
3841         uint32_t val;
3842
3843         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3844
3845                 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3846
3847                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3848                         bnx2x_read_mf_cfg(sc);
3849                         sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3850                             MFCFG_RD(sc,
3851                                      func_mf_config[SC_ABS_FUNC(sc)].config);
3852                         val =
3853                             SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3854
3855                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3856                                 bnx2x_dcc_event(sc,
3857                                               (val &
3858                                                DRV_STATUS_DCC_EVENT_MASK));
3859
3860                         if (val & DRV_STATUS_SET_MF_BW)
3861                                 bnx2x_set_mf_bw(sc);
3862
3863                         if (val & DRV_STATUS_DRV_INFO_REQ)
3864                                 bnx2x_handle_drv_info_req(sc);
3865
3866                         if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3867                                 bnx2x_pmf_update(sc);
3868
3869                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3870                                 bnx2x_handle_eee_event(sc);
3871
3872                         if (sc->link_vars.periodic_flags &
3873                             ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3874                                 /* sync with link */
3875                                 bnx2x_acquire_phy_lock(sc);
3876                                 sc->link_vars.periodic_flags &=
3877                                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3878                                 bnx2x_release_phy_lock(sc);
3879                                 if (IS_MF(sc)) {
3880                                         bnx2x_link_sync_notify(sc);
3881                                 }
3882                                 bnx2x_link_report(sc);
3883                         }
3884
3885                         /*
3886                          * Always call it here: bnx2x_link_report() will
3887                          * prevent the link indication duplication.
3888                          */
3889                         bnx2x_link_status_update(sc);
3890
3891                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3892
3893                         PMD_DRV_LOG(ERR, sc, "MC assert!");
3894                         bnx2x_mc_assert(sc);
3895                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3896                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3897                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3898                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3899                         rte_panic("MC assert!");
3900
3901                 } else if (attn & BNX2X_MCP_ASSERT) {
3902
3903                         PMD_DRV_LOG(ERR, sc, "MCP assert!");
3904                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3905
3906                 } else {
3907                         PMD_DRV_LOG(ERR, sc,
3908                                     "Unknown HW assert! (attn 0x%08x)", attn);
3909                 }
3910         }
3911
3912         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3913                 PMD_DRV_LOG(ERR, sc, "LATCHED attention 0x%08x (masked)", attn);
3914                 if (attn & BNX2X_GRC_TIMEOUT) {
3915                         val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3916                         PMD_DRV_LOG(ERR, sc, "GRC time-out 0x%08x", val);
3917                 }
3918                 if (attn & BNX2X_GRC_RSV) {
3919                         val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3920                         PMD_DRV_LOG(ERR, sc, "GRC reserved 0x%08x", val);
3921                 }
3922                 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3923         }
3924 }
3925
3926 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3927 {
3928         int port = SC_PORT(sc);
3929         int reg_offset;
3930         uint32_t val0, mask0, val1, mask1;
3931         uint32_t val;
3932
3933         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3934                 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3935                 PMD_DRV_LOG(ERR, sc, "CFC hw attention 0x%08x", val);
3936 /* CFC error attention */
3937                 if (val & 0x2) {
3938                         PMD_DRV_LOG(ERR, sc, "FATAL error from CFC");
3939                 }
3940         }
3941
3942         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3943                 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3944                 PMD_DRV_LOG(ERR, sc, "PXP hw attention-0 0x%08x", val);
3945 /* RQ_USDMDP_FIFO_OVERFLOW */
3946                 if (val & 0x18000) {
3947                         PMD_DRV_LOG(ERR, sc, "FATAL error from PXP");
3948                 }
3949
3950                 if (!CHIP_IS_E1x(sc)) {
3951                         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3952                         PMD_DRV_LOG(ERR, sc, "PXP hw attention-1 0x%08x", val);
3953                 }
3954         }
3955 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3956 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3957
3958         if (attn & AEU_PXP2_HW_INT_BIT) {
3959 /*  CQ47854 workaround do not panic on
3960  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3961  */
3962                 if (!CHIP_IS_E1x(sc)) {
3963                         mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3964                         val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3965                         mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3966                         val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3967                         /*
3968                          * If the olny PXP2_EOP_ERROR_BIT is set in
3969                          * STS0 and STS1 - clear it
3970                          *
3971                          * probably we lose additional attentions between
3972                          * STS0 and STS_CLR0, in this case user will not
3973                          * be notified about them
3974                          */
3975                         if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3976                             !(val1 & mask1))
3977                                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3978
3979                         /* print the register, since no one can restore it */
3980                         PMD_DRV_LOG(ERR, sc,
3981                                     "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
3982
3983                         /*
3984                          * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3985                          * then notify
3986                          */
3987                         if (val0 & PXP2_EOP_ERROR_BIT) {
3988                                 PMD_DRV_LOG(ERR, sc, "PXP2_WR_PGLUE_EOP_ERROR");
3989
3990                                 /*
3991                                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
3992                                  * set then clear attention from PXP2 block without panic
3993                                  */
3994                                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
3995                                     ((val1 & mask1) == 0))
3996                                         attn &= ~AEU_PXP2_HW_INT_BIT;
3997                         }
3998                 }
3999         }
4000
4001         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4002                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4003                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4004
4005                 val = REG_RD(sc, reg_offset);
4006                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4007                 REG_WR(sc, reg_offset, val);
4008
4009                 PMD_DRV_LOG(ERR, sc,
4010                             "FATAL HW block attention set2 0x%x",
4011                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4012                 rte_panic("HW block attention set2");
4013         }
4014 }
4015
4016 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4017 {
4018         int port = SC_PORT(sc);
4019         int reg_offset;
4020         uint32_t val;
4021
4022         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4023                 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4024                 PMD_DRV_LOG(ERR, sc, "DB hw attention 0x%08x", val);
4025 /* DORQ discard attention */
4026                 if (val & 0x2) {
4027                         PMD_DRV_LOG(ERR, sc, "FATAL error from DORQ");
4028                 }
4029         }
4030
4031         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4032                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4033                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4034
4035                 val = REG_RD(sc, reg_offset);
4036                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4037                 REG_WR(sc, reg_offset, val);
4038
4039                 PMD_DRV_LOG(ERR, sc,
4040                             "FATAL HW block attention set1 0x%08x",
4041                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4042                 rte_panic("HW block attention set1");
4043         }
4044 }
4045
4046 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4047 {
4048         int port = SC_PORT(sc);
4049         int reg_offset;
4050         uint32_t val;
4051
4052         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4053             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4054
4055         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4056                 val = REG_RD(sc, reg_offset);
4057                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4058                 REG_WR(sc, reg_offset, val);
4059
4060                 PMD_DRV_LOG(WARNING, sc, "SPIO5 hw attention");
4061
4062 /* Fan failure attention */
4063                 elink_hw_reset_phy(&sc->link_params);
4064                 bnx2x_fan_failure(sc);
4065         }
4066
4067         if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4068                 bnx2x_acquire_phy_lock(sc);
4069                 elink_handle_module_detect_int(&sc->link_params);
4070                 bnx2x_release_phy_lock(sc);
4071         }
4072
4073         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4074                 val = REG_RD(sc, reg_offset);
4075                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4076                 REG_WR(sc, reg_offset, val);
4077
4078                 rte_panic("FATAL HW block attention set0 0x%lx",
4079                           (attn & HW_INTERRUT_ASSERT_SET_0));
4080         }
4081 }
4082
4083 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4084 {
4085         struct attn_route attn;
4086         struct attn_route *group_mask;
4087         int port = SC_PORT(sc);
4088         int index;
4089         uint32_t reg_addr;
4090         uint32_t val;
4091         uint32_t aeu_mask;
4092         uint8_t global = FALSE;
4093
4094         /*
4095          * Need to take HW lock because MCP or other port might also
4096          * try to handle this event.
4097          */
4098         bnx2x_acquire_alr(sc);
4099
4100         if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4101                 sc->recovery_state = BNX2X_RECOVERY_INIT;
4102
4103 /* disable HW interrupts */
4104                 bnx2x_int_disable(sc);
4105                 bnx2x_release_alr(sc);
4106                 return;
4107         }
4108
4109         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4110         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4111         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4112         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4113         if (!CHIP_IS_E1x(sc)) {
4114                 attn.sig[4] =
4115                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4116         } else {
4117                 attn.sig[4] = 0;
4118         }
4119
4120         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4121                 if (deasserted & (1 << index)) {
4122                         group_mask = &sc->attn_group[index];
4123
4124                         bnx2x_attn_int_deasserted4(sc,
4125                                                  attn.
4126                                                  sig[4] & group_mask->sig[4]);
4127                         bnx2x_attn_int_deasserted3(sc,
4128                                                  attn.
4129                                                  sig[3] & group_mask->sig[3]);
4130                         bnx2x_attn_int_deasserted1(sc,
4131                                                  attn.
4132                                                  sig[1] & group_mask->sig[1]);
4133                         bnx2x_attn_int_deasserted2(sc,
4134                                                  attn.
4135                                                  sig[2] & group_mask->sig[2]);
4136                         bnx2x_attn_int_deasserted0(sc,
4137                                                  attn.
4138                                                  sig[0] & group_mask->sig[0]);
4139                 }
4140         }
4141
4142         bnx2x_release_alr(sc);
4143
4144         if (sc->devinfo.int_block == INT_BLOCK_HC) {
4145                 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4146                             COMMAND_REG_ATTN_BITS_CLR);
4147         } else {
4148                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4149         }
4150
4151         val = ~deasserted;
4152         PMD_DRV_LOG(DEBUG, sc,
4153                     "about to mask 0x%08x at %s addr 0x%08x", val,
4154                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4155                     reg_addr);
4156         REG_WR(sc, reg_addr, val);
4157
4158         if (~sc->attn_state & deasserted) {
4159                 PMD_DRV_LOG(ERR, sc, "IGU error");
4160         }
4161
4162         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4163             MISC_REG_AEU_MASK_ATTN_FUNC_0;
4164
4165         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4166
4167         aeu_mask = REG_RD(sc, reg_addr);
4168
4169         aeu_mask |= (deasserted & 0x3ff);
4170
4171         REG_WR(sc, reg_addr, aeu_mask);
4172         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4173
4174         sc->attn_state &= ~deasserted;
4175 }
4176
4177 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4178 {
4179         /* read local copy of bits */
4180         uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4181         uint32_t attn_ack =
4182             le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4183         uint32_t attn_state = sc->attn_state;
4184
4185         /* look for changed bits */
4186         uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4187         uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4188
4189         PMD_DRV_LOG(DEBUG, sc,
4190                     "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4191                     attn_bits, attn_ack, asserted, deasserted);
4192
4193         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4194                 PMD_DRV_LOG(ERR, sc, "BAD attention state");
4195         }
4196
4197         /* handle bits that were raised */
4198         if (asserted) {
4199                 bnx2x_attn_int_asserted(sc, asserted);
4200         }
4201
4202         if (deasserted) {
4203                 bnx2x_attn_int_deasserted(sc, deasserted);
4204         }
4205 }
4206
4207 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4208 {
4209         struct host_sp_status_block *def_sb = sc->def_sb;
4210         uint16_t rc = 0;
4211
4212         mb();                   /* status block is written to by the chip */
4213
4214         if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4215                 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4216                 rc |= BNX2X_DEF_SB_ATT_IDX;
4217         }
4218
4219         if (sc->def_idx != def_sb->sp_sb.running_index) {
4220                 sc->def_idx = def_sb->sp_sb.running_index;
4221                 rc |= BNX2X_DEF_SB_IDX;
4222         }
4223
4224         mb();
4225
4226         return rc;
4227 }
4228
4229 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4230                                                           uint32_t cid)
4231 {
4232         return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4233 }
4234
4235 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4236 {
4237         struct ecore_mcast_ramrod_params rparam;
4238         int rc;
4239
4240         memset(&rparam, 0, sizeof(rparam));
4241
4242         rparam.mcast_obj = &sc->mcast_obj;
4243
4244         /* clear pending state for the last command */
4245         sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4246
4247         /* if there are pending mcast commands - send them */
4248         if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4249                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4250                 if (rc < 0) {
4251                         PMD_DRV_LOG(INFO, sc,
4252                                     "Failed to send pending mcast commands (%d)",
4253                                     rc);
4254                 }
4255         }
4256 }
4257
4258 static void
4259 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4260 {
4261         unsigned long ramrod_flags = 0;
4262         int rc = 0;
4263         uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4264         struct ecore_vlan_mac_obj *vlan_mac_obj;
4265
4266         /* always push next commands out, don't wait here */
4267         bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4268
4269         switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4270         case ECORE_FILTER_MAC_PENDING:
4271                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MAC completions");
4272                 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4273                 break;
4274
4275         case ECORE_FILTER_MCAST_PENDING:
4276                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MCAST completions");
4277                 bnx2x_handle_mcast_eqe(sc);
4278                 return;
4279
4280         default:
4281                 PMD_DRV_LOG(NOTICE, sc, "Unsupported classification command: %d",
4282                             elem->message.data.eth_event.echo);
4283                 return;
4284         }
4285
4286         rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4287
4288         if (rc < 0) {
4289                 PMD_DRV_LOG(NOTICE, sc,
4290                             "Failed to schedule new commands (%d)", rc);
4291         } else if (rc > 0) {
4292                 PMD_DRV_LOG(DEBUG, sc, "Scheduled next pending commands...");
4293         }
4294 }
4295
4296 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4297 {
4298         bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4299
4300         /* send rx_mode command again if was requested */
4301         if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4302                 bnx2x_set_storm_rx_mode(sc);
4303         }
4304 }
4305
4306 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4307 {
4308         storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4309         wmb();                  /* keep prod updates ordered */
4310 }
4311
4312 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4313 {
4314         uint16_t hw_cons, sw_cons, sw_prod;
4315         union event_ring_elem *elem;
4316         uint8_t echo;
4317         uint32_t cid;
4318         uint8_t opcode;
4319         int spqe_cnt = 0;
4320         struct ecore_queue_sp_obj *q_obj;
4321         struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4322         struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4323
4324         hw_cons = le16toh(*sc->eq_cons_sb);
4325
4326         /*
4327          * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4328          * when we get to the next-page we need to adjust so the loop
4329          * condition below will be met. The next element is the size of a
4330          * regular element and hence incrementing by 1
4331          */
4332         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4333                 hw_cons++;
4334         }
4335
4336         /*
4337          * This function may never run in parallel with itself for a
4338          * specific sc and no need for a read memory barrier here.
4339          */
4340         sw_cons = sc->eq_cons;
4341         sw_prod = sc->eq_prod;
4342
4343         for (;
4344              sw_cons != hw_cons;
4345              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4346
4347                 elem = &sc->eq[EQ_DESC(sw_cons)];
4348
4349 /* elem CID originates from FW, actually LE */
4350                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4351                 opcode = elem->message.opcode;
4352
4353 /* handle eq element */
4354                 switch (opcode) {
4355                 case EVENT_RING_OPCODE_STAT_QUERY:
4356                         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "got statistics completion event %d",
4357                                     sc->stats_comp++);
4358                         /* nothing to do with stats comp */
4359                         goto next_spqe;
4360
4361                 case EVENT_RING_OPCODE_CFC_DEL:
4362                         /* handle according to cid range */
4363                         /* we may want to verify here that the sc state is HALTING */
4364                         PMD_DRV_LOG(DEBUG, sc, "got delete ramrod for MULTI[%d]",
4365                                     cid);
4366                         q_obj = bnx2x_cid_to_q_obj(sc, cid);
4367                         if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4368                                 break;
4369                         }
4370                         goto next_spqe;
4371
4372                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4373                         PMD_DRV_LOG(DEBUG, sc, "got STOP TRAFFIC");
4374                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4375                                 break;
4376                         }
4377                         goto next_spqe;
4378
4379                 case EVENT_RING_OPCODE_START_TRAFFIC:
4380                         PMD_DRV_LOG(DEBUG, sc, "got START TRAFFIC");
4381                         if (f_obj->complete_cmd
4382                             (sc, f_obj, ECORE_F_CMD_TX_START)) {
4383                                 break;
4384                         }
4385                         goto next_spqe;
4386
4387                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4388                         echo = elem->message.data.function_update_event.echo;
4389                         if (echo == SWITCH_UPDATE) {
4390                                 PMD_DRV_LOG(DEBUG, sc,
4391                                             "got FUNC_SWITCH_UPDATE ramrod");
4392                                 if (f_obj->complete_cmd(sc, f_obj,
4393                                                         ECORE_F_CMD_SWITCH_UPDATE))
4394                                 {
4395                                         break;
4396                                 }
4397                         } else {
4398                                 PMD_DRV_LOG(DEBUG, sc,
4399                                             "AFEX: ramrod completed FUNCTION_UPDATE");
4400                                 f_obj->complete_cmd(sc, f_obj,
4401                                                     ECORE_F_CMD_AFEX_UPDATE);
4402                         }
4403                         goto next_spqe;
4404
4405                 case EVENT_RING_OPCODE_FORWARD_SETUP:
4406                         q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4407                         if (q_obj->complete_cmd(sc, q_obj,
4408                                                 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4409                                 break;
4410                         }
4411                         goto next_spqe;
4412
4413                 case EVENT_RING_OPCODE_FUNCTION_START:
4414                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_START ramrod");
4415                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4416                                 break;
4417                         }
4418                         goto next_spqe;
4419
4420                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4421                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_STOP ramrod");
4422                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4423                                 break;
4424                         }
4425                         goto next_spqe;
4426                 }
4427
4428                 switch (opcode | sc->state) {
4429                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4430                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4431                         cid =
4432                             elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4433                         PMD_DRV_LOG(DEBUG, sc, "got RSS_UPDATE ramrod. CID %d",
4434                                     cid);
4435                         rss_raw->clear_pending(rss_raw);
4436                         break;
4437
4438                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4439                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4440                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4441                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4442                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4443                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4444                         PMD_DRV_LOG(DEBUG, sc,
4445                                     "got (un)set mac ramrod");
4446                         bnx2x_handle_classification_eqe(sc, elem);
4447                         break;
4448
4449                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4450                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4451                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4452                         PMD_DRV_LOG(DEBUG, sc,
4453                                     "got mcast ramrod");
4454                         bnx2x_handle_mcast_eqe(sc);
4455                         break;
4456
4457                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4458                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4459                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4460                         PMD_DRV_LOG(DEBUG, sc,
4461                                     "got rx_mode ramrod");
4462                         bnx2x_handle_rx_mode_eqe(sc);
4463                         break;
4464
4465                 default:
4466                         /* unknown event log error and continue */
4467                         PMD_DRV_LOG(INFO, sc, "Unknown EQ event %d, sc->state 0x%x",
4468                                     elem->message.opcode, sc->state);
4469                 }
4470
4471 next_spqe:
4472                 spqe_cnt++;
4473         }                       /* for */
4474
4475         mb();
4476         atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4477
4478         sc->eq_cons = sw_cons;
4479         sc->eq_prod = sw_prod;
4480
4481         /* make sure that above mem writes were issued towards the memory */
4482         wmb();
4483
4484         /* update producer */
4485         bnx2x_update_eq_prod(sc, sc->eq_prod);
4486 }
4487
4488 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4489 {
4490         uint16_t status;
4491         int rc = 0;
4492
4493         PMD_DRV_LOG(DEBUG, sc, "---> SP TASK <---");
4494
4495         /* what work needs to be performed? */
4496         status = bnx2x_update_dsb_idx(sc);
4497
4498         PMD_DRV_LOG(DEBUG, sc, "dsb status 0x%04x", status);
4499
4500         /* HW attentions */
4501         if (status & BNX2X_DEF_SB_ATT_IDX) {
4502                 PMD_DRV_LOG(DEBUG, sc, "---> ATTN INTR <---");
4503                 bnx2x_attn_int(sc);
4504                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4505                 rc = 1;
4506         }
4507
4508         /* SP events: STAT_QUERY and others */
4509         if (status & BNX2X_DEF_SB_IDX) {
4510 /* handle EQ completions */
4511                 PMD_DRV_LOG(DEBUG, sc, "---> EQ INTR <---");
4512                 bnx2x_eq_int(sc);
4513                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4514                            le16toh(sc->def_idx), IGU_INT_NOP, 1);
4515                 status &= ~BNX2X_DEF_SB_IDX;
4516         }
4517
4518         /* if status is non zero then something went wrong */
4519         if (unlikely(status)) {
4520                 PMD_DRV_LOG(INFO, sc,
4521                             "Got an unknown SP interrupt! (0x%04x)", status);
4522         }
4523
4524         /* ack status block only if something was actually handled */
4525         bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4526                    le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4527
4528         return rc;
4529 }
4530
4531 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp)
4532 {
4533         struct bnx2x_softc *sc = fp->sc;
4534         uint8_t more_rx = FALSE;
4535
4536         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc,
4537                                "---> FP TASK QUEUE (%d) <--", fp->index);
4538
4539         /* update the fastpath index */
4540         bnx2x_update_fp_sb_idx(fp);
4541
4542         if (scan_fp) {
4543                 if (bnx2x_has_rx_work(fp)) {
4544                         more_rx = bnx2x_rxeof(sc, fp);
4545                 }
4546
4547                 if (more_rx) {
4548                         /* still more work to do */
4549                         bnx2x_handle_fp_tq(fp, scan_fp);
4550                         return;
4551                 }
4552         }
4553
4554         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4555                    le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4556 }
4557
4558 /*
4559  * Legacy interrupt entry point.
4560  *
4561  * Verifies that the controller generated the interrupt and
4562  * then calls a separate routine to handle the various
4563  * interrupt causes: link, RX, and TX.
4564  */
4565 int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp)
4566 {
4567         struct bnx2x_fastpath *fp;
4568         uint32_t status, mask;
4569         int i, rc = 0;
4570
4571         /*
4572          * 0 for ustorm, 1 for cstorm
4573          * the bits returned from ack_int() are 0-15
4574          * bit 0 = attention status block
4575          * bit 1 = fast path status block
4576          * a mask of 0x2 or more = tx/rx event
4577          * a mask of 1 = slow path event
4578          */
4579
4580         status = bnx2x_ack_int(sc);
4581
4582         /* the interrupt is not for us */
4583         if (unlikely(status == 0)) {
4584                 return 0;
4585         }
4586
4587         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "Interrupt status 0x%04x", status);
4588         //bnx2x_dump_status_block(sc);
4589
4590         FOR_EACH_ETH_QUEUE(sc, i) {
4591                 fp = &sc->fp[i];
4592                 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4593                 if (status & mask) {
4594                 /* acknowledge and disable further fastpath interrupts */
4595                         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4596                                      0, IGU_INT_DISABLE, 0);
4597                         bnx2x_handle_fp_tq(fp, scan_fp);
4598                         status &= ~mask;
4599                 }
4600         }
4601
4602         if (unlikely(status & 0x1)) {
4603                 /* acknowledge and disable further slowpath interrupts */
4604                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4605                              0, IGU_INT_DISABLE, 0);
4606                 rc = bnx2x_handle_sp_tq(sc);
4607                 status &= ~0x1;
4608         }
4609
4610         if (unlikely(status)) {
4611                 PMD_DRV_LOG(WARNING, sc,
4612                             "Unexpected fastpath status (0x%08x)!", status);
4613         }
4614
4615         return rc;
4616 }
4617
4618 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4619 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4620 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4621 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4622 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4623 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4624 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4625 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4626 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4627
4628 static struct
4629 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4630         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4631         .init_hw_cmn = bnx2x_init_hw_common,
4632         .init_hw_port = bnx2x_init_hw_port,
4633         .init_hw_func = bnx2x_init_hw_func,
4634
4635         .reset_hw_cmn = bnx2x_reset_common,
4636         .reset_hw_port = bnx2x_reset_port,
4637         .reset_hw_func = bnx2x_reset_func,
4638
4639         .init_fw = bnx2x_init_firmware,
4640         .release_fw = bnx2x_release_firmware,
4641 };
4642
4643 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4644 {
4645         sc->dmae_ready = 0;
4646
4647         PMD_INIT_FUNC_TRACE(sc);
4648
4649         ecore_init_func_obj(sc,
4650                             &sc->func_obj,
4651                             BNX2X_SP(sc, func_rdata),
4652                             (phys_addr_t)BNX2X_SP_MAPPING(sc, func_rdata),
4653                             BNX2X_SP(sc, func_afex_rdata),
4654                             (phys_addr_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4655                             &bnx2x_func_sp_drv);
4656 }
4657
4658 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4659 {
4660         struct ecore_func_state_params func_params = { NULL };
4661         int rc;
4662
4663         PMD_INIT_FUNC_TRACE(sc);
4664
4665         /* prepare the parameters for function state transitions */
4666         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4667
4668         func_params.f_obj = &sc->func_obj;
4669         func_params.cmd = ECORE_F_CMD_HW_INIT;
4670
4671         func_params.params.hw_init.load_phase = load_code;
4672
4673         /*
4674          * Via a plethora of function pointers, we will eventually reach
4675          * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4676          */
4677         rc = ecore_func_state_change(sc, &func_params);
4678
4679         return rc;
4680 }
4681
4682 static void
4683 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4684 {
4685         uint32_t i;
4686
4687         if (!(len % 4) && !(addr % 4)) {
4688                 for (i = 0; i < len; i += 4) {
4689                         REG_WR(sc, (addr + i), fill);
4690                 }
4691         } else {
4692                 for (i = 0; i < len; i++) {
4693                         REG_WR8(sc, (addr + i), fill);
4694                 }
4695         }
4696 }
4697
4698 /* writes FP SP data to FW - data_size in dwords */
4699 static void
4700 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4701                   uint32_t data_size)
4702 {
4703         uint32_t index;
4704
4705         for (index = 0; index < data_size; index++) {
4706                 REG_WR(sc,
4707                        (BAR_CSTRORM_INTMEM +
4708                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4709                         (sizeof(uint32_t) * index)), *(sb_data_p + index));
4710         }
4711 }
4712
4713 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4714 {
4715         struct hc_status_block_data_e2 sb_data_e2;
4716         struct hc_status_block_data_e1x sb_data_e1x;
4717         uint32_t *sb_data_p;
4718         uint32_t data_size = 0;
4719
4720         if (!CHIP_IS_E1x(sc)) {
4721                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4722                 sb_data_e2.common.state = SB_DISABLED;
4723                 sb_data_e2.common.p_func.vf_valid = FALSE;
4724                 sb_data_p = (uint32_t *) & sb_data_e2;
4725                 data_size = (sizeof(struct hc_status_block_data_e2) /
4726                              sizeof(uint32_t));
4727         } else {
4728                 memset(&sb_data_e1x, 0,
4729                        sizeof(struct hc_status_block_data_e1x));
4730                 sb_data_e1x.common.state = SB_DISABLED;
4731                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4732                 sb_data_p = (uint32_t *) & sb_data_e1x;
4733                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4734                              sizeof(uint32_t));
4735         }
4736
4737         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4738
4739         bnx2x_fill(sc,
4740                  (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4741                  CSTORM_STATUS_BLOCK_SIZE);
4742         bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4743                  0, CSTORM_SYNC_BLOCK_SIZE);
4744 }
4745
4746 static void
4747 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4748                   struct hc_sp_status_block_data *sp_sb_data)
4749 {
4750         uint32_t i;
4751
4752         for (i = 0;
4753              i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4754              i++) {
4755                 REG_WR(sc,
4756                        (BAR_CSTRORM_INTMEM +
4757                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4758                         (i * sizeof(uint32_t))),
4759                        *((uint32_t *) sp_sb_data + i));
4760         }
4761 }
4762
4763 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4764 {
4765         struct hc_sp_status_block_data sp_sb_data;
4766
4767         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4768
4769         sp_sb_data.state = SB_DISABLED;
4770         sp_sb_data.p_func.vf_valid = FALSE;
4771
4772         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4773
4774         bnx2x_fill(sc,
4775                  (BAR_CSTRORM_INTMEM +
4776                   CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4777                  0, CSTORM_SP_STATUS_BLOCK_SIZE);
4778         bnx2x_fill(sc,
4779                  (BAR_CSTRORM_INTMEM +
4780                   CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4781                  0, CSTORM_SP_SYNC_BLOCK_SIZE);
4782 }
4783
4784 static void
4785 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4786                              int igu_seg_id)
4787 {
4788         hc_sm->igu_sb_id = igu_sb_id;
4789         hc_sm->igu_seg_id = igu_seg_id;
4790         hc_sm->timer_value = 0xFF;
4791         hc_sm->time_to_expire = 0xFFFFFFFF;
4792 }
4793
4794 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4795 {
4796         /* zero out state machine indices */
4797
4798         /* rx indices */
4799         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4800
4801         /* tx indices */
4802         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4803         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4804         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4805         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4806
4807         /* map indices */
4808
4809         /* rx indices */
4810         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4811             (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4812
4813         /* tx indices */
4814         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4815             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4816         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4817             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4818         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4819             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4820         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4821             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4822 }
4823
4824 static void
4825 bnx2x_init_sb(struct bnx2x_softc *sc, phys_addr_t busaddr, int vfid,
4826             uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4827 {
4828         struct hc_status_block_data_e2 sb_data_e2;
4829         struct hc_status_block_data_e1x sb_data_e1x;
4830         struct hc_status_block_sm *hc_sm_p;
4831         uint32_t *sb_data_p;
4832         int igu_seg_id;
4833         int data_size;
4834
4835         if (CHIP_INT_MODE_IS_BC(sc)) {
4836                 igu_seg_id = HC_SEG_ACCESS_NORM;
4837         } else {
4838                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4839         }
4840
4841         bnx2x_zero_fp_sb(sc, fw_sb_id);
4842
4843         if (!CHIP_IS_E1x(sc)) {
4844                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4845                 sb_data_e2.common.state = SB_ENABLED;
4846                 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4847                 sb_data_e2.common.p_func.vf_id = vfid;
4848                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4849                 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4850                 sb_data_e2.common.same_igu_sb_1b = TRUE;
4851                 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4852                 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4853                 hc_sm_p = sb_data_e2.common.state_machine;
4854                 sb_data_p = (uint32_t *) & sb_data_e2;
4855                 data_size = (sizeof(struct hc_status_block_data_e2) /
4856                              sizeof(uint32_t));
4857                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4858         } else {
4859                 memset(&sb_data_e1x, 0,
4860                        sizeof(struct hc_status_block_data_e1x));
4861                 sb_data_e1x.common.state = SB_ENABLED;
4862                 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4863                 sb_data_e1x.common.p_func.vf_id = 0xff;
4864                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4865                 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4866                 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4867                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4868                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4869                 hc_sm_p = sb_data_e1x.common.state_machine;
4870                 sb_data_p = (uint32_t *) & sb_data_e1x;
4871                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4872                              sizeof(uint32_t));
4873                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4874         }
4875
4876         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4877         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4878
4879         /* write indices to HW - PCI guarantees endianity of regpairs */
4880         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4881 }
4882
4883 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4884 {
4885         if (CHIP_IS_E1x(fp->sc)) {
4886                 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4887         } else {
4888                 return fp->cl_id;
4889         }
4890 }
4891
4892 static uint32_t
4893 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4894 {
4895         uint32_t offset = BAR_USTRORM_INTMEM;
4896
4897         if (IS_VF(sc)) {
4898                 return PXP_VF_ADDR_USDM_QUEUES_START +
4899                         (sc->acquire_resp.resc.hw_qid[fp->index] *
4900                          sizeof(struct ustorm_queue_zone_data));
4901         } else if (!CHIP_IS_E1x(sc)) {
4902                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4903         } else {
4904                 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4905         }
4906
4907         return offset;
4908 }
4909
4910 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4911 {
4912         struct bnx2x_fastpath *fp = &sc->fp[idx];
4913         uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4914         unsigned long q_type = 0;
4915         int cos;
4916
4917         fp->sc = sc;
4918         fp->index = idx;
4919
4920         fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4921         fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4922
4923         if (CHIP_IS_E1x(sc))
4924                 fp->cl_id = SC_L_ID(sc) + idx;
4925         else
4926 /* want client ID same as IGU SB ID for non-E1 */
4927                 fp->cl_id = fp->igu_sb_id;
4928         fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4929
4930         /* setup sb indices */
4931         if (!CHIP_IS_E1x(sc)) {
4932                 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4933                 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4934         } else {
4935                 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4936                 fp->sb_running_index =
4937                     fp->status_block.e1x_sb->sb.running_index;
4938         }
4939
4940         /* init shortcut */
4941         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4942
4943         fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4944
4945         for (cos = 0; cos < sc->max_cos; cos++) {
4946                 cids[cos] = idx;
4947         }
4948         fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4949
4950         /* nothing more for a VF to do */
4951         if (IS_VF(sc)) {
4952                 return;
4953         }
4954
4955         bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4956                     fp->fw_sb_id, fp->igu_sb_id);
4957
4958         bnx2x_update_fp_sb_idx(fp);
4959
4960         /* Configure Queue State object */
4961         bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4962         bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4963
4964         ecore_init_queue_obj(sc,
4965                              &sc->sp_objs[idx].q_obj,
4966                              fp->cl_id,
4967                              cids,
4968                              sc->max_cos,
4969                              SC_FUNC(sc),
4970                              BNX2X_SP(sc, q_rdata),
4971                              (phys_addr_t)BNX2X_SP_MAPPING(sc, q_rdata),
4972                              q_type);
4973
4974         /* configure classification DBs */
4975         ecore_init_mac_obj(sc,
4976                            &sc->sp_objs[idx].mac_obj,
4977                            fp->cl_id,
4978                            idx,
4979                            SC_FUNC(sc),
4980                            BNX2X_SP(sc, mac_rdata),
4981                            (phys_addr_t)BNX2X_SP_MAPPING(sc, mac_rdata),
4982                            ECORE_FILTER_MAC_PENDING, &sc->sp_state,
4983                            ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
4984 }
4985
4986 static void
4987 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
4988                    uint16_t rx_bd_prod, uint16_t rx_cq_prod)
4989 {
4990         union ustorm_eth_rx_producers rx_prods;
4991         uint32_t i;
4992
4993         /* update producers */
4994         rx_prods.prod.bd_prod = rx_bd_prod;
4995         rx_prods.prod.cqe_prod = rx_cq_prod;
4996         rx_prods.prod.reserved = 0;
4997
4998         /*
4999          * Make sure that the BD and SGE data is updated before updating the
5000          * producers since FW might read the BD/SGE right after the producer
5001          * is updated.
5002          * This is only applicable for weak-ordered memory model archs such
5003          * as IA-64. The following barrier is also mandatory since FW will
5004          * assumes BDs must have buffers.
5005          */
5006         wmb();
5007
5008         for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
5009                 REG_WR(sc,
5010                        (fp->ustorm_rx_prods_offset + (i * 4)),
5011                        rx_prods.raw_data[i]);
5012         }
5013
5014         wmb();                  /* keep prod updates ordered */
5015 }
5016
5017 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
5018 {
5019         struct bnx2x_fastpath *fp;
5020         int i;
5021         struct bnx2x_rx_queue *rxq;
5022
5023         for (i = 0; i < sc->num_queues; i++) {
5024                 fp = &sc->fp[i];
5025                 rxq = sc->rx_queues[fp->index];
5026                 if (!rxq) {
5027                         PMD_RX_LOG(ERR, "RX queue is NULL");
5028                         return;
5029                 }
5030
5031                 rxq->rx_bd_head = 0;
5032                 rxq->rx_bd_tail = rxq->nb_rx_desc;
5033                 rxq->rx_cq_head = 0;
5034                 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5035                 *fp->rx_cq_cons_sb = 0;
5036
5037                 /*
5038                  * Activate the BD ring...
5039                  * Warning, this will generate an interrupt (to the TSTORM)
5040                  * so this can only be done after the chip is initialized
5041                  */
5042                 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5043
5044                 if (i != 0) {
5045                         continue;
5046                 }
5047         }
5048 }
5049
5050 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5051 {
5052         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5053
5054         fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5055         fp->tx_db.data.zero_fill1 = 0;
5056         fp->tx_db.data.prod = 0;
5057
5058         if (!txq) {
5059                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5060                 return;
5061         }
5062
5063         txq->tx_pkt_tail = 0;
5064         txq->tx_pkt_head = 0;
5065         txq->tx_bd_tail = 0;
5066         txq->tx_bd_head = 0;
5067 }
5068
5069 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5070 {
5071         int i;
5072
5073         for (i = 0; i < sc->num_queues; i++) {
5074                 bnx2x_init_tx_ring_one(&sc->fp[i]);
5075         }
5076 }
5077
5078 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5079 {
5080         struct host_sp_status_block *def_sb = sc->def_sb;
5081         phys_addr_t mapping = sc->def_sb_dma.paddr;
5082         int igu_sp_sb_index;
5083         int igu_seg_id;
5084         int port = SC_PORT(sc);
5085         int func = SC_FUNC(sc);
5086         int reg_offset, reg_offset_en5;
5087         uint64_t section;
5088         int index, sindex;
5089         struct hc_sp_status_block_data sp_sb_data;
5090
5091         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5092
5093         if (CHIP_INT_MODE_IS_BC(sc)) {
5094                 igu_sp_sb_index = DEF_SB_IGU_ID;
5095                 igu_seg_id = HC_SEG_ACCESS_DEF;
5096         } else {
5097                 igu_sp_sb_index = sc->igu_dsb_id;
5098                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5099         }
5100
5101         /* attentions */
5102         section = ((uint64_t) mapping +
5103                    offsetof(struct host_sp_status_block, atten_status_block));
5104         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5105         sc->attn_state = 0;
5106
5107         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5108             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5109
5110         reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5111             MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5112
5113         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5114 /* take care of sig[0]..sig[4] */
5115                 for (sindex = 0; sindex < 4; sindex++) {
5116                         sc->attn_group[index].sig[sindex] =
5117                             REG_RD(sc,
5118                                    (reg_offset + (sindex * 0x4) +
5119                                     (0x10 * index)));
5120                 }
5121
5122                 if (!CHIP_IS_E1x(sc)) {
5123                         /*
5124                          * enable5 is separate from the rest of the registers,
5125                          * and the address skip is 4 and not 16 between the
5126                          * different groups
5127                          */
5128                         sc->attn_group[index].sig[4] =
5129                             REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5130                 } else {
5131                         sc->attn_group[index].sig[4] = 0;
5132                 }
5133         }
5134
5135         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5136                 reg_offset =
5137                     port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5138                 REG_WR(sc, reg_offset, U64_LO(section));
5139                 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5140         } else if (!CHIP_IS_E1x(sc)) {
5141                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5142                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5143         }
5144
5145         section = ((uint64_t) mapping +
5146                    offsetof(struct host_sp_status_block, sp_sb));
5147
5148         bnx2x_zero_sp_sb(sc);
5149
5150         /* PCI guarantees endianity of regpair */
5151         sp_sb_data.state = SB_ENABLED;
5152         sp_sb_data.host_sb_addr.lo = U64_LO(section);
5153         sp_sb_data.host_sb_addr.hi = U64_HI(section);
5154         sp_sb_data.igu_sb_id = igu_sp_sb_index;
5155         sp_sb_data.igu_seg_id = igu_seg_id;
5156         sp_sb_data.p_func.pf_id = func;
5157         sp_sb_data.p_func.vnic_id = SC_VN(sc);
5158         sp_sb_data.p_func.vf_id = 0xff;
5159
5160         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5161
5162         bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5163 }
5164
5165 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5166 {
5167         atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5168         sc->spq_prod_idx = 0;
5169         sc->dsb_sp_prod =
5170             &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5171         sc->spq_prod_bd = sc->spq;
5172         sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5173 }
5174
5175 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5176 {
5177         union event_ring_elem *elem;
5178         int i;
5179
5180         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5181                 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5182
5183                 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5184                                                          BNX2X_PAGE_SIZE *
5185                                                          (i % NUM_EQ_PAGES)));
5186                 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5187                                                          BNX2X_PAGE_SIZE *
5188                                                          (i % NUM_EQ_PAGES)));
5189         }
5190
5191         sc->eq_cons = 0;
5192         sc->eq_prod = NUM_EQ_DESC;
5193         sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5194
5195         atomic_store_rel_long(&sc->eq_spq_left,
5196                               (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5197                                    NUM_EQ_DESC) - 1));
5198 }
5199
5200 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5201 {
5202         int i;
5203
5204         if (IS_MF_SI(sc)) {
5205 /*
5206  * In switch independent mode, the TSTORM needs to accept
5207  * packets that failed classification, since approximate match
5208  * mac addresses aren't written to NIG LLH.
5209  */
5210                 REG_WR8(sc,
5211                         (BAR_TSTRORM_INTMEM +
5212                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5213         } else
5214                 REG_WR8(sc,
5215                         (BAR_TSTRORM_INTMEM +
5216                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5217
5218         /*
5219          * Zero this manually as its initialization is currently missing
5220          * in the initTool.
5221          */
5222         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5223                 REG_WR(sc,
5224                        (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5225                        0);
5226         }
5227
5228         if (!CHIP_IS_E1x(sc)) {
5229                 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5230                         CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5231                         HC_IGU_NBC_MODE);
5232         }
5233 }
5234
5235 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5236 {
5237         switch (load_code) {
5238         case FW_MSG_CODE_DRV_LOAD_COMMON:
5239         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5240                 bnx2x_init_internal_common(sc);
5241                 /* no break */
5242
5243         case FW_MSG_CODE_DRV_LOAD_PORT:
5244                 /* nothing to do */
5245                 /* no break */
5246
5247         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5248                 /* internal memory per function is initialized inside bnx2x_pf_init */
5249                 break;
5250
5251         default:
5252                 PMD_DRV_LOG(NOTICE, sc, "Unknown load_code (0x%x) from MCP",
5253                             load_code);
5254                 break;
5255         }
5256 }
5257
5258 static void
5259 storm_memset_func_cfg(struct bnx2x_softc *sc,
5260                       struct tstorm_eth_function_common_config *tcfg,
5261                       uint16_t abs_fid)
5262 {
5263         uint32_t addr;
5264         size_t size;
5265
5266         addr = (BAR_TSTRORM_INTMEM +
5267                 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5268         size = sizeof(struct tstorm_eth_function_common_config);
5269         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5270 }
5271
5272 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5273 {
5274         struct tstorm_eth_function_common_config tcfg = { 0 };
5275
5276         if (CHIP_IS_E1x(sc)) {
5277                 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5278         }
5279
5280         /* Enable the function in the FW */
5281         storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5282         storm_memset_func_en(sc, p->func_id, 1);
5283
5284         /* spq */
5285         if (p->func_flgs & FUNC_FLG_SPQ) {
5286                 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5287                 REG_WR(sc,
5288                        (XSEM_REG_FAST_MEMORY +
5289                         XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5290         }
5291 }
5292
5293 /*
5294  * Calculates the sum of vn_min_rates.
5295  * It's needed for further normalizing of the min_rates.
5296  * Returns:
5297  *   sum of vn_min_rates.
5298  *     or
5299  *   0 - if all the min_rates are 0.
5300  * In the later case fainess algorithm should be deactivated.
5301  * If all min rates are not zero then those that are zeroes will be set to 1.
5302  */
5303 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5304 {
5305         uint32_t vn_cfg;
5306         uint32_t vn_min_rate;
5307         int all_zero = 1;
5308         int vn;
5309
5310         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5311                 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5312                 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5313                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5314
5315                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5316                         /* skip hidden VNs */
5317                         vn_min_rate = 0;
5318                 } else if (!vn_min_rate) {
5319                         /* If min rate is zero - set it to 100 */
5320                         vn_min_rate = DEF_MIN_RATE;
5321                 } else {
5322                         all_zero = 0;
5323                 }
5324
5325                 input->vnic_min_rate[vn] = vn_min_rate;
5326         }
5327
5328         /* if ETS or all min rates are zeros - disable fairness */
5329         if (all_zero) {
5330                 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5331         } else {
5332                 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5333         }
5334 }
5335
5336 static uint16_t
5337 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5338 {
5339         uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5340                             FUNC_MF_CFG_MAX_BW_SHIFT);
5341
5342         if (!max_cfg) {
5343                 PMD_DRV_LOG(DEBUG, sc,
5344                             "Max BW configured to 0 - using 100 instead");
5345                 max_cfg = 100;
5346         }
5347
5348         return max_cfg;
5349 }
5350
5351 static void
5352 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5353 {
5354         uint16_t vn_max_rate;
5355         uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5356         uint32_t max_cfg;
5357
5358         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5359                 vn_max_rate = 0;
5360         } else {
5361                 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5362
5363                 if (IS_MF_SI(sc)) {
5364                         /* max_cfg in percents of linkspeed */
5365                         vn_max_rate =
5366                             ((sc->link_vars.line_speed * max_cfg) / 100);
5367                 } else {        /* SD modes */
5368                         /* max_cfg is absolute in 100Mb units */
5369                         vn_max_rate = (max_cfg * 100);
5370                 }
5371         }
5372
5373         input->vnic_max_rate[vn] = vn_max_rate;
5374 }
5375
5376 static void
5377 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5378 {
5379         struct cmng_init_input input;
5380         int vn;
5381
5382         memset(&input, 0, sizeof(struct cmng_init_input));
5383
5384         input.port_rate = sc->link_vars.line_speed;
5385
5386         if (cmng_type == CMNG_FNS_MINMAX) {
5387 /* read mf conf from shmem */
5388                 if (read_cfg) {
5389                         bnx2x_read_mf_cfg(sc);
5390                 }
5391
5392 /* get VN min rate and enable fairness if not 0 */
5393                 bnx2x_calc_vn_min(sc, &input);
5394
5395 /* get VN max rate */
5396                 if (sc->port.pmf) {
5397                         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5398                                 bnx2x_calc_vn_max(sc, vn, &input);
5399                         }
5400                 }
5401
5402 /* always enable rate shaping and fairness */
5403                 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5404
5405                 ecore_init_cmng(&input, &sc->cmng);
5406                 return;
5407         }
5408 }
5409
5410 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5411 {
5412         if (CHIP_REV_IS_SLOW(sc)) {
5413                 return CMNG_FNS_NONE;
5414         }
5415
5416         if (IS_MF(sc)) {
5417                 return CMNG_FNS_MINMAX;
5418         }
5419
5420         return CMNG_FNS_NONE;
5421 }
5422
5423 static void
5424 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5425 {
5426         int vn;
5427         int func;
5428         uint32_t addr;
5429         size_t size;
5430
5431         addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5432         size = sizeof(struct cmng_struct_per_port);
5433         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5434
5435         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5436                 func = func_by_vn(sc, vn);
5437
5438                 addr = (BAR_XSTRORM_INTMEM +
5439                         XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5440                 size = sizeof(struct rate_shaping_vars_per_vn);
5441                 ecore_storm_memset_struct(sc, addr, size,
5442                                           (uint32_t *) & cmng->
5443                                           vnic.vnic_max_rate[vn]);
5444
5445                 addr = (BAR_XSTRORM_INTMEM +
5446                         XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5447                 size = sizeof(struct fairness_vars_per_vn);
5448                 ecore_storm_memset_struct(sc, addr, size,
5449                                           (uint32_t *) & cmng->
5450                                           vnic.vnic_min_rate[vn]);
5451         }
5452 }
5453
5454 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5455 {
5456         struct bnx2x_func_init_params func_init;
5457         struct event_ring_data eq_data;
5458         uint16_t flags;
5459
5460         memset(&eq_data, 0, sizeof(struct event_ring_data));
5461         memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5462
5463         if (!CHIP_IS_E1x(sc)) {
5464 /* reset IGU PF statistics: MSIX + ATTN */
5465 /* PF */
5466                 REG_WR(sc,
5467                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5468                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5469                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5470                          4)), 0);
5471 /* ATTN */
5472                 REG_WR(sc,
5473                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5474                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5475                         (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5476                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5477                          4)), 0);
5478         }
5479
5480         /* function setup flags */
5481         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5482
5483         func_init.func_flgs = flags;
5484         func_init.pf_id = SC_FUNC(sc);
5485         func_init.func_id = SC_FUNC(sc);
5486         func_init.spq_map = sc->spq_dma.paddr;
5487         func_init.spq_prod = sc->spq_prod_idx;
5488
5489         bnx2x_func_init(sc, &func_init);
5490
5491         memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5492
5493         /*
5494          * Congestion management values depend on the link rate.
5495          * There is no active link so initial link rate is set to 10Gbps.
5496          * When the link comes up the congestion management values are
5497          * re-calculated according to the actual link rate.
5498          */
5499         sc->link_vars.line_speed = SPEED_10000;
5500         bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5501
5502         /* Only the PMF sets the HW */
5503         if (sc->port.pmf) {
5504                 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5505         }
5506
5507         /* init Event Queue - PCI bus guarantees correct endainity */
5508         eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5509         eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5510         eq_data.producer = sc->eq_prod;
5511         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5512         eq_data.sb_id = DEF_SB_ID;
5513         storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5514 }
5515
5516 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5517 {
5518         int port = SC_PORT(sc);
5519         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5520         uint32_t val = REG_RD(sc, addr);
5521         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5522             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5523         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5524         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5525
5526         if (msix) {
5527                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5528                          HC_CONFIG_0_REG_INT_LINE_EN_0);
5529                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5530                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5531                 if (single_msix) {
5532                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5533                 }
5534         } else if (msi) {
5535                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5536                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5537                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5538                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5539         } else {
5540                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5541                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5542                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
5543                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5544
5545                 REG_WR(sc, addr, val);
5546
5547                 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5548         }
5549
5550         REG_WR(sc, addr, val);
5551
5552         /* ensure that HC_CONFIG is written before leading/trailing edge config */
5553         mb();
5554
5555         /* init leading/trailing edge */
5556         if (IS_MF(sc)) {
5557                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5558                 if (sc->port.pmf) {
5559                         /* enable nig and gpio3 attention */
5560                         val |= 0x1100;
5561                 }
5562         } else {
5563                 val = 0xffff;
5564         }
5565
5566         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5567         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5568
5569         /* make sure that interrupts are indeed enabled from here on */
5570         mb();
5571 }
5572
5573 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5574 {
5575         uint32_t val;
5576         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5577             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5578         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5579         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5580
5581         val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5582
5583         if (msix) {
5584                 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5585                 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5586                 if (single_msix) {
5587                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
5588                 }
5589         } else if (msi) {
5590                 val &= ~IGU_PF_CONF_INT_LINE_EN;
5591                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5592                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5593         } else {
5594                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5595                 val |= (IGU_PF_CONF_INT_LINE_EN |
5596                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5597         }
5598
5599         /* clean previous status - need to configure igu prior to ack */
5600         if ((!msix) || single_msix) {
5601                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5602                 bnx2x_ack_int(sc);
5603         }
5604
5605         val |= IGU_PF_CONF_FUNC_EN;
5606
5607         PMD_DRV_LOG(DEBUG, sc, "write 0x%x to IGU mode %s",
5608                     val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5609
5610         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5611
5612         mb();
5613
5614         /* init leading/trailing edge */
5615         if (IS_MF(sc)) {
5616                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5617                 if (sc->port.pmf) {
5618                         /* enable nig and gpio3 attention */
5619                         val |= 0x1100;
5620                 }
5621         } else {
5622                 val = 0xffff;
5623         }
5624
5625         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5626         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5627
5628         /* make sure that interrupts are indeed enabled from here on */
5629         mb();
5630 }
5631
5632 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5633 {
5634         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5635                 bnx2x_hc_int_enable(sc);
5636         } else {
5637                 bnx2x_igu_int_enable(sc);
5638         }
5639 }
5640
5641 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5642 {
5643         int port = SC_PORT(sc);
5644         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5645         uint32_t val = REG_RD(sc, addr);
5646
5647         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5648                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5649                  HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5650         /* flush all outstanding writes */
5651         mb();
5652
5653         REG_WR(sc, addr, val);
5654         if (REG_RD(sc, addr) != val) {
5655                 PMD_DRV_LOG(ERR, sc, "proper val not read from HC IGU!");
5656         }
5657 }
5658
5659 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5660 {
5661         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5662
5663         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5664                  IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5665
5666         PMD_DRV_LOG(DEBUG, sc, "write %x to IGU", val);
5667
5668         /* flush all outstanding writes */
5669         mb();
5670
5671         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5672         if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5673                 PMD_DRV_LOG(ERR, sc, "proper val not read from IGU!");
5674         }
5675 }
5676
5677 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5678 {
5679         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5680                 bnx2x_hc_int_disable(sc);
5681         } else {
5682                 bnx2x_igu_int_disable(sc);
5683         }
5684 }
5685
5686 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5687 {
5688         int i;
5689
5690         PMD_INIT_FUNC_TRACE(sc);
5691
5692         for (i = 0; i < sc->num_queues; i++) {
5693                 bnx2x_init_eth_fp(sc, i);
5694         }
5695
5696         rmb();                  /* ensure status block indices were read */
5697
5698         bnx2x_init_rx_rings(sc);
5699         bnx2x_init_tx_rings(sc);
5700
5701         if (IS_VF(sc)) {
5702                 bnx2x_memset_stats(sc);
5703                 return;
5704         }
5705
5706         /* initialize MOD_ABS interrupts */
5707         elink_init_mod_abs_int(sc, &sc->link_vars,
5708                                sc->devinfo.chip_id,
5709                                sc->devinfo.shmem_base,
5710                                sc->devinfo.shmem2_base, SC_PORT(sc));
5711
5712         bnx2x_init_def_sb(sc);
5713         bnx2x_update_dsb_idx(sc);
5714         bnx2x_init_sp_ring(sc);
5715         bnx2x_init_eq_ring(sc);
5716         bnx2x_init_internal(sc, load_code);
5717         bnx2x_pf_init(sc);
5718         bnx2x_stats_init(sc);
5719
5720         /* flush all before enabling interrupts */
5721         mb();
5722
5723         bnx2x_int_enable(sc);
5724
5725         /* check for SPIO5 */
5726         bnx2x_attn_int_deasserted0(sc,
5727                                  REG_RD(sc,
5728                                         (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5729                                          SC_PORT(sc) * 4)) &
5730                                  AEU_INPUTS_ATTN_BITS_SPIO5);
5731 }
5732
5733 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5734 {
5735         /* mcast rules must be added to tx if tx switching is enabled */
5736         ecore_obj_type o_type;
5737         if (sc->flags & BNX2X_TX_SWITCHING)
5738                 o_type = ECORE_OBJ_TYPE_RX_TX;
5739         else
5740                 o_type = ECORE_OBJ_TYPE_RX;
5741
5742         /* RX_MODE controlling object */
5743         ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5744
5745         /* multicast configuration controlling object */
5746         ecore_init_mcast_obj(sc,
5747                              &sc->mcast_obj,
5748                              sc->fp[0].cl_id,
5749                              sc->fp[0].index,
5750                              SC_FUNC(sc),
5751                              SC_FUNC(sc),
5752                              BNX2X_SP(sc, mcast_rdata),
5753                              (phys_addr_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5754                              ECORE_FILTER_MCAST_PENDING,
5755                              &sc->sp_state, o_type);
5756
5757         /* Setup CAM credit pools */
5758         ecore_init_mac_credit_pool(sc,
5759                                    &sc->macs_pool,
5760                                    SC_FUNC(sc),
5761                                    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5762                                    VNICS_PER_PATH(sc));
5763
5764         ecore_init_vlan_credit_pool(sc,
5765                                     &sc->vlans_pool,
5766                                     SC_ABS_FUNC(sc) >> 1,
5767                                     CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5768                                     VNICS_PER_PATH(sc));
5769
5770         /* RSS configuration object */
5771         ecore_init_rss_config_obj(&sc->rss_conf_obj,
5772                                   sc->fp[0].cl_id,
5773                                   sc->fp[0].index,
5774                                   SC_FUNC(sc),
5775                                   SC_FUNC(sc),
5776                                   BNX2X_SP(sc, rss_rdata),
5777                                   (phys_addr_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5778                                   ECORE_FILTER_RSS_CONF_PENDING,
5779                                   &sc->sp_state, ECORE_OBJ_TYPE_RX);
5780 }
5781
5782 /*
5783  * Initialize the function. This must be called before sending CLIENT_SETUP
5784  * for the first client.
5785  */
5786 static int bnx2x_func_start(struct bnx2x_softc *sc)
5787 {
5788         struct ecore_func_state_params func_params = { NULL };
5789         struct ecore_func_start_params *start_params =
5790             &func_params.params.start;
5791
5792         /* Prepare parameters for function state transitions */
5793         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5794
5795         func_params.f_obj = &sc->func_obj;
5796         func_params.cmd = ECORE_F_CMD_START;
5797
5798         /* Function parameters */
5799         start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5800         start_params->sd_vlan_tag = OVLAN(sc);
5801
5802         if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5803                 start_params->network_cos_mode = STATIC_COS;
5804         } else {                /* CHIP_IS_E1X */
5805                 start_params->network_cos_mode = FW_WRR;
5806         }
5807
5808         start_params->gre_tunnel_mode = 0;
5809         start_params->gre_tunnel_rss = 0;
5810
5811         return ecore_func_state_change(sc, &func_params);
5812 }
5813
5814 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5815 {
5816         uint16_t pmcsr;
5817
5818         /* If there is no power capability, silently succeed */
5819         if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5820                 PMD_DRV_LOG(WARNING, sc, "No power capability");
5821                 return 0;
5822         }
5823
5824         pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5825                  2);
5826
5827         switch (state) {
5828         case PCI_PM_D0:
5829                 pci_write_word(sc,
5830                                (sc->devinfo.pcie_pm_cap_reg +
5831                                 PCIR_POWER_STATUS),
5832                                ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5833
5834                 if (pmcsr & PCIM_PSTAT_DMASK) {
5835                         /* delay required during transition out of D3hot */
5836                         DELAY(20000);
5837                 }
5838
5839                 break;
5840
5841         case PCI_PM_D3hot:
5842                 /* don't shut down the power for emulation and FPGA */
5843                 if (CHIP_REV_IS_SLOW(sc)) {
5844                         return 0;
5845                 }
5846
5847                 pmcsr &= ~PCIM_PSTAT_DMASK;
5848                 pmcsr |= PCIM_PSTAT_D3;
5849
5850                 if (sc->wol) {
5851                         pmcsr |= PCIM_PSTAT_PMEENABLE;
5852                 }
5853
5854                 pci_write_long(sc,
5855                                (sc->devinfo.pcie_pm_cap_reg +
5856                                 PCIR_POWER_STATUS), pmcsr);
5857
5858                 /*
5859                  * No more memory access after this point until device is brought back
5860                  * to D0 state.
5861                  */
5862                 break;
5863
5864         default:
5865                 PMD_DRV_LOG(NOTICE, sc, "Can't support PCI power state = %d",
5866                             state);
5867                 return -1;
5868         }
5869
5870         return 0;
5871 }
5872
5873 /* return true if succeeded to acquire the lock */
5874 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5875 {
5876         uint32_t lock_status;
5877         uint32_t resource_bit = (1 << resource);
5878         int func = SC_FUNC(sc);
5879         uint32_t hw_lock_control_reg;
5880
5881         /* Validating that the resource is within range */
5882         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5883                 PMD_DRV_LOG(INFO, sc,
5884                             "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5885                             resource, HW_LOCK_MAX_RESOURCE_VALUE);
5886                 return FALSE;
5887         }
5888
5889         if (func <= 5) {
5890                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5891         } else {
5892                 hw_lock_control_reg =
5893                     (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5894         }
5895
5896         /* try to acquire the lock */
5897         REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5898         lock_status = REG_RD(sc, hw_lock_control_reg);
5899         if (lock_status & resource_bit) {
5900                 return TRUE;
5901         }
5902
5903         PMD_DRV_LOG(NOTICE, sc, "Failed to get a resource lock 0x%x", resource);
5904
5905         return FALSE;
5906 }
5907
5908 /*
5909  * Get the recovery leader resource id according to the engine this function
5910  * belongs to. Currently only only 2 engines is supported.
5911  */
5912 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5913 {
5914         if (SC_PATH(sc)) {
5915                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5916         } else {
5917                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5918         }
5919 }
5920
5921 /* try to acquire a leader lock for current engine */
5922 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5923 {
5924         return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5925 }
5926
5927 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5928 {
5929         return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5930 }
5931
5932 /* close gates #2, #3 and #4 */
5933 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5934 {
5935         uint32_t val;
5936
5937         /* gates #2 and #4a are closed/opened */
5938         /* #4 */
5939         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5940         /* #2 */
5941         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5942
5943         /* #3 */
5944         if (CHIP_IS_E1x(sc)) {
5945 /* prevent interrupts from HC on both ports */
5946                 val = REG_RD(sc, HC_REG_CONFIG_1);
5947                 if (close)
5948                         REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5949                                                      HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5950                 else
5951                         REG_WR(sc, HC_REG_CONFIG_1,
5952                                (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5953
5954                 val = REG_RD(sc, HC_REG_CONFIG_0);
5955                 if (close)
5956                         REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5957                                                      HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5958                 else
5959                         REG_WR(sc, HC_REG_CONFIG_0,
5960                                (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5961
5962         } else {
5963 /* Prevent incomming interrupts in IGU */
5964                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5965
5966                 if (close)
5967                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5968                                (val & ~(uint32_t)
5969                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5970                 else
5971                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5972                                (val |
5973                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5974         }
5975
5976         wmb();
5977 }
5978
5979 /* poll for pending writes bit, it should get cleared in no more than 1s */
5980 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
5981 {
5982         uint32_t cnt = 1000;
5983         uint32_t pend_bits = 0;
5984
5985         do {
5986                 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
5987
5988                 if (pend_bits == 0) {
5989                         break;
5990                 }
5991
5992                 DELAY(1000);
5993         } while (cnt-- > 0);
5994
5995         if (cnt <= 0) {
5996                 PMD_DRV_LOG(NOTICE, sc, "Still pending IGU requests bits=0x%08x!",
5997                             pend_bits);
5998                 return -1;
5999         }
6000
6001         return 0;
6002 }
6003
6004 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
6005
6006 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6007 {
6008         /* Do some magic... */
6009         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6010         *magic_val = val & SHARED_MF_CLP_MAGIC;
6011         MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
6012 }
6013
6014 /* restore the value of the 'magic' bit */
6015 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
6016 {
6017         /* Restore the 'magic' bit value... */
6018         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6019         MFCFG_WR(sc, shared_mf_config.clp_mb,
6020                  (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
6021 }
6022
6023 /* prepare for MCP reset, takes care of CLP configurations */
6024 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6025 {
6026         uint32_t shmem;
6027         uint32_t validity_offset;
6028
6029         /* set `magic' bit in order to save MF config */
6030         bnx2x_clp_reset_prep(sc, magic_val);
6031
6032         /* get shmem offset */
6033         shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6034         validity_offset =
6035             offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6036
6037         /* Clear validity map flags */
6038         if (shmem > 0) {
6039                 REG_WR(sc, shmem + validity_offset, 0);
6040         }
6041 }
6042
6043 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
6044 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
6045
6046 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6047 {
6048         /* special handling for emulation and FPGA (10 times longer) */
6049         if (CHIP_REV_IS_SLOW(sc)) {
6050                 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6051         } else {
6052                 DELAY((MCP_ONE_TIMEOUT) * 1000);
6053         }
6054 }
6055
6056 /* initialize shmem_base and waits for validity signature to appear */
6057 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6058 {
6059         int cnt = 0;
6060         uint32_t val = 0;
6061
6062         do {
6063                 sc->devinfo.shmem_base =
6064                     sc->link_params.shmem_base =
6065                     REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6066
6067                 if (sc->devinfo.shmem_base) {
6068                         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6069                         if (val & SHR_MEM_VALIDITY_MB)
6070                                 return 0;
6071                 }
6072
6073                 bnx2x_mcp_wait_one(sc);
6074
6075         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6076
6077         PMD_DRV_LOG(NOTICE, sc, "BAD MCP validity signature");
6078
6079         return -1;
6080 }
6081
6082 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6083 {
6084         int rc = bnx2x_init_shmem(sc);
6085
6086         /* Restore the `magic' bit value */
6087         bnx2x_clp_reset_done(sc, magic_val);
6088
6089         return rc;
6090 }
6091
6092 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6093 {
6094         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6095         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6096         wmb();
6097 }
6098
6099 /*
6100  * Reset the whole chip except for:
6101  *      - PCIE core
6102  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6103  *      - IGU
6104  *      - MISC (including AEU)
6105  *      - GRC
6106  *      - RBCN, RBCP
6107  */
6108 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6109 {
6110         uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6111         uint32_t global_bits2, stay_reset2;
6112
6113         /*
6114          * Bits that have to be set in reset_mask2 if we want to reset 'global'
6115          * (per chip) blocks.
6116          */
6117         global_bits2 =
6118             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6119             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6120
6121         /*
6122          * Don't reset the following blocks.
6123          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6124          *            reset, as in 4 port device they might still be owned
6125          *            by the MCP (there is only one leader per path).
6126          */
6127         not_reset_mask1 =
6128             MISC_REGISTERS_RESET_REG_1_RST_HC |
6129             MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6130             MISC_REGISTERS_RESET_REG_1_RST_PXP;
6131
6132         not_reset_mask2 =
6133             MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6134             MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6135             MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6136             MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6137             MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6138             MISC_REGISTERS_RESET_REG_2_RST_GRC |
6139             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6140             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6141             MISC_REGISTERS_RESET_REG_2_RST_ATC |
6142             MISC_REGISTERS_RESET_REG_2_PGLC |
6143             MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6144             MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6145             MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6146             MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6147             MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6148
6149         /*
6150          * Keep the following blocks in reset:
6151          *  - all xxMACs are handled by the elink code.
6152          */
6153         stay_reset2 =
6154             MISC_REGISTERS_RESET_REG_2_XMAC |
6155             MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6156
6157         /* Full reset masks according to the chip */
6158         reset_mask1 = 0xffffffff;
6159
6160         if (CHIP_IS_E1H(sc))
6161                 reset_mask2 = 0x1ffff;
6162         else if (CHIP_IS_E2(sc))
6163                 reset_mask2 = 0xfffff;
6164         else                    /* CHIP_IS_E3 */
6165                 reset_mask2 = 0x3ffffff;
6166
6167         /* Don't reset global blocks unless we need to */
6168         if (!global)
6169                 reset_mask2 &= ~global_bits2;
6170
6171         /*
6172          * In case of attention in the QM, we need to reset PXP
6173          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6174          * because otherwise QM reset would release 'close the gates' shortly
6175          * before resetting the PXP, then the PSWRQ would send a write
6176          * request to PGLUE. Then when PXP is reset, PGLUE would try to
6177          * read the payload data from PSWWR, but PSWWR would not
6178          * respond. The write queue in PGLUE would stuck, dmae commands
6179          * would not return. Therefore it's important to reset the second
6180          * reset register (containing the
6181          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6182          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6183          * bit).
6184          */
6185         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6186                reset_mask2 & (~not_reset_mask2));
6187
6188         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6189                reset_mask1 & (~not_reset_mask1));
6190
6191         mb();
6192         wmb();
6193
6194         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6195                reset_mask2 & (~stay_reset2));
6196
6197         mb();
6198         wmb();
6199
6200         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6201         wmb();
6202 }
6203
6204 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6205 {
6206         int cnt = 1000;
6207         uint32_t val = 0;
6208         uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6209         uint32_t tags_63_32 = 0;
6210
6211         /* Empty the Tetris buffer, wait for 1s */
6212         do {
6213                 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6214                 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6215                 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6216                 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6217                 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6218                 if (CHIP_IS_E3(sc)) {
6219                         tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6220                 }
6221
6222                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6223                     ((port_is_idle_0 & 0x1) == 0x1) &&
6224                     ((port_is_idle_1 & 0x1) == 0x1) &&
6225                     (pgl_exp_rom2 == 0xffffffff) &&
6226                     (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6227                         break;
6228                 DELAY(1000);
6229         } while (cnt-- > 0);
6230
6231         if (cnt <= 0) {
6232                 PMD_DRV_LOG(NOTICE, sc,
6233                             "ERROR: Tetris buffer didn't get empty or there "
6234                             "are still outstanding read requests after 1s! "
6235                             "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6236                             "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6237                             sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6238                             pgl_exp_rom2);
6239                 return -1;
6240         }
6241
6242         mb();
6243
6244         /* Close gates #2, #3 and #4 */
6245         bnx2x_set_234_gates(sc, TRUE);
6246
6247         /* Poll for IGU VQs for 57712 and newer chips */
6248         if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6249                 return -1;
6250         }
6251
6252         /* clear "unprepared" bit */
6253         REG_WR(sc, MISC_REG_UNPREPARED, 0);
6254         mb();
6255
6256         /* Make sure all is written to the chip before the reset */
6257         wmb();
6258
6259         /*
6260          * Wait for 1ms to empty GLUE and PCI-E core queues,
6261          * PSWHST, GRC and PSWRD Tetris buffer.
6262          */
6263         DELAY(1000);
6264
6265         /* Prepare to chip reset: */
6266         /* MCP */
6267         if (global) {
6268                 bnx2x_reset_mcp_prep(sc, &val);
6269         }
6270
6271         /* PXP */
6272         bnx2x_pxp_prep(sc);
6273         mb();
6274
6275         /* reset the chip */
6276         bnx2x_process_kill_chip_reset(sc, global);
6277         mb();
6278
6279         /* Recover after reset: */
6280         /* MCP */
6281         if (global && bnx2x_reset_mcp_comp(sc, val)) {
6282                 return -1;
6283         }
6284
6285         /* Open the gates #2, #3 and #4 */
6286         bnx2x_set_234_gates(sc, FALSE);
6287
6288         return 0;
6289 }
6290
6291 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6292 {
6293         int rc = 0;
6294         uint8_t global = bnx2x_reset_is_global(sc);
6295         uint32_t load_code;
6296
6297         /*
6298          * If not going to reset MCP, load "fake" driver to reset HW while
6299          * driver is owner of the HW.
6300          */
6301         if (!global && !BNX2X_NOMCP(sc)) {
6302                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6303                                            DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6304                 if (!load_code) {
6305                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6306                         rc = -1;
6307                         goto exit_leader_reset;
6308                 }
6309
6310                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6311                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6312                         PMD_DRV_LOG(NOTICE, sc,
6313                                     "MCP unexpected response, aborting");
6314                         rc = -1;
6315                         goto exit_leader_reset2;
6316                 }
6317
6318                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6319                 if (!load_code) {
6320                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6321                         rc = -1;
6322                         goto exit_leader_reset2;
6323                 }
6324         }
6325
6326         /* try to recover after the failure */
6327         if (bnx2x_process_kill(sc, global)) {
6328                 PMD_DRV_LOG(NOTICE, sc, "Something bad occurred on engine %d!",
6329                             SC_PATH(sc));
6330                 rc = -1;
6331                 goto exit_leader_reset2;
6332         }
6333
6334         /*
6335          * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6336          * state.
6337          */
6338         bnx2x_set_reset_done(sc);
6339         if (global) {
6340                 bnx2x_clear_reset_global(sc);
6341         }
6342
6343 exit_leader_reset2:
6344
6345         /* unload "fake driver" if it was loaded */
6346         if (!global &&!BNX2X_NOMCP(sc)) {
6347                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6348                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6349         }
6350
6351 exit_leader_reset:
6352
6353         sc->is_leader = 0;
6354         bnx2x_release_leader_lock(sc);
6355
6356         mb();
6357         return rc;
6358 }
6359
6360 /*
6361  * prepare INIT transition, parameters configured:
6362  *   - HC configuration
6363  *   - Queue's CDU context
6364  */
6365 static void
6366 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6367                    struct ecore_queue_init_params *init_params)
6368 {
6369         uint8_t cos;
6370         int cxt_index, cxt_offset;
6371
6372         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6373         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6374
6375         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6376         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6377
6378         /* HC rate */
6379         init_params->rx.hc_rate =
6380             sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6381         init_params->tx.hc_rate =
6382             sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6383
6384         /* FW SB ID */
6385         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6386
6387         /* CQ index among the SB indices */
6388         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6389         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6390
6391         /* set maximum number of COSs supported by this queue */
6392         init_params->max_cos = sc->max_cos;
6393
6394         /* set the context pointers queue object */
6395         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6396                 cxt_index = fp->index / ILT_PAGE_CIDS;
6397                 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6398                 init_params->cxts[cos] =
6399                     &sc->context[cxt_index].vcxt[cxt_offset].eth;
6400         }
6401 }
6402
6403 /* set flags that are common for the Tx-only and not normal connections */
6404 static unsigned long
6405 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6406 {
6407         unsigned long flags = 0;
6408
6409         /* PF driver will always initialize the Queue to an ACTIVE state */
6410         bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6411
6412         /*
6413          * tx only connections collect statistics (on the same index as the
6414          * parent connection). The statistics are zeroed when the parent
6415          * connection is initialized.
6416          */
6417
6418         bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6419         if (zero_stats) {
6420                 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6421         }
6422
6423         /*
6424          * tx only connections can support tx-switching, though their
6425          * CoS-ness doesn't survive the loopback
6426          */
6427         if (sc->flags & BNX2X_TX_SWITCHING) {
6428                 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6429         }
6430
6431         bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6432
6433         return flags;
6434 }
6435
6436 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6437 {
6438         unsigned long flags = 0;
6439
6440         if (IS_MF_SD(sc)) {
6441                 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6442         }
6443
6444         if (leading) {
6445                 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6446                 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6447         }
6448
6449         bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6450
6451         /* merge with common flags */
6452         return flags | bnx2x_get_common_flags(sc, TRUE);
6453 }
6454
6455 static void
6456 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6457                       struct ecore_general_setup_params *gen_init, uint8_t cos)
6458 {
6459         gen_init->stat_id = bnx2x_stats_id(fp);
6460         gen_init->spcl_id = fp->cl_id;
6461         gen_init->mtu = sc->mtu;
6462         gen_init->cos = cos;
6463 }
6464
6465 static void
6466 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6467                  struct rxq_pause_params *pause,
6468                  struct ecore_rxq_setup_params *rxq_init)
6469 {
6470         struct bnx2x_rx_queue *rxq;
6471
6472         rxq = sc->rx_queues[fp->index];
6473         if (!rxq) {
6474                 PMD_RX_LOG(ERR, "RX queue is NULL");
6475                 return;
6476         }
6477         /* pause */
6478         pause->bd_th_lo = BD_TH_LO(sc);
6479         pause->bd_th_hi = BD_TH_HI(sc);
6480
6481         pause->rcq_th_lo = RCQ_TH_LO(sc);
6482         pause->rcq_th_hi = RCQ_TH_HI(sc);
6483
6484         /* validate rings have enough entries to cross high thresholds */
6485         if (sc->dropless_fc &&
6486             pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6487                 PMD_DRV_LOG(WARNING, sc, "rx bd ring threshold limit");
6488         }
6489
6490         if (sc->dropless_fc &&
6491             pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6492                 PMD_DRV_LOG(WARNING, sc, "rcq ring threshold limit");
6493         }
6494
6495         pause->pri_map = 1;
6496
6497         /* rxq setup */
6498         rxq_init->dscr_map = (phys_addr_t)rxq->rx_ring_phys_addr;
6499         rxq_init->rcq_map = (phys_addr_t)rxq->cq_ring_phys_addr;
6500         rxq_init->rcq_np_map = (phys_addr_t)(rxq->cq_ring_phys_addr +
6501                                               BNX2X_PAGE_SIZE);
6502
6503         /*
6504          * This should be a maximum number of data bytes that may be
6505          * placed on the BD (not including paddings).
6506          */
6507         rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6508
6509         rxq_init->cl_qzone_id = fp->cl_qzone_id;
6510         rxq_init->rss_engine_id = SC_FUNC(sc);
6511         rxq_init->mcast_engine_id = SC_FUNC(sc);
6512
6513         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6514         rxq_init->fw_sb_id = fp->fw_sb_id;
6515
6516         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6517
6518         /*
6519          * configure silent vlan removal
6520          * if multi function mode is afex, then mask default vlan
6521          */
6522         if (IS_MF_AFEX(sc)) {
6523                 rxq_init->silent_removal_value =
6524                     sc->devinfo.mf_info.afex_def_vlan_tag;
6525                 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6526         }
6527 }
6528
6529 static void
6530 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6531                  struct ecore_txq_setup_params *txq_init, uint8_t cos)
6532 {
6533         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6534
6535         if (!txq) {
6536                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6537                 return;
6538         }
6539         txq_init->dscr_map = (phys_addr_t)txq->tx_ring_phys_addr;
6540         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6541         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6542         txq_init->fw_sb_id = fp->fw_sb_id;
6543
6544         /*
6545          * set the TSS leading client id for TX classfication to the
6546          * leading RSS client id
6547          */
6548         txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6549 }
6550
6551 /*
6552  * This function performs 2 steps in a queue state machine:
6553  *   1) RESET->INIT
6554  *   2) INIT->SETUP
6555  */
6556 static int
6557 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6558 {
6559         struct ecore_queue_state_params q_params = { NULL };
6560         struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6561         int rc;
6562
6563         PMD_DRV_LOG(DEBUG, sc, "setting up queue %d", fp->index);
6564
6565         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6566
6567         q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6568
6569         /* we want to wait for completion in this context */
6570         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6571
6572         /* prepare the INIT parameters */
6573         bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6574
6575         /* Set the command */
6576         q_params.cmd = ECORE_Q_CMD_INIT;
6577
6578         /* Change the state to INIT */
6579         rc = ecore_queue_state_change(sc, &q_params);
6580         if (rc) {
6581                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) INIT failed", fp->index);
6582                 return rc;
6583         }
6584
6585         PMD_DRV_LOG(DEBUG, sc, "init complete");
6586
6587         /* now move the Queue to the SETUP state */
6588         memset(setup_params, 0, sizeof(*setup_params));
6589
6590         /* set Queue flags */
6591         setup_params->flags = bnx2x_get_q_flags(sc, leading);
6592
6593         /* set general SETUP parameters */
6594         bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6595                               FIRST_TX_COS_INDEX);
6596
6597         bnx2x_pf_rx_q_prep(sc, fp,
6598                          &setup_params->pause_params,
6599                          &setup_params->rxq_params);
6600
6601         bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6602
6603         /* Set the command */
6604         q_params.cmd = ECORE_Q_CMD_SETUP;
6605
6606         /* change the state to SETUP */
6607         rc = ecore_queue_state_change(sc, &q_params);
6608         if (rc) {
6609                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) SETUP failed", fp->index);
6610                 return rc;
6611         }
6612
6613         return rc;
6614 }
6615
6616 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6617 {
6618         if (IS_PF(sc))
6619                 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6620         else                    /* VF */
6621                 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6622 }
6623
6624 static int
6625 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6626                   uint8_t config_hash)
6627 {
6628         struct ecore_config_rss_params params = { NULL };
6629         uint32_t i;
6630
6631         /*
6632          * Although RSS is meaningless when there is a single HW queue we
6633          * still need it enabled in order to have HW Rx hash generated.
6634          */
6635
6636         params.rss_obj = rss_obj;
6637
6638         bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6639
6640         bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6641
6642         /* RSS configuration */
6643         bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6644         bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6645         bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6646         bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6647         if (rss_obj->udp_rss_v4) {
6648                 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6649         }
6650         if (rss_obj->udp_rss_v6) {
6651                 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6652         }
6653
6654         /* Hash bits */
6655         params.rss_result_mask = MULTI_MASK;
6656
6657         (void)rte_memcpy(params.ind_table, rss_obj->ind_table,
6658                          sizeof(params.ind_table));
6659
6660         if (config_hash) {
6661 /* RSS keys */
6662                 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6663                         params.rss_key[i] = (uint32_t) rte_rand();
6664                 }
6665
6666                 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6667         }
6668
6669         if (IS_PF(sc))
6670                 return ecore_config_rss(sc, &params);
6671         else
6672                 return bnx2x_vf_config_rss(sc, &params);
6673 }
6674
6675 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6676 {
6677         return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6678 }
6679
6680 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6681 {
6682         uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6683         uint32_t i;
6684
6685         /*
6686          * Prepare the initial contents of the indirection table if
6687          * RSS is enabled
6688          */
6689         for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6690                 sc->rss_conf_obj.ind_table[i] =
6691                     (sc->fp->cl_id + (i % num_eth_queues));
6692         }
6693
6694         if (sc->udp_rss) {
6695                 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6696         }
6697
6698         /*
6699          * For 57711 SEARCHER configuration (rss_keys) is
6700          * per-port, so if explicit configuration is needed, do it only
6701          * for a PMF.
6702          *
6703          * For 57712 and newer it's a per-function configuration.
6704          */
6705         return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6706 }
6707
6708 static int
6709 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6710                 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6711                 unsigned long *ramrod_flags)
6712 {
6713         struct ecore_vlan_mac_ramrod_params ramrod_param;
6714         int rc;
6715
6716         memset(&ramrod_param, 0, sizeof(ramrod_param));
6717
6718         /* fill in general parameters */
6719         ramrod_param.vlan_mac_obj = obj;
6720         ramrod_param.ramrod_flags = *ramrod_flags;
6721
6722         /* fill a user request section if needed */
6723         if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6724                 (void)rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6725                                  ETH_ALEN);
6726
6727                 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6728
6729 /* Set the command: ADD or DEL */
6730                 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6731                     ECORE_VLAN_MAC_DEL;
6732         }
6733
6734         rc = ecore_config_vlan_mac(sc, &ramrod_param);
6735
6736         if (rc == ECORE_EXISTS) {
6737                 PMD_DRV_LOG(INFO, sc, "Failed to schedule ADD operations (EEXIST)");
6738 /* do not treat adding same MAC as error */
6739                 rc = 0;
6740         } else if (rc < 0) {
6741                 PMD_DRV_LOG(ERR, sc,
6742                             "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6743         }
6744
6745         return rc;
6746 }
6747
6748 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6749 {
6750         unsigned long ramrod_flags = 0;
6751
6752         PMD_DRV_LOG(DEBUG, sc, "Adding Ethernet MAC");
6753
6754         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6755
6756         /* Eth MAC is set on RSS leading client (fp[0]) */
6757         return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6758                                &sc->sp_objs->mac_obj,
6759                                set, ECORE_ETH_MAC, &ramrod_flags);
6760 }
6761
6762 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6763 {
6764         uint32_t sel_phy_idx = 0;
6765
6766         if (sc->link_params.num_phys <= 1) {
6767                 return ELINK_INT_PHY;
6768         }
6769
6770         if (sc->link_vars.link_up) {
6771                 sel_phy_idx = ELINK_EXT_PHY1;
6772 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6773                 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6774                     (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6775                      ELINK_SUPPORTED_FIBRE))
6776                         sel_phy_idx = ELINK_EXT_PHY2;
6777         } else {
6778                 switch (elink_phy_selection(&sc->link_params)) {
6779                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6780                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6781                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6782                         sel_phy_idx = ELINK_EXT_PHY1;
6783                         break;
6784                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6785                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6786                         sel_phy_idx = ELINK_EXT_PHY2;
6787                         break;
6788                 }
6789         }
6790
6791         return sel_phy_idx;
6792 }
6793
6794 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6795 {
6796         uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6797
6798         /*
6799          * The selected activated PHY is always after swapping (in case PHY
6800          * swapping is enabled). So when swapping is enabled, we need to reverse
6801          * the configuration
6802          */
6803
6804         if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6805                 if (sel_phy_idx == ELINK_EXT_PHY1)
6806                         sel_phy_idx = ELINK_EXT_PHY2;
6807                 else if (sel_phy_idx == ELINK_EXT_PHY2)
6808                         sel_phy_idx = ELINK_EXT_PHY1;
6809         }
6810
6811         return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6812 }
6813
6814 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6815 {
6816         /*
6817          * Initialize link parameters structure variables
6818          * It is recommended to turn off RX FC for jumbo frames
6819          * for better performance
6820          */
6821         if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6822                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6823         } else {
6824                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6825         }
6826 }
6827
6828 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6829 {
6830         uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6831         switch (sc->link_vars.ieee_fc &
6832                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6833         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6834         default:
6835                 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6836                                                    ADVERTISED_Pause);
6837                 break;
6838
6839         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6840                 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6841                                                   ADVERTISED_Pause);
6842                 break;
6843
6844         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6845                 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6846                 break;
6847         }
6848 }
6849
6850 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6851 {
6852         uint16_t line_speed = sc->link_vars.line_speed;
6853         if (IS_MF(sc)) {
6854                 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6855                                                       sc->devinfo.
6856                                                       mf_info.mf_config[SC_VN
6857                                                                         (sc)]);
6858
6859 /* calculate the current MAX line speed limit for the MF devices */
6860                 if (IS_MF_SI(sc)) {
6861                         line_speed = (line_speed * maxCfg) / 100;
6862                 } else {        /* SD mode */
6863                         uint16_t vn_max_rate = maxCfg * 100;
6864
6865                         if (vn_max_rate < line_speed) {
6866                                 line_speed = vn_max_rate;
6867                         }
6868                 }
6869         }
6870
6871         return line_speed;
6872 }
6873
6874 static void
6875 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6876 {
6877         uint16_t line_speed = bnx2x_get_mf_speed(sc);
6878
6879         memset(data, 0, sizeof(*data));
6880
6881         /* fill the report data with the effective line speed */
6882         data->line_speed = line_speed;
6883
6884         /* Link is down */
6885         if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6886                 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6887                             &data->link_report_flags);
6888         }
6889
6890         /* Full DUPLEX */
6891         if (sc->link_vars.duplex == DUPLEX_FULL) {
6892                 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6893                             &data->link_report_flags);
6894         }
6895
6896         /* Rx Flow Control is ON */
6897         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6898                 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6899         }
6900
6901         /* Tx Flow Control is ON */
6902         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6903                 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6904         }
6905 }
6906
6907 /* report link status to OS, should be called under phy_lock */
6908 static void bnx2x_link_report_locked(struct bnx2x_softc *sc)
6909 {
6910         struct bnx2x_link_report_data cur_data;
6911
6912         /* reread mf_cfg */
6913         if (IS_PF(sc)) {
6914                 bnx2x_read_mf_cfg(sc);
6915         }
6916
6917         /* Read the current link report info */
6918         bnx2x_fill_report_data(sc, &cur_data);
6919
6920         /* Don't report link down or exactly the same link status twice */
6921         if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6922             (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6923                           &sc->last_reported_link.link_report_flags) &&
6924              bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6925                           &cur_data.link_report_flags))) {
6926                 return;
6927         }
6928
6929         PMD_DRV_LOG(INFO, sc, "Change in link status : cur_data = %lx, last_reported_link = %lx\n",
6930                     cur_data.link_report_flags,
6931                     sc->last_reported_link.link_report_flags);
6932
6933         sc->link_cnt++;
6934
6935         PMD_DRV_LOG(INFO, sc, "link status change count = %x\n", sc->link_cnt);
6936         /* report new link params and remember the state for the next time */
6937         (void)rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6938
6939         if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6940                          &cur_data.link_report_flags)) {
6941                 PMD_DRV_LOG(INFO, sc, "NIC Link is Down");
6942         } else {
6943                 __rte_unused const char *duplex;
6944                 __rte_unused const char *flow;
6945
6946                 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6947                                            &cur_data.link_report_flags)) {
6948                         duplex = "full";
6949                 } else {
6950                         duplex = "half";
6951                 }
6952
6953 /*
6954  * Handle the FC at the end so that only these flags would be
6955  * possibly set. This way we may easily check if there is no FC
6956  * enabled.
6957  */
6958                 if (cur_data.link_report_flags) {
6959                         if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6960                                          &cur_data.link_report_flags) &&
6961                             bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6962                                          &cur_data.link_report_flags)) {
6963                                 flow = "ON - receive & transmit";
6964                         } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6965                                                 &cur_data.link_report_flags) &&
6966                                    !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6967                                                  &cur_data.link_report_flags)) {
6968                                 flow = "ON - receive";
6969                         } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6970                                                  &cur_data.link_report_flags) &&
6971                                    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6972                                                 &cur_data.link_report_flags)) {
6973                                 flow = "ON - transmit";
6974                         } else {
6975                                 flow = "none";  /* possible? */
6976                         }
6977                 } else {
6978                         flow = "none";
6979                 }
6980
6981                 PMD_DRV_LOG(INFO, sc,
6982                             "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
6983                             cur_data.line_speed, duplex, flow);
6984         }
6985 }
6986
6987 static void
6988 bnx2x_link_report(struct bnx2x_softc *sc)
6989 {
6990         bnx2x_acquire_phy_lock(sc);
6991         bnx2x_link_report_locked(sc);
6992         bnx2x_release_phy_lock(sc);
6993 }
6994
6995 void bnx2x_link_status_update(struct bnx2x_softc *sc)
6996 {
6997         if (sc->state != BNX2X_STATE_OPEN) {
6998                 return;
6999         }
7000
7001         if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
7002                 elink_link_status_update(&sc->link_params, &sc->link_vars);
7003         } else {
7004                 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
7005                                           ELINK_SUPPORTED_10baseT_Full |
7006                                           ELINK_SUPPORTED_100baseT_Half |
7007                                           ELINK_SUPPORTED_100baseT_Full |
7008                                           ELINK_SUPPORTED_1000baseT_Full |
7009                                           ELINK_SUPPORTED_2500baseX_Full |
7010                                           ELINK_SUPPORTED_10000baseT_Full |
7011                                           ELINK_SUPPORTED_TP |
7012                                           ELINK_SUPPORTED_FIBRE |
7013                                           ELINK_SUPPORTED_Autoneg |
7014                                           ELINK_SUPPORTED_Pause |
7015                                           ELINK_SUPPORTED_Asym_Pause);
7016                 sc->port.advertising[0] = sc->port.supported[0];
7017
7018                 sc->link_params.sc = sc;
7019                 sc->link_params.port = SC_PORT(sc);
7020                 sc->link_params.req_duplex[0] = DUPLEX_FULL;
7021                 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
7022                 sc->link_params.req_line_speed[0] = SPEED_10000;
7023                 sc->link_params.speed_cap_mask[0] = 0x7f0000;
7024                 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
7025
7026                 if (CHIP_REV_IS_FPGA(sc)) {
7027                         sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
7028                         sc->link_vars.line_speed = ELINK_SPEED_1000;
7029                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7030                                                      LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
7031                 } else {
7032                         sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
7033                         sc->link_vars.line_speed = ELINK_SPEED_10000;
7034                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7035                                                      LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7036                 }
7037
7038                 sc->link_vars.link_up = 1;
7039
7040                 sc->link_vars.duplex = DUPLEX_FULL;
7041                 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7042
7043                 if (IS_PF(sc)) {
7044                         REG_WR(sc,
7045                                NIG_REG_EGRESS_DRAIN0_MODE +
7046                                sc->link_params.port * 4, 0);
7047                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7048                         bnx2x_link_report(sc);
7049                 }
7050         }
7051
7052         if (IS_PF(sc)) {
7053                 if (sc->link_vars.link_up) {
7054                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7055                 } else {
7056                         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7057                 }
7058                 bnx2x_link_report(sc);
7059         } else {
7060                 bnx2x_link_report_locked(sc);
7061                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7062         }
7063 }
7064
7065 static void bnx2x_periodic_start(struct bnx2x_softc *sc)
7066 {
7067         atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
7068 }
7069
7070 static void bnx2x_periodic_stop(struct bnx2x_softc *sc)
7071 {
7072         atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
7073 }
7074
7075 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7076 {
7077         int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7078         uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7079         struct elink_params *lp = &sc->link_params;
7080
7081         bnx2x_set_requested_fc(sc);
7082
7083         bnx2x_acquire_phy_lock(sc);
7084
7085         if (load_mode == LOAD_DIAG) {
7086                 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7087 /* Prefer doing PHY loopback at 10G speed, if possible */
7088                 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7089                         if (lp->speed_cap_mask[cfg_idx] &
7090                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7091                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7092                         } else {
7093                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7094                         }
7095                 }
7096         }
7097
7098         if (load_mode == LOAD_LOOPBACK_EXT) {
7099                 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7100         }
7101
7102         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7103
7104         bnx2x_release_phy_lock(sc);
7105
7106         bnx2x_calc_fc_adv(sc);
7107
7108         if (sc->link_vars.link_up) {
7109                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7110                 bnx2x_link_report(sc);
7111         }
7112
7113         if (!CHIP_REV_IS_SLOW(sc)) {
7114                 bnx2x_periodic_start(sc);
7115         }
7116
7117         sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7118         return rc;
7119 }
7120
7121 /* update flags in shmem */
7122 static void
7123 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7124 {
7125         uint32_t drv_flags;
7126
7127         if (SHMEM2_HAS(sc, drv_flags)) {
7128                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7129                 drv_flags = SHMEM2_RD(sc, drv_flags);
7130
7131                 if (set) {
7132                         drv_flags |= flags;
7133                 } else {
7134                         drv_flags &= ~flags;
7135                 }
7136
7137                 SHMEM2_WR(sc, drv_flags, drv_flags);
7138
7139                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7140         }
7141 }
7142
7143 /* periodic timer callout routine, only runs when the interface is up */
7144 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7145 {
7146         if ((sc->state != BNX2X_STATE_OPEN) ||
7147             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7148                 PMD_DRV_LOG(INFO, sc, "periodic callout exit (state=0x%x)",
7149                             sc->state);
7150                 return;
7151         }
7152         if (!CHIP_REV_IS_SLOW(sc)) {
7153 /*
7154  * This barrier is needed to ensure the ordering between the writing
7155  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7156  * the reading here.
7157  */
7158                 mb();
7159                 if (sc->port.pmf) {
7160                         bnx2x_acquire_phy_lock(sc);
7161                         elink_period_func(&sc->link_params, &sc->link_vars);
7162                         bnx2x_release_phy_lock(sc);
7163                 }
7164         }
7165 #ifdef BNX2X_PULSE
7166         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7167                 int mb_idx = SC_FW_MB_IDX(sc);
7168                 uint32_t drv_pulse;
7169                 uint32_t mcp_pulse;
7170
7171                 ++sc->fw_drv_pulse_wr_seq;
7172                 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7173
7174                 drv_pulse = sc->fw_drv_pulse_wr_seq;
7175                 bnx2x_drv_pulse(sc);
7176
7177                 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7178                              MCP_PULSE_SEQ_MASK);
7179
7180 /*
7181  * The delta between driver pulse and mcp response should
7182  * be 1 (before mcp response) or 0 (after mcp response).
7183  */
7184                 if ((drv_pulse != mcp_pulse) &&
7185                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7186                         /* someone lost a heartbeat... */
7187                         PMD_DRV_LOG(ERR, sc,
7188                                     "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7189                                     drv_pulse, mcp_pulse);
7190                 }
7191         }
7192 #endif
7193 }
7194
7195 /* start the controller */
7196 static __attribute__ ((noinline))
7197 int bnx2x_nic_load(struct bnx2x_softc *sc)
7198 {
7199         uint32_t val;
7200         uint32_t load_code = 0;
7201         int i, rc = 0;
7202
7203         PMD_INIT_FUNC_TRACE(sc);
7204
7205         sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7206
7207         if (IS_PF(sc)) {
7208 /* must be called before memory allocation and HW init */
7209                 bnx2x_ilt_set_info(sc);
7210         }
7211
7212         bnx2x_set_fp_rx_buf_size(sc);
7213
7214         if (IS_PF(sc)) {
7215                 if (bnx2x_alloc_mem(sc) != 0) {
7216                         sc->state = BNX2X_STATE_CLOSED;
7217                         rc = -ENOMEM;
7218                         goto bnx2x_nic_load_error0;
7219                 }
7220         }
7221
7222         if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7223                 sc->state = BNX2X_STATE_CLOSED;
7224                 rc = -ENOMEM;
7225                 goto bnx2x_nic_load_error0;
7226         }
7227
7228         if (IS_VF(sc)) {
7229                 rc = bnx2x_vf_init(sc);
7230                 if (rc) {
7231                         sc->state = BNX2X_STATE_ERROR;
7232                         goto bnx2x_nic_load_error0;
7233                 }
7234         }
7235
7236         if (IS_PF(sc)) {
7237 /* set pf load just before approaching the MCP */
7238                 bnx2x_set_pf_load(sc);
7239
7240 /* if MCP exists send load request and analyze response */
7241                 if (!BNX2X_NOMCP(sc)) {
7242                         /* attempt to load pf */
7243                         if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7244                                 sc->state = BNX2X_STATE_CLOSED;
7245                                 rc = -ENXIO;
7246                                 goto bnx2x_nic_load_error1;
7247                         }
7248
7249                         /* what did the MCP say? */
7250                         if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7251                                 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7252                                 sc->state = BNX2X_STATE_CLOSED;
7253                                 rc = -ENXIO;
7254                                 goto bnx2x_nic_load_error2;
7255                         }
7256                 } else {
7257                         PMD_DRV_LOG(INFO, sc, "Device has no MCP!");
7258                         load_code = bnx2x_nic_load_no_mcp(sc);
7259                 }
7260
7261 /* mark PMF if applicable */
7262                 bnx2x_nic_load_pmf(sc, load_code);
7263
7264 /* Init Function state controlling object */
7265                 bnx2x_init_func_obj(sc);
7266
7267 /* Initialize HW */
7268                 if (bnx2x_init_hw(sc, load_code) != 0) {
7269                         PMD_DRV_LOG(NOTICE, sc, "HW init failed");
7270                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7271                         sc->state = BNX2X_STATE_CLOSED;
7272                         rc = -ENXIO;
7273                         goto bnx2x_nic_load_error2;
7274                 }
7275         }
7276
7277         bnx2x_nic_init(sc, load_code);
7278
7279         /* Init per-function objects */
7280         if (IS_PF(sc)) {
7281                 bnx2x_init_objs(sc);
7282
7283 /* set AFEX default VLAN tag to an invalid value */
7284                 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7285
7286                 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7287                 rc = bnx2x_func_start(sc);
7288                 if (rc) {
7289                         PMD_DRV_LOG(NOTICE, sc, "Function start failed!");
7290                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7291                         sc->state = BNX2X_STATE_ERROR;
7292                         goto bnx2x_nic_load_error3;
7293                 }
7294
7295 /* send LOAD_DONE command to MCP */
7296                 if (!BNX2X_NOMCP(sc)) {
7297                         load_code =
7298                             bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7299                         if (!load_code) {
7300                                 PMD_DRV_LOG(NOTICE, sc,
7301                                             "MCP response failure, aborting");
7302                                 sc->state = BNX2X_STATE_ERROR;
7303                                 rc = -ENXIO;
7304                                 goto bnx2x_nic_load_error3;
7305                         }
7306                 }
7307         }
7308
7309         rc = bnx2x_setup_leading(sc);
7310         if (rc) {
7311                 PMD_DRV_LOG(NOTICE, sc, "Setup leading failed!");
7312                 sc->state = BNX2X_STATE_ERROR;
7313                 goto bnx2x_nic_load_error3;
7314         }
7315
7316         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7317                 if (IS_PF(sc))
7318                         rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7319                 else            /* IS_VF(sc) */
7320                         rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7321
7322                 if (rc) {
7323                         PMD_DRV_LOG(NOTICE, sc, "Queue(%d) setup failed", i);
7324                         sc->state = BNX2X_STATE_ERROR;
7325                         goto bnx2x_nic_load_error3;
7326                 }
7327         }
7328
7329         rc = bnx2x_init_rss_pf(sc);
7330         if (rc) {
7331                 PMD_DRV_LOG(NOTICE, sc, "PF RSS init failed");
7332                 sc->state = BNX2X_STATE_ERROR;
7333                 goto bnx2x_nic_load_error3;
7334         }
7335
7336         /* now when Clients are configured we are ready to work */
7337         sc->state = BNX2X_STATE_OPEN;
7338
7339         /* Configure a ucast MAC */
7340         if (IS_PF(sc)) {
7341                 rc = bnx2x_set_eth_mac(sc, TRUE);
7342         } else {                /* IS_VF(sc) */
7343                 rc = bnx2x_vf_set_mac(sc, TRUE);
7344         }
7345
7346         if (rc) {
7347                 PMD_DRV_LOG(NOTICE, sc, "Setting Ethernet MAC failed");
7348                 sc->state = BNX2X_STATE_ERROR;
7349                 goto bnx2x_nic_load_error3;
7350         }
7351
7352         if (sc->port.pmf) {
7353                 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7354                 if (rc) {
7355                         sc->state = BNX2X_STATE_ERROR;
7356                         goto bnx2x_nic_load_error3;
7357                 }
7358         }
7359
7360         sc->link_params.feature_config_flags &=
7361             ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7362
7363         /* start the Tx */
7364         switch (LOAD_OPEN) {
7365         case LOAD_NORMAL:
7366         case LOAD_OPEN:
7367                 break;
7368
7369         case LOAD_DIAG:
7370         case LOAD_LOOPBACK_EXT:
7371                 sc->state = BNX2X_STATE_DIAG;
7372                 break;
7373
7374         default:
7375                 break;
7376         }
7377
7378         if (sc->port.pmf) {
7379                 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7380         } else {
7381                 bnx2x_link_status_update(sc);
7382         }
7383
7384         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7385 /* mark driver is loaded in shmem2 */
7386                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7387                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7388                           (val |
7389                            DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7390                            DRV_FLAGS_CAPABILITIES_LOADED_L2));
7391         }
7392
7393         /* start fast path */
7394         /* Initialize Rx filter */
7395         bnx2x_set_rx_mode(sc);
7396
7397         /* wait for all pending SP commands to complete */
7398         if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7399                 PMD_DRV_LOG(NOTICE, sc, "Timeout waiting for all SPs to complete!");
7400                 bnx2x_periodic_stop(sc);
7401                 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7402                 return -ENXIO;
7403         }
7404
7405         PMD_DRV_LOG(DEBUG, sc, "NIC successfully loaded");
7406
7407         return 0;
7408
7409 bnx2x_nic_load_error3:
7410
7411         if (IS_PF(sc)) {
7412                 bnx2x_int_disable_sync(sc, 1);
7413
7414 /* clean out queued objects */
7415                 bnx2x_squeeze_objects(sc);
7416         }
7417
7418 bnx2x_nic_load_error2:
7419
7420         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7421                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7422                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7423         }
7424
7425         sc->port.pmf = 0;
7426
7427 bnx2x_nic_load_error1:
7428
7429         /* clear pf_load status, as it was already set */
7430         if (IS_PF(sc)) {
7431                 bnx2x_clear_pf_load(sc);
7432         }
7433
7434 bnx2x_nic_load_error0:
7435
7436         bnx2x_free_fw_stats_mem(sc);
7437         bnx2x_free_mem(sc);
7438
7439         return rc;
7440 }
7441
7442 /*
7443 * Handles controller initialization.
7444 */
7445 int bnx2x_init(struct bnx2x_softc *sc)
7446 {
7447         int other_engine = SC_PATH(sc) ? 0 : 1;
7448         uint8_t other_load_status, load_status;
7449         uint8_t global = FALSE;
7450         int rc;
7451
7452         /* Check if the driver is still running and bail out if it is. */
7453         if (sc->state != BNX2X_STATE_CLOSED) {
7454                 PMD_DRV_LOG(DEBUG, sc, "Init called while driver is running!");
7455                 rc = 0;
7456                 goto bnx2x_init_done;
7457         }
7458
7459         bnx2x_set_power_state(sc, PCI_PM_D0);
7460
7461         /*
7462          * If parity occurred during the unload, then attentions and/or
7463          * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7464          * loaded on the current engine to complete the recovery. Parity recovery
7465          * is only relevant for PF driver.
7466          */
7467         if (IS_PF(sc)) {
7468                 other_load_status = bnx2x_get_load_status(sc, other_engine);
7469                 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7470
7471                 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7472                     bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7473                         do {
7474                                 /*
7475                                  * If there are attentions and they are in global blocks, set
7476                                  * the GLOBAL_RESET bit regardless whether it will be this
7477                                  * function that will complete the recovery or not.
7478                                  */
7479                                 if (global) {
7480                                         bnx2x_set_reset_global(sc);
7481                                 }
7482
7483                                 /*
7484                                  * Only the first function on the current engine should try
7485                                  * to recover in open. In case of attentions in global blocks
7486                                  * only the first in the chip should try to recover.
7487                                  */
7488                                 if ((!load_status
7489                                      && (!global ||!other_load_status))
7490                                     && bnx2x_trylock_leader_lock(sc)
7491                                     && !bnx2x_leader_reset(sc)) {
7492                                         PMD_DRV_LOG(INFO, sc,
7493                                                     "Recovered during init");
7494                                         break;
7495                                 }
7496
7497                                 /* recovery has failed... */
7498                                 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7499
7500                                 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7501
7502                                 PMD_DRV_LOG(NOTICE, sc,
7503                                             "Recovery flow hasn't properly "
7504                                             "completed yet, try again later. "
7505                                             "If you still see this message after a "
7506                                             "few retries then power cycle is required.");
7507
7508                                 rc = -ENXIO;
7509                                 goto bnx2x_init_done;
7510                         } while (0);
7511                 }
7512         }
7513
7514         sc->recovery_state = BNX2X_RECOVERY_DONE;
7515
7516         rc = bnx2x_nic_load(sc);
7517
7518 bnx2x_init_done:
7519
7520         if (rc) {
7521                 PMD_DRV_LOG(NOTICE, sc, "Initialization failed, "
7522                             "stack notified driver is NOT running!");
7523         }
7524
7525         return rc;
7526 }
7527
7528 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7529 {
7530         uint32_t val = 0;
7531
7532         /*
7533          * Read the ME register to get the function number. The ME register
7534          * holds the relative-function number and absolute-function number. The
7535          * absolute-function number appears only in E2 and above. Before that
7536          * these bits always contained zero, therefore we cannot blindly use them.
7537          */
7538
7539         val = REG_RD(sc, BAR_ME_REGISTER);
7540
7541         sc->pfunc_rel =
7542             (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7543         sc->path_id =
7544             (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7545             1;
7546
7547         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7548                 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7549         } else {
7550                 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7551         }
7552
7553         PMD_DRV_LOG(DEBUG, sc,
7554                     "Relative function %d, Absolute function %d, Path %d",
7555                     sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7556 }
7557
7558 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7559 {
7560         uint32_t shmem2_size;
7561         uint32_t offset;
7562         uint32_t mf_cfg_offset_value;
7563
7564         /* Non 57712 */
7565         offset = (SHMEM_ADDR(sc, func_mb) +
7566                   (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7567
7568         /* 57712 plus */
7569         if (sc->devinfo.shmem2_base != 0) {
7570                 shmem2_size = SHMEM2_RD(sc, size);
7571                 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7572                         mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7573                         if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7574                                 offset = mf_cfg_offset_value;
7575                         }
7576                 }
7577         }
7578
7579         return offset;
7580 }
7581
7582 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7583 {
7584         uint32_t ret;
7585         struct bnx2x_pci_cap *caps;
7586
7587         /* ensure PCIe capability is enabled */
7588         caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7589         if (NULL != caps) {
7590                 PMD_DRV_LOG(DEBUG, sc, "Found PCIe capability: "
7591                             "id=0x%04X type=0x%04X addr=0x%08X",
7592                             caps->id, caps->type, caps->addr);
7593                 pci_read(sc, (caps->addr + reg), &ret, 2);
7594                 return ret;
7595         }
7596
7597         PMD_DRV_LOG(WARNING, sc, "PCIe capability NOT FOUND!!!");
7598
7599         return 0;
7600 }
7601
7602 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7603 {
7604         return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7605                 PCIM_EXP_STA_TRANSACTION_PND;
7606 }
7607
7608 /*
7609 * Walk the PCI capabiites list for the device to find what features are
7610 * supported. These capabilites may be enabled/disabled by firmware so it's
7611 * best to walk the list rather than make assumptions.
7612 */
7613 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7614 {
7615         PMD_INIT_FUNC_TRACE(sc);
7616
7617         struct bnx2x_pci_cap *caps;
7618         uint16_t link_status;
7619 #ifdef RTE_LIBRTE_BNX2X_DEBUG
7620         int reg = 0;
7621 #endif
7622
7623         /* check if PCI Power Management is enabled */
7624         caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7625         if (NULL != caps) {
7626                 PMD_DRV_LOG(DEBUG, sc, "Found PM capability: "
7627                             "id=0x%04X type=0x%04X addr=0x%08X",
7628                             caps->id, caps->type, caps->addr);
7629
7630                 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7631                 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7632         }
7633
7634         link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7635
7636         sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7637         sc->devinfo.pcie_link_width =
7638             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7639
7640         PMD_DRV_LOG(DEBUG, sc, "PCIe link speed=%d width=%d",
7641                     sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7642
7643         sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7644
7645         /* check if MSI capability is enabled */
7646         caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7647         if (NULL != caps) {
7648                 PMD_DRV_LOG(DEBUG, sc, "Found MSI capability at 0x%04x", reg);
7649
7650                 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7651                 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7652         }
7653
7654         /* check if MSI-X capability is enabled */
7655         caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7656         if (NULL != caps) {
7657                 PMD_DRV_LOG(DEBUG, sc, "Found MSI-X capability at 0x%04x", reg);
7658
7659                 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7660                 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7661         }
7662 }
7663
7664 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7665 {
7666         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7667         uint32_t val;
7668
7669         /* get the outer vlan if we're in switch-dependent mode */
7670
7671         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7672         mf_info->ext_id = (uint16_t) val;
7673
7674         mf_info->multi_vnics_mode = 1;
7675
7676         if (!VALID_OVLAN(mf_info->ext_id)) {
7677                 PMD_DRV_LOG(NOTICE, sc, "Invalid VLAN (%d)", mf_info->ext_id);
7678                 return 1;
7679         }
7680
7681         /* get the capabilities */
7682         if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7683             FUNC_MF_CFG_PROTOCOL_ISCSI) {
7684                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7685         } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7686                    == FUNC_MF_CFG_PROTOCOL_FCOE) {
7687                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7688         } else {
7689                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7690         }
7691
7692         mf_info->vnics_per_port =
7693             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7694
7695         return 0;
7696 }
7697
7698 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7699 {
7700         uint32_t retval = 0;
7701         uint32_t val;
7702
7703         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7704
7705         if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7706                 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7707                         retval |= MF_PROTO_SUPPORT_ETHERNET;
7708                 }
7709                 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7710                         retval |= MF_PROTO_SUPPORT_ISCSI;
7711                 }
7712                 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7713                         retval |= MF_PROTO_SUPPORT_FCOE;
7714                 }
7715         }
7716
7717         return retval;
7718 }
7719
7720 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7721 {
7722         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7723         uint32_t val;
7724
7725         /*
7726          * There is no outer vlan if we're in switch-independent mode.
7727          * If the mac is valid then assume multi-function.
7728          */
7729
7730         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7731
7732         mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7733
7734         mf_info->mf_protos_supported =
7735             bnx2x_get_shmem_ext_proto_support_flags(sc);
7736
7737         mf_info->vnics_per_port =
7738             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7739
7740         return 0;
7741 }
7742
7743 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7744 {
7745         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7746         uint32_t e1hov_tag;
7747         uint32_t func_config;
7748         uint32_t niv_config;
7749
7750         mf_info->multi_vnics_mode = 1;
7751
7752         e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7753         func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7754         niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7755
7756         mf_info->ext_id =
7757             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7758                         FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7759
7760         mf_info->default_vlan =
7761             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7762                         FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7763
7764         mf_info->niv_allowed_priorities =
7765             (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7766                        FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7767
7768         mf_info->niv_default_cos =
7769             (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7770                        FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7771
7772         mf_info->afex_vlan_mode =
7773             ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7774              FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7775
7776         mf_info->niv_mba_enabled =
7777             ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7778              FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7779
7780         mf_info->mf_protos_supported =
7781             bnx2x_get_shmem_ext_proto_support_flags(sc);
7782
7783         mf_info->vnics_per_port =
7784             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7785
7786         return 0;
7787 }
7788
7789 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7790 {
7791         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7792         uint32_t mf_cfg1;
7793         uint32_t mf_cfg2;
7794         uint32_t ovlan1;
7795         uint32_t ovlan2;
7796         uint8_t i, j;
7797
7798         /* various MF mode sanity checks... */
7799
7800         if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7801                 PMD_DRV_LOG(NOTICE, sc,
7802                             "Enumerated function %d is marked as hidden",
7803                             SC_PORT(sc));
7804                 return 1;
7805         }
7806
7807         if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7808                 PMD_DRV_LOG(NOTICE, sc, "vnics_per_port=%d multi_vnics_mode=%d",
7809                             mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7810                 return 1;
7811         }
7812
7813         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7814 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7815                 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7816                         PMD_DRV_LOG(NOTICE, sc, "mf_mode=SD vnic_id=%d ovlan=%d",
7817                                     SC_VN(sc), OVLAN(sc));
7818                         return 1;
7819                 }
7820
7821                 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7822                         PMD_DRV_LOG(NOTICE, sc,
7823                                     "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7824                                     mf_info->multi_vnics_mode, OVLAN(sc));
7825                         return 1;
7826                 }
7827
7828 /*
7829  * Verify all functions are either MF or SF mode. If MF, make sure
7830  * sure that all non-hidden functions have a valid ovlan. If SF,
7831  * make sure that all non-hidden functions have an invalid ovlan.
7832  */
7833                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7834                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7835                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7836                         if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7837                             (((mf_info->multi_vnics_mode)
7838                               && !VALID_OVLAN(ovlan1))
7839                              || ((!mf_info->multi_vnics_mode)
7840                                  && VALID_OVLAN(ovlan1)))) {
7841                                 PMD_DRV_LOG(NOTICE, sc,
7842                                             "mf_mode=SD function %d MF config "
7843                                             "mismatch, multi_vnics_mode=%d ovlan=%d",
7844                                             i, mf_info->multi_vnics_mode,
7845                                             ovlan1);
7846                                 return 1;
7847                         }
7848                 }
7849
7850 /* Verify all funcs on the same port each have a different ovlan. */
7851                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7852                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7853                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7854                         /* iterate from the next function on the port to the max func */
7855                         for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7856                                 mf_cfg2 =
7857                                     MFCFG_RD(sc, func_mf_config[j].config);
7858                                 ovlan2 =
7859                                     MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7860                                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7861                                     && VALID_OVLAN(ovlan1)
7862                                     && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7863                                     && VALID_OVLAN(ovlan2)
7864                                     && (ovlan1 == ovlan2)) {
7865                                         PMD_DRV_LOG(NOTICE, sc,
7866                                                     "mf_mode=SD functions %d and %d "
7867                                                     "have the same ovlan (%d)",
7868                                                     i, j, ovlan1);
7869                                         return 1;
7870                                 }
7871                         }
7872                 }
7873         }
7874         /* MULTI_FUNCTION_SD */
7875         return 0;
7876 }
7877
7878 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7879 {
7880         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7881         uint32_t val, mac_upper;
7882         uint8_t i, vnic;
7883
7884         /* initialize mf_info defaults */
7885         mf_info->vnics_per_port = 1;
7886         mf_info->multi_vnics_mode = FALSE;
7887         mf_info->path_has_ovlan = FALSE;
7888         mf_info->mf_mode = SINGLE_FUNCTION;
7889
7890         if (!CHIP_IS_MF_CAP(sc)) {
7891                 return 0;
7892         }
7893
7894         if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7895                 PMD_DRV_LOG(NOTICE, sc, "Invalid mf_cfg_base!");
7896                 return 1;
7897         }
7898
7899         /* get the MF mode (switch dependent / independent / single-function) */
7900
7901         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7902
7903         switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7904         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7905
7906                 mac_upper =
7907                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7908
7909                 /* check for legal upper mac bytes */
7910                 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7911                         mf_info->mf_mode = MULTI_FUNCTION_SI;
7912                 } else {
7913                         PMD_DRV_LOG(NOTICE, sc,
7914                                     "Invalid config for Switch Independent mode");
7915                 }
7916
7917                 break;
7918
7919         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7920         case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7921
7922                 /* get outer vlan configuration */
7923                 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7924
7925                 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7926                     FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7927                         mf_info->mf_mode = MULTI_FUNCTION_SD;
7928                 } else {
7929                         PMD_DRV_LOG(NOTICE, sc,
7930                                     "Invalid config for Switch Dependent mode");
7931                 }
7932
7933                 break;
7934
7935         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7936
7937                 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7938                 return 0;
7939
7940         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7941
7942                 /*
7943                  * Mark MF mode as NIV if MCP version includes NPAR-SD support
7944                  * and the MAC address is valid.
7945                  */
7946                 mac_upper =
7947                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7948
7949                 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7950                     (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7951                         mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7952                 } else {
7953                         PMD_DRV_LOG(NOTICE, sc, "Invalid config for AFEX mode");
7954                 }
7955
7956                 break;
7957
7958         default:
7959
7960                 PMD_DRV_LOG(NOTICE, sc, "Unknown MF mode (0x%08x)",
7961                             (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7962
7963                 return 1;
7964         }
7965
7966         /* set path mf_mode (which could be different than function mf_mode) */
7967         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7968                 mf_info->path_has_ovlan = TRUE;
7969         } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7970 /*
7971  * Decide on path multi vnics mode. If we're not in MF mode and in
7972  * 4-port mode, this is good enough to check vnic-0 of the other port
7973  * on the same path
7974  */
7975                 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7976                         uint8_t other_port = !(PORT_ID(sc) & 1);
7977                         uint8_t abs_func_other_port =
7978                             (SC_PATH(sc) + (2 * other_port));
7979
7980                         val =
7981                             MFCFG_RD(sc,
7982                                      func_mf_config
7983                                      [abs_func_other_port].e1hov_tag);
7984
7985                         mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7986                 }
7987         }
7988
7989         if (mf_info->mf_mode == SINGLE_FUNCTION) {
7990 /* invalid MF config */
7991                 if (SC_VN(sc) >= 1) {
7992                         PMD_DRV_LOG(NOTICE, sc, "VNIC ID >= 1 in SF mode");
7993                         return 1;
7994                 }
7995
7996                 return 0;
7997         }
7998
7999         /* get the MF configuration */
8000         mf_info->mf_config[SC_VN(sc)] =
8001             MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8002
8003         switch (mf_info->mf_mode) {
8004         case MULTI_FUNCTION_SD:
8005
8006                 bnx2x_get_shmem_mf_cfg_info_sd(sc);
8007                 break;
8008
8009         case MULTI_FUNCTION_SI:
8010
8011                 bnx2x_get_shmem_mf_cfg_info_si(sc);
8012                 break;
8013
8014         case MULTI_FUNCTION_AFEX:
8015
8016                 bnx2x_get_shmem_mf_cfg_info_niv(sc);
8017                 break;
8018
8019         default:
8020
8021                 PMD_DRV_LOG(NOTICE, sc, "Get MF config failed (mf_mode=0x%08x)",
8022                             mf_info->mf_mode);
8023                 return 1;
8024         }
8025
8026         /* get the congestion management parameters */
8027
8028         vnic = 0;
8029         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8030 /* get min/max bw */
8031                 val = MFCFG_RD(sc, func_mf_config[i].config);
8032                 mf_info->min_bw[vnic] =
8033                     ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8034                      FUNC_MF_CFG_MIN_BW_SHIFT);
8035                 mf_info->max_bw[vnic] =
8036                     ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8037                      FUNC_MF_CFG_MAX_BW_SHIFT);
8038                 vnic++;
8039         }
8040
8041         return bnx2x_check_valid_mf_cfg(sc);
8042 }
8043
8044 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8045 {
8046         int port;
8047         uint32_t mac_hi, mac_lo, val;
8048
8049         PMD_INIT_FUNC_TRACE(sc);
8050
8051         port = SC_PORT(sc);
8052         mac_hi = mac_lo = 0;
8053
8054         sc->link_params.sc = sc;
8055         sc->link_params.port = port;
8056
8057         /* get the hardware config info */
8058         sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8059         sc->devinfo.hw_config2 =
8060             SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8061
8062         sc->link_params.hw_led_mode =
8063             ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8064              SHARED_HW_CFG_LED_MODE_SHIFT);
8065
8066         /* get the port feature config */
8067         sc->port.config =
8068             SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8069
8070         /* get the link params */
8071         sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8072             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8073             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8074         sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8075             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8076             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8077
8078         /* get the lane config */
8079         sc->link_params.lane_config =
8080             SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8081
8082         /* get the link config */
8083         val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8084         sc->port.link_config[ELINK_INT_PHY] = val;
8085         sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8086         sc->port.link_config[ELINK_EXT_PHY1] =
8087             SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8088
8089         /* get the override preemphasis flag and enable it or turn it off */
8090         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8091         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8092                 sc->link_params.feature_config_flags |=
8093                     ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8094         } else {
8095                 sc->link_params.feature_config_flags &=
8096                     ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8097         }
8098
8099         /* get the initial value of the link params */
8100         sc->link_params.multi_phy_config =
8101             SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8102
8103         /* get external phy info */
8104         sc->port.ext_phy_config =
8105             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8106
8107         /* get the multifunction configuration */
8108         bnx2x_get_mf_cfg_info(sc);
8109
8110         /* get the mac address */
8111         if (IS_MF(sc)) {
8112                 mac_hi =
8113                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8114                 mac_lo =
8115                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8116         } else {
8117                 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8118                 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8119         }
8120
8121         if ((mac_lo == 0) && (mac_hi == 0)) {
8122                 *sc->mac_addr_str = 0;
8123                 PMD_DRV_LOG(NOTICE, sc, "No Ethernet address programmed!");
8124         } else {
8125                 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8126                 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8127                 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8128                 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8129                 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8130                 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8131                 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8132                          "%02x:%02x:%02x:%02x:%02x:%02x",
8133                          sc->link_params.mac_addr[0],
8134                          sc->link_params.mac_addr[1],
8135                          sc->link_params.mac_addr[2],
8136                          sc->link_params.mac_addr[3],
8137                          sc->link_params.mac_addr[4],
8138                          sc->link_params.mac_addr[5]);
8139                 PMD_DRV_LOG(DEBUG, sc,
8140                             "Ethernet address: %s", sc->mac_addr_str);
8141         }
8142
8143         return 0;
8144 }
8145
8146 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8147 {
8148         uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8149         switch (sc->link_params.phy[phy_idx].media_type) {
8150         case ELINK_ETH_PHY_SFPP_10G_FIBER:
8151         case ELINK_ETH_PHY_SFP_1G_FIBER:
8152         case ELINK_ETH_PHY_XFP_FIBER:
8153         case ELINK_ETH_PHY_KR:
8154         case ELINK_ETH_PHY_CX4:
8155                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-CX4 media.");
8156                 sc->media = IFM_10G_CX4;
8157                 break;
8158         case ELINK_ETH_PHY_DA_TWINAX:
8159                 PMD_DRV_LOG(INFO, sc, "Found 10Gb Twinax media.");
8160                 sc->media = IFM_10G_TWINAX;
8161                 break;
8162         case ELINK_ETH_PHY_BASE_T:
8163                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-T media.");
8164                 sc->media = IFM_10G_T;
8165                 break;
8166         case ELINK_ETH_PHY_NOT_PRESENT:
8167                 PMD_DRV_LOG(INFO, sc, "Media not present.");
8168                 sc->media = 0;
8169                 break;
8170         case ELINK_ETH_PHY_UNSPECIFIED:
8171         default:
8172                 PMD_DRV_LOG(INFO, sc, "Unknown media!");
8173                 sc->media = 0;
8174                 break;
8175         }
8176 }
8177
8178 #define GET_FIELD(value, fname)                     \
8179 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8180 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8181 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8182
8183 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8184 {
8185         int pfid = SC_FUNC(sc);
8186         int igu_sb_id;
8187         uint32_t val;
8188         uint8_t fid, igu_sb_cnt = 0;
8189
8190         sc->igu_base_sb = 0xff;
8191
8192         if (CHIP_INT_MODE_IS_BC(sc)) {
8193                 int vn = SC_VN(sc);
8194                 igu_sb_cnt = sc->igu_sb_cnt;
8195                 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8196                                    FP_SB_MAX_E1x);
8197                 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8198                                   (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8199                 return 0;
8200         }
8201
8202         /* IGU in normal mode - read CAM */
8203         for (igu_sb_id = 0;
8204              igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8205                 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8206                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8207                         continue;
8208                 }
8209                 fid = IGU_FID(val);
8210                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
8211                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8212                                 continue;
8213                         }
8214                         if (IGU_VEC(val) == 0) {
8215                                 /* default status block */
8216                                 sc->igu_dsb_id = igu_sb_id;
8217                         } else {
8218                                 if (sc->igu_base_sb == 0xff) {
8219                                         sc->igu_base_sb = igu_sb_id;
8220                                 }
8221                                 igu_sb_cnt++;
8222                         }
8223                 }
8224         }
8225
8226         /*
8227          * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8228          * that number of CAM entries will not be equal to the value advertised in
8229          * PCI. Driver should use the minimal value of both as the actual status
8230          * block count
8231          */
8232         sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8233
8234         if (igu_sb_cnt == 0) {
8235                 PMD_DRV_LOG(ERR, sc, "CAM configuration error");
8236                 return -1;
8237         }
8238
8239         return 0;
8240 }
8241
8242 /*
8243 * Gather various information from the device config space, the device itself,
8244 * shmem, and the user input.
8245 */
8246 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8247 {
8248         uint32_t val;
8249         int rc;
8250
8251         /* get the chip revision (chip metal comes from pci config space) */
8252         sc->devinfo.chip_id = sc->link_params.chip_id =
8253             (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8254              ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8255              (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8256              ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8257
8258         /* force 57811 according to MISC register */
8259         if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8260                 if (CHIP_IS_57810(sc)) {
8261                         sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8262                                                (sc->
8263                                                 devinfo.chip_id & 0x0000ffff));
8264                 } else if (CHIP_IS_57810_MF(sc)) {
8265                         sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8266                                                (sc->
8267                                                 devinfo.chip_id & 0x0000ffff));
8268                 }
8269                 sc->devinfo.chip_id |= 0x1;
8270         }
8271
8272         PMD_DRV_LOG(DEBUG, sc,
8273                     "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8274                     sc->devinfo.chip_id,
8275                     ((sc->devinfo.chip_id >> 16) & 0xffff),
8276                     ((sc->devinfo.chip_id >> 12) & 0xf),
8277                     ((sc->devinfo.chip_id >> 4) & 0xff),
8278                     ((sc->devinfo.chip_id >> 0) & 0xf));
8279
8280         val = (REG_RD(sc, 0x2874) & 0x55);
8281         if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8282                 sc->flags |= BNX2X_ONE_PORT_FLAG;
8283                 PMD_DRV_LOG(DEBUG, sc, "single port device");
8284         }
8285
8286         /* set the doorbell size */
8287         sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8288
8289         /* determine whether the device is in 2 port or 4 port mode */
8290         sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;       /* E1h */
8291         if (CHIP_IS_E2E3(sc)) {
8292 /*
8293  * Read port4mode_en_ovwr[0]:
8294  *   If 1, four port mode is in port4mode_en_ovwr[1].
8295  *   If 0, four port mode is in port4mode_en[0].
8296  */
8297                 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8298                 if (val & 1) {
8299                         val = ((val >> 1) & 1);
8300                 } else {
8301                         val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8302                 }
8303
8304                 sc->devinfo.chip_port_mode =
8305                     (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8306
8307                 PMD_DRV_LOG(DEBUG, sc, "Port mode = %s", (val) ? "4" : "2");
8308         }
8309
8310         /* get the function and path info for the device */
8311         bnx2x_get_function_num(sc);
8312
8313         /* get the shared memory base address */
8314         sc->devinfo.shmem_base =
8315             sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8316         sc->devinfo.shmem2_base =
8317             REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8318                         MISC_REG_GENERIC_CR_0));
8319
8320         if (!sc->devinfo.shmem_base) {
8321 /* this should ONLY prevent upcoming shmem reads */
8322                 PMD_DRV_LOG(INFO, sc, "MCP not active");
8323                 sc->flags |= BNX2X_NO_MCP_FLAG;
8324                 return 0;
8325         }
8326
8327         /* make sure the shared memory contents are valid */
8328         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8329         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8330             (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8331                 PMD_DRV_LOG(NOTICE, sc, "Invalid SHMEM validity signature: 0x%08x",
8332                             val);
8333                 return 0;
8334         }
8335
8336         /* get the bootcode version */
8337         sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8338         snprintf(sc->devinfo.bc_ver_str,
8339                  sizeof(sc->devinfo.bc_ver_str),
8340                  "%d.%d.%d",
8341                  ((sc->devinfo.bc_ver >> 24) & 0xff),
8342                  ((sc->devinfo.bc_ver >> 16) & 0xff),
8343                  ((sc->devinfo.bc_ver >> 8) & 0xff));
8344         PMD_DRV_LOG(INFO, sc, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8345
8346         /* get the bootcode shmem address */
8347         sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8348
8349         /* clean indirect addresses as they're not used */
8350         pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8351         if (IS_PF(sc)) {
8352                 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8353                 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8354                 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8355                 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8356                 if (CHIP_IS_E1x(sc)) {
8357                         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8358                         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8359                         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8360                         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8361                 }
8362         }
8363
8364         /* get the nvram size */
8365         val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8366         sc->devinfo.flash_size =
8367             (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8368
8369         bnx2x_set_power_state(sc, PCI_PM_D0);
8370         /* get various configuration parameters from shmem */
8371         bnx2x_get_shmem_info(sc);
8372
8373         /* initialize IGU parameters */
8374         if (CHIP_IS_E1x(sc)) {
8375                 sc->devinfo.int_block = INT_BLOCK_HC;
8376                 sc->igu_dsb_id = DEF_SB_IGU_ID;
8377                 sc->igu_base_sb = 0;
8378         } else {
8379                 sc->devinfo.int_block = INT_BLOCK_IGU;
8380
8381 /* do not allow device reset during IGU info preocessing */
8382                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8383
8384                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8385
8386                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8387                         int tout = 5000;
8388
8389                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8390                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8391                         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8392
8393                         while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8394                                 tout--;
8395                                 DELAY(1000);
8396                         }
8397
8398                         if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8399                                 PMD_DRV_LOG(NOTICE, sc,
8400                                             "FORCING IGU Normal Mode failed!!!");
8401                                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8402                                 return -1;
8403                         }
8404                 }
8405
8406                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8407                         PMD_DRV_LOG(DEBUG, sc, "IGU Backward Compatible Mode");
8408                         sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8409                 } else {
8410                         PMD_DRV_LOG(DEBUG, sc, "IGU Normal Mode");
8411                 }
8412
8413                 rc = bnx2x_get_igu_cam_info(sc);
8414
8415                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8416
8417                 if (rc) {
8418                         return rc;
8419                 }
8420         }
8421
8422         /*
8423          * Get base FW non-default (fast path) status block ID. This value is
8424          * used to initialize the fw_sb_id saved on the fp/queue structure to
8425          * determine the id used by the FW.
8426          */
8427         if (CHIP_IS_E1x(sc)) {
8428                 sc->base_fw_ndsb =
8429                     ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8430         } else {
8431 /*
8432  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8433  * the same queue are indicated on the same IGU SB). So we prefer
8434  * FW and IGU SBs to be the same value.
8435  */
8436                 sc->base_fw_ndsb = sc->igu_base_sb;
8437         }
8438
8439         elink_phy_probe(&sc->link_params);
8440
8441         return 0;
8442 }
8443
8444 static void
8445 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8446 {
8447         uint32_t cfg_size = 0;
8448         uint32_t idx;
8449         uint8_t port = SC_PORT(sc);
8450
8451         /* aggregation of supported attributes of all external phys */
8452         sc->port.supported[0] = 0;
8453         sc->port.supported[1] = 0;
8454
8455         switch (sc->link_params.num_phys) {
8456         case 1:
8457                 sc->port.supported[0] =
8458                     sc->link_params.phy[ELINK_INT_PHY].supported;
8459                 cfg_size = 1;
8460                 break;
8461         case 2:
8462                 sc->port.supported[0] =
8463                     sc->link_params.phy[ELINK_EXT_PHY1].supported;
8464                 cfg_size = 1;
8465                 break;
8466         case 3:
8467                 if (sc->link_params.multi_phy_config &
8468                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8469                         sc->port.supported[1] =
8470                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8471                         sc->port.supported[0] =
8472                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8473                 } else {
8474                         sc->port.supported[0] =
8475                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8476                         sc->port.supported[1] =
8477                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8478                 }
8479                 cfg_size = 2;
8480                 break;
8481         }
8482
8483         if (!(sc->port.supported[0] || sc->port.supported[1])) {
8484                 PMD_DRV_LOG(ERR, sc,
8485                             "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8486                             SHMEM_RD(sc,
8487                                      dev_info.port_hw_config
8488                                      [port].external_phy_config),
8489                             SHMEM_RD(sc,
8490                                      dev_info.port_hw_config
8491                                      [port].external_phy_config2));
8492                 return;
8493         }
8494
8495         if (CHIP_IS_E3(sc))
8496                 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8497         else {
8498                 switch (switch_cfg) {
8499                 case ELINK_SWITCH_CFG_1G:
8500                         sc->port.phy_addr =
8501                             REG_RD(sc,
8502                                    NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8503                         break;
8504                 case ELINK_SWITCH_CFG_10G:
8505                         sc->port.phy_addr =
8506                             REG_RD(sc,
8507                                    NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8508                         break;
8509                 default:
8510                         PMD_DRV_LOG(ERR, sc,
8511                                     "Invalid switch config in"
8512                                     "link_config=0x%08x",
8513                                     sc->port.link_config[0]);
8514                         return;
8515                 }
8516         }
8517
8518         PMD_DRV_LOG(INFO, sc, "PHY addr 0x%08x", sc->port.phy_addr);
8519
8520         /* mask what we support according to speed_cap_mask per configuration */
8521         for (idx = 0; idx < cfg_size; idx++) {
8522                 if (!(sc->link_params.speed_cap_mask[idx] &
8523                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8524                         sc->port.supported[idx] &=
8525                             ~ELINK_SUPPORTED_10baseT_Half;
8526                 }
8527
8528                 if (!(sc->link_params.speed_cap_mask[idx] &
8529                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8530                         sc->port.supported[idx] &=
8531                             ~ELINK_SUPPORTED_10baseT_Full;
8532                 }
8533
8534                 if (!(sc->link_params.speed_cap_mask[idx] &
8535                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8536                         sc->port.supported[idx] &=
8537                             ~ELINK_SUPPORTED_100baseT_Half;
8538                 }
8539
8540                 if (!(sc->link_params.speed_cap_mask[idx] &
8541                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8542                         sc->port.supported[idx] &=
8543                             ~ELINK_SUPPORTED_100baseT_Full;
8544                 }
8545
8546                 if (!(sc->link_params.speed_cap_mask[idx] &
8547                       PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8548                         sc->port.supported[idx] &=
8549                             ~ELINK_SUPPORTED_1000baseT_Full;
8550                 }
8551
8552                 if (!(sc->link_params.speed_cap_mask[idx] &
8553                       PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8554                         sc->port.supported[idx] &=
8555                             ~ELINK_SUPPORTED_2500baseX_Full;
8556                 }
8557
8558                 if (!(sc->link_params.speed_cap_mask[idx] &
8559                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8560                         sc->port.supported[idx] &=
8561                             ~ELINK_SUPPORTED_10000baseT_Full;
8562                 }
8563
8564                 if (!(sc->link_params.speed_cap_mask[idx] &
8565                       PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8566                         sc->port.supported[idx] &=
8567                             ~ELINK_SUPPORTED_20000baseKR2_Full;
8568                 }
8569         }
8570
8571         PMD_DRV_LOG(INFO, sc, "PHY supported 0=0x%08x 1=0x%08x",
8572                     sc->port.supported[0], sc->port.supported[1]);
8573 }
8574
8575 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8576 {
8577         uint32_t link_config;
8578         uint32_t idx;
8579         uint32_t cfg_size = 0;
8580
8581         sc->port.advertising[0] = 0;
8582         sc->port.advertising[1] = 0;
8583
8584         switch (sc->link_params.num_phys) {
8585         case 1:
8586         case 2:
8587                 cfg_size = 1;
8588                 break;
8589         case 3:
8590                 cfg_size = 2;
8591                 break;
8592         }
8593
8594         for (idx = 0; idx < cfg_size; idx++) {
8595                 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8596                 link_config = sc->port.link_config[idx];
8597
8598                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8599                 case PORT_FEATURE_LINK_SPEED_AUTO:
8600                         if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8601                                 sc->link_params.req_line_speed[idx] =
8602                                     ELINK_SPEED_AUTO_NEG;
8603                                 sc->port.advertising[idx] |=
8604                                     sc->port.supported[idx];
8605                                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8606                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8607                                         sc->port.advertising[idx] |=
8608                                             (ELINK_SUPPORTED_100baseT_Half |
8609                                              ELINK_SUPPORTED_100baseT_Full);
8610                         } else {
8611                                 /* force 10G, no AN */
8612                                 sc->link_params.req_line_speed[idx] =
8613                                     ELINK_SPEED_10000;
8614                                 sc->port.advertising[idx] |=
8615                                     (ADVERTISED_10000baseT_Full |
8616                                      ADVERTISED_FIBRE);
8617                                 continue;
8618                         }
8619                         break;
8620
8621                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8622                         if (sc->
8623                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8624                         {
8625                                 sc->link_params.req_line_speed[idx] =
8626                                     ELINK_SPEED_10;
8627                                 sc->port.advertising[idx] |=
8628                                     (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8629                         } else {
8630                                 PMD_DRV_LOG(ERR, sc,
8631                                             "Invalid NVRAM config link_config=0x%08x "
8632                                             "speed_cap_mask=0x%08x",
8633                                             link_config,
8634                                             sc->
8635                                             link_params.speed_cap_mask[idx]);
8636                                 return;
8637                         }
8638                         break;
8639
8640                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8641                         if (sc->
8642                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8643                         {
8644                                 sc->link_params.req_line_speed[idx] =
8645                                     ELINK_SPEED_10;
8646                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8647                                 sc->port.advertising[idx] |=
8648                                     (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8649                         } else {
8650                                 PMD_DRV_LOG(ERR, sc,
8651                                             "Invalid NVRAM config link_config=0x%08x "
8652                                             "speed_cap_mask=0x%08x",
8653                                             link_config,
8654                                             sc->
8655                                             link_params.speed_cap_mask[idx]);
8656                                 return;
8657                         }
8658                         break;
8659
8660                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8661                         if (sc->
8662                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8663                         {
8664                                 sc->link_params.req_line_speed[idx] =
8665                                     ELINK_SPEED_100;
8666                                 sc->port.advertising[idx] |=
8667                                     (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8668                         } else {
8669                                 PMD_DRV_LOG(ERR, sc,
8670                                             "Invalid NVRAM config link_config=0x%08x "
8671                                             "speed_cap_mask=0x%08x",
8672                                             link_config,
8673                                             sc->
8674                                             link_params.speed_cap_mask[idx]);
8675                                 return;
8676                         }
8677                         break;
8678
8679                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8680                         if (sc->
8681                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8682                         {
8683                                 sc->link_params.req_line_speed[idx] =
8684                                     ELINK_SPEED_100;
8685                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8686                                 sc->port.advertising[idx] |=
8687                                     (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8688                         } else {
8689                                 PMD_DRV_LOG(ERR, sc,
8690                                             "Invalid NVRAM config link_config=0x%08x "
8691                                             "speed_cap_mask=0x%08x",
8692                                             link_config,
8693                                             sc->
8694                                             link_params.speed_cap_mask[idx]);
8695                                 return;
8696                         }
8697                         break;
8698
8699                 case PORT_FEATURE_LINK_SPEED_1G:
8700                         if (sc->port.supported[idx] &
8701                             ELINK_SUPPORTED_1000baseT_Full) {
8702                                 sc->link_params.req_line_speed[idx] =
8703                                     ELINK_SPEED_1000;
8704                                 sc->port.advertising[idx] |=
8705                                     (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8706                         } else {
8707                                 PMD_DRV_LOG(ERR, sc,
8708                                             "Invalid NVRAM config link_config=0x%08x "
8709                                             "speed_cap_mask=0x%08x",
8710                                             link_config,
8711                                             sc->
8712                                             link_params.speed_cap_mask[idx]);
8713                                 return;
8714                         }
8715                         break;
8716
8717                 case PORT_FEATURE_LINK_SPEED_2_5G:
8718                         if (sc->port.supported[idx] &
8719                             ELINK_SUPPORTED_2500baseX_Full) {
8720                                 sc->link_params.req_line_speed[idx] =
8721                                     ELINK_SPEED_2500;
8722                                 sc->port.advertising[idx] |=
8723                                     (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8724                         } else {
8725                                 PMD_DRV_LOG(ERR, sc,
8726                                             "Invalid NVRAM config link_config=0x%08x "
8727                                             "speed_cap_mask=0x%08x",
8728                                             link_config,
8729                                             sc->
8730                                             link_params.speed_cap_mask[idx]);
8731                                 return;
8732                         }
8733                         break;
8734
8735                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8736                         if (sc->port.supported[idx] &
8737                             ELINK_SUPPORTED_10000baseT_Full) {
8738                                 sc->link_params.req_line_speed[idx] =
8739                                     ELINK_SPEED_10000;
8740                                 sc->port.advertising[idx] |=
8741                                     (ADVERTISED_10000baseT_Full |
8742                                      ADVERTISED_FIBRE);
8743                         } else {
8744                                 PMD_DRV_LOG(ERR, sc,
8745                                             "Invalid NVRAM config link_config=0x%08x "
8746                                             "speed_cap_mask=0x%08x",
8747                                             link_config,
8748                                             sc->
8749                                             link_params.speed_cap_mask[idx]);
8750                                 return;
8751                         }
8752                         break;
8753
8754                 case PORT_FEATURE_LINK_SPEED_20G:
8755                         sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8756                         break;
8757
8758                 default:
8759                         PMD_DRV_LOG(ERR, sc,
8760                                     "Invalid NVRAM config link_config=0x%08x "
8761                                     "speed_cap_mask=0x%08x", link_config,
8762                                     sc->link_params.speed_cap_mask[idx]);
8763                         sc->link_params.req_line_speed[idx] =
8764                             ELINK_SPEED_AUTO_NEG;
8765                         sc->port.advertising[idx] = sc->port.supported[idx];
8766                         break;
8767                 }
8768
8769                 sc->link_params.req_flow_ctrl[idx] =
8770                     (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8771
8772                 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8773                         if (!
8774                             (sc->
8775                              port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8776                                 sc->link_params.req_flow_ctrl[idx] =
8777                                     ELINK_FLOW_CTRL_NONE;
8778                         } else {
8779                                 bnx2x_set_requested_fc(sc);
8780                         }
8781                 }
8782         }
8783 }
8784
8785 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8786 {
8787         uint8_t port = SC_PORT(sc);
8788         uint32_t eee_mode;
8789
8790         PMD_INIT_FUNC_TRACE(sc);
8791
8792         /* shmem data already read in bnx2x_get_shmem_info() */
8793
8794         bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8795         bnx2x_link_settings_requested(sc);
8796
8797         /* configure link feature according to nvram value */
8798         eee_mode =
8799             (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8800               & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8801              PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8802         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8803                 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8804                                             ELINK_EEE_MODE_ENABLE_LPI |
8805                                             ELINK_EEE_MODE_OUTPUT_TIME);
8806         } else {
8807                 sc->link_params.eee_mode = 0;
8808         }
8809
8810         /* get the media type */
8811         bnx2x_media_detect(sc);
8812 }
8813
8814 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8815 {
8816         uint32_t flags = MODE_ASIC | MODE_PORT2;
8817
8818         if (CHIP_IS_E2(sc)) {
8819                 flags |= MODE_E2;
8820         } else if (CHIP_IS_E3(sc)) {
8821                 flags |= MODE_E3;
8822                 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8823                         flags |= MODE_E3_A0;
8824                 } else {        /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8825
8826                         flags |= MODE_E3_B0 | MODE_COS3;
8827                 }
8828         }
8829
8830         if (IS_MF(sc)) {
8831                 flags |= MODE_MF;
8832                 switch (sc->devinfo.mf_info.mf_mode) {
8833                 case MULTI_FUNCTION_SD:
8834                         flags |= MODE_MF_SD;
8835                         break;
8836                 case MULTI_FUNCTION_SI:
8837                         flags |= MODE_MF_SI;
8838                         break;
8839                 case MULTI_FUNCTION_AFEX:
8840                         flags |= MODE_MF_AFEX;
8841                         break;
8842                 }
8843         } else {
8844                 flags |= MODE_SF;
8845         }
8846
8847 #if defined(__LITTLE_ENDIAN)
8848         flags |= MODE_LITTLE_ENDIAN;
8849 #else /* __BIG_ENDIAN */
8850         flags |= MODE_BIG_ENDIAN;
8851 #endif
8852
8853         INIT_MODE_FLAGS(sc) = flags;
8854 }
8855
8856 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8857 {
8858         struct bnx2x_fastpath *fp;
8859         char buf[32];
8860         uint32_t i;
8861
8862         if (IS_PF(sc)) {
8863 /************************/
8864 /* DEFAULT STATUS BLOCK */
8865 /************************/
8866
8867                 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8868                                   &sc->def_sb_dma, "def_sb",
8869                                   RTE_CACHE_LINE_SIZE) != 0) {
8870                         return -1;
8871                 }
8872
8873                 sc->def_sb =
8874                     (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8875 /***************/
8876 /* EVENT QUEUE */
8877 /***************/
8878
8879                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8880                                   &sc->eq_dma, "ev_queue",
8881                                   RTE_CACHE_LINE_SIZE) != 0) {
8882                         sc->def_sb = NULL;
8883                         return -1;
8884                 }
8885
8886                 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8887
8888 /*************/
8889 /* SLOW PATH */
8890 /*************/
8891
8892                 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8893                                   &sc->sp_dma, "sp",
8894                                   RTE_CACHE_LINE_SIZE) != 0) {
8895                         sc->eq = NULL;
8896                         sc->def_sb = NULL;
8897                         return -1;
8898                 }
8899
8900                 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8901
8902 /*******************/
8903 /* SLOW PATH QUEUE */
8904 /*******************/
8905
8906                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8907                                   &sc->spq_dma, "sp_queue",
8908                                   RTE_CACHE_LINE_SIZE) != 0) {
8909                         sc->sp = NULL;
8910                         sc->eq = NULL;
8911                         sc->def_sb = NULL;
8912                         return -1;
8913                 }
8914
8915                 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8916
8917 /***************************/
8918 /* FW DECOMPRESSION BUFFER */
8919 /***************************/
8920
8921                 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8922                                   "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8923                         sc->spq = NULL;
8924                         sc->sp = NULL;
8925                         sc->eq = NULL;
8926                         sc->def_sb = NULL;
8927                         return -1;
8928                 }
8929
8930                 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8931         }
8932
8933         /*************/
8934         /* FASTPATHS */
8935         /*************/
8936
8937         /* allocate DMA memory for each fastpath structure */
8938         for (i = 0; i < sc->num_queues; i++) {
8939                 fp = &sc->fp[i];
8940                 fp->sc = sc;
8941                 fp->index = i;
8942
8943 /*******************/
8944 /* FP STATUS BLOCK */
8945 /*******************/
8946
8947                 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8948                 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8949                                   &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8950                         PMD_DRV_LOG(NOTICE, sc, "Failed to alloc %s", buf);
8951                         return -1;
8952                 } else {
8953                         if (CHIP_IS_E2E3(sc)) {
8954                                 fp->status_block.e2_sb =
8955                                     (struct host_hc_status_block_e2 *)
8956                                     fp->sb_dma.vaddr;
8957                         } else {
8958                                 fp->status_block.e1x_sb =
8959                                     (struct host_hc_status_block_e1x *)
8960                                     fp->sb_dma.vaddr;
8961                         }
8962                 }
8963         }
8964
8965         return 0;
8966 }
8967
8968 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8969 {
8970         struct bnx2x_fastpath *fp;
8971         int i;
8972
8973         for (i = 0; i < sc->num_queues; i++) {
8974                 fp = &sc->fp[i];
8975
8976 /*******************/
8977 /* FP STATUS BLOCK */
8978 /*******************/
8979
8980                 memset(&fp->status_block, 0, sizeof(fp->status_block));
8981         }
8982
8983         /***************************/
8984         /* FW DECOMPRESSION BUFFER */
8985         /***************************/
8986
8987         sc->gz_buf = NULL;
8988
8989         /*******************/
8990         /* SLOW PATH QUEUE */
8991         /*******************/
8992
8993         sc->spq = NULL;
8994
8995         /*************/
8996         /* SLOW PATH */
8997         /*************/
8998
8999         sc->sp = NULL;
9000
9001         /***************/
9002         /* EVENT QUEUE */
9003         /***************/
9004
9005         sc->eq = NULL;
9006
9007         /************************/
9008         /* DEFAULT STATUS BLOCK */
9009         /************************/
9010
9011         sc->def_sb = NULL;
9012
9013 }
9014
9015 /*
9016 * Previous driver DMAE transaction may have occurred when pre-boot stage
9017 * ended and boot began. This would invalidate the addresses of the
9018 * transaction, resulting in was-error bit set in the PCI causing all
9019 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9020 * the interrupt which detected this from the pglueb and the was-done bit
9021 */
9022 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9023 {
9024         uint32_t val;
9025
9026         if (!CHIP_IS_E1x(sc)) {
9027                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9028                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9029                         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9030                                1 << SC_FUNC(sc));
9031                 }
9032         }
9033 }
9034
9035 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9036 {
9037         uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9038                                      DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9039         if (!rc) {
9040                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9041                 return -1;
9042         }
9043
9044         return 0;
9045 }
9046
9047 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9048 {
9049         struct bnx2x_prev_list_node *tmp;
9050
9051         LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9052                 if ((sc->pcie_bus == tmp->bus) &&
9053                     (sc->pcie_device == tmp->slot) &&
9054                     (SC_PATH(sc) == tmp->path)) {
9055                         return tmp;
9056                 }
9057         }
9058
9059         return NULL;
9060 }
9061
9062 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9063 {
9064         struct bnx2x_prev_list_node *tmp;
9065         int rc = FALSE;
9066
9067         rte_spinlock_lock(&bnx2x_prev_mtx);
9068
9069         tmp = bnx2x_prev_path_get_entry(sc);
9070         if (tmp) {
9071                 if (tmp->aer) {
9072                         PMD_DRV_LOG(DEBUG, sc,
9073                                     "Path %d/%d/%d was marked by AER",
9074                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9075                 } else {
9076                         rc = TRUE;
9077                         PMD_DRV_LOG(DEBUG, sc,
9078                                     "Path %d/%d/%d was already cleaned from previous drivers",
9079                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9080                 }
9081         }
9082
9083         rte_spinlock_unlock(&bnx2x_prev_mtx);
9084
9085         return rc;
9086 }
9087
9088 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9089 {
9090         struct bnx2x_prev_list_node *tmp;
9091
9092         rte_spinlock_lock(&bnx2x_prev_mtx);
9093
9094         /* Check whether the entry for this path already exists */
9095         tmp = bnx2x_prev_path_get_entry(sc);
9096         if (tmp) {
9097                 if (!tmp->aer) {
9098                         PMD_DRV_LOG(DEBUG, sc,
9099                                     "Re-marking AER in path %d/%d/%d",
9100                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9101                 } else {
9102                         PMD_DRV_LOG(DEBUG, sc,
9103                                     "Removing AER indication from path %d/%d/%d",
9104                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9105                         tmp->aer = 0;
9106                 }
9107
9108                 rte_spinlock_unlock(&bnx2x_prev_mtx);
9109                 return 0;
9110         }
9111
9112         rte_spinlock_unlock(&bnx2x_prev_mtx);
9113
9114         /* Create an entry for this path and add it */
9115         tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9116                          RTE_CACHE_LINE_SIZE);
9117         if (!tmp) {
9118                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate 'bnx2x_prev_list_node'");
9119                 return -1;
9120         }
9121
9122         tmp->bus = sc->pcie_bus;
9123         tmp->slot = sc->pcie_device;
9124         tmp->path = SC_PATH(sc);
9125         tmp->aer = 0;
9126         tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9127
9128         rte_spinlock_lock(&bnx2x_prev_mtx);
9129
9130         LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9131
9132         rte_spinlock_unlock(&bnx2x_prev_mtx);
9133
9134         return 0;
9135 }
9136
9137 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9138 {
9139         int i;
9140
9141         /* only E2 and onwards support FLR */
9142         if (CHIP_IS_E1x(sc)) {
9143                 PMD_DRV_LOG(WARNING, sc, "FLR not supported in E1H");
9144                 return -1;
9145         }
9146
9147         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9148         if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9149                 PMD_DRV_LOG(WARNING, sc,
9150                             "FLR not supported by BC_VER: 0x%08x",
9151                             sc->devinfo.bc_ver);
9152                 return -1;
9153         }
9154
9155         /* Wait for Transaction Pending bit clean */
9156         for (i = 0; i < 4; i++) {
9157                 if (i) {
9158                         DELAY(((1 << (i - 1)) * 100) * 1000);
9159                 }
9160
9161                 if (!bnx2x_is_pcie_pending(sc)) {
9162                         goto clear;
9163                 }
9164         }
9165
9166         PMD_DRV_LOG(NOTICE, sc, "PCIE transaction is not cleared, "
9167                     "proceeding with reset anyway");
9168
9169 clear:
9170         bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9171
9172         return 0;
9173 }
9174
9175 struct bnx2x_mac_vals {
9176         uint32_t xmac_addr;
9177         uint32_t xmac_val;
9178         uint32_t emac_addr;
9179         uint32_t emac_val;
9180         uint32_t umac_addr;
9181         uint32_t umac_val;
9182         uint32_t bmac_addr;
9183         uint32_t bmac_val[2];
9184 };
9185
9186 static void
9187 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9188 {
9189         uint32_t val, base_addr, offset, mask, reset_reg;
9190         uint8_t mac_stopped = FALSE;
9191         uint8_t port = SC_PORT(sc);
9192         uint32_t wb_data[2];
9193
9194         /* reset addresses as they also mark which values were changed */
9195         vals->bmac_addr = 0;
9196         vals->umac_addr = 0;
9197         vals->xmac_addr = 0;
9198         vals->emac_addr = 0;
9199
9200         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9201
9202         if (!CHIP_IS_E3(sc)) {
9203                 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9204                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9205                 if ((mask & reset_reg) && val) {
9206                         base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9207                             : NIG_REG_INGRESS_BMAC0_MEM;
9208                         offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9209                             : BIGMAC_REGISTER_BMAC_CONTROL;
9210
9211                         /*
9212                          * use rd/wr since we cannot use dmae. This is safe
9213                          * since MCP won't access the bus due to the request
9214                          * to unload, and no function on the path can be
9215                          * loaded at this time.
9216                          */
9217                         wb_data[0] = REG_RD(sc, base_addr + offset);
9218                         wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9219                         vals->bmac_addr = base_addr + offset;
9220                         vals->bmac_val[0] = wb_data[0];
9221                         vals->bmac_val[1] = wb_data[1];
9222                         wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9223                         REG_WR(sc, vals->bmac_addr, wb_data[0]);
9224                         REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9225                 }
9226
9227                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9228                 vals->emac_val = REG_RD(sc, vals->emac_addr);
9229                 REG_WR(sc, vals->emac_addr, 0);
9230                 mac_stopped = TRUE;
9231         } else {
9232                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9233                         base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9234                         val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9235                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9236                                val & ~(1 << 1));
9237                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9238                                val | (1 << 1));
9239                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9240                         vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9241                         REG_WR(sc, vals->xmac_addr, 0);
9242                         mac_stopped = TRUE;
9243                 }
9244
9245                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9246                 if (mask & reset_reg) {
9247                         base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9248                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9249                         vals->umac_val = REG_RD(sc, vals->umac_addr);
9250                         REG_WR(sc, vals->umac_addr, 0);
9251                         mac_stopped = TRUE;
9252                 }
9253         }
9254
9255         if (mac_stopped) {
9256                 DELAY(20000);
9257         }
9258 }
9259
9260 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9261 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9262 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9263 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9264
9265 static void
9266 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9267 {
9268         uint16_t rcq, bd;
9269         uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9270
9271         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9272         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9273
9274         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9275         REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9276 }
9277
9278 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9279 {
9280         uint32_t reset_reg, tmp_reg = 0, rc;
9281         uint8_t prev_undi = FALSE;
9282         struct bnx2x_mac_vals mac_vals;
9283         uint32_t timer_count = 1000;
9284         uint32_t prev_brb;
9285
9286         /*
9287          * It is possible a previous function received 'common' answer,
9288          * but hasn't loaded yet, therefore creating a scenario of
9289          * multiple functions receiving 'common' on the same path.
9290          */
9291         memset(&mac_vals, 0, sizeof(mac_vals));
9292
9293         if (bnx2x_prev_is_path_marked(sc)) {
9294                 return bnx2x_prev_mcp_done(sc);
9295         }
9296
9297         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9298
9299         /* Reset should be performed after BRB is emptied */
9300         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9301                 /* Close the MAC Rx to prevent BRB from filling up */
9302                 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9303
9304                 /* close LLH filters towards the BRB */
9305                 elink_set_rx_filter(&sc->link_params, 0);
9306
9307                 /*
9308                  * Check if the UNDI driver was previously loaded.
9309                  * UNDI driver initializes CID offset for normal bell to 0x7
9310                  */
9311                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9312                         tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9313                         if (tmp_reg == 0x7) {
9314                                 PMD_DRV_LOG(DEBUG, sc, "UNDI previously loaded");
9315                                 prev_undi = TRUE;
9316                                 /* clear the UNDI indication */
9317                                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9318                                 /* clear possible idle check errors */
9319                                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9320                         }
9321                 }
9322
9323                 /* wait until BRB is empty */
9324                 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9325                 while (timer_count) {
9326                         prev_brb = tmp_reg;
9327
9328                         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9329                         if (!tmp_reg) {
9330                                 break;
9331                         }
9332
9333                         PMD_DRV_LOG(DEBUG, sc, "BRB still has 0x%08x", tmp_reg);
9334
9335                         /* reset timer as long as BRB actually gets emptied */
9336                         if (prev_brb > tmp_reg) {
9337                                 timer_count = 1000;
9338                         } else {
9339                                 timer_count--;
9340                         }
9341
9342                         /* If UNDI resides in memory, manually increment it */
9343                         if (prev_undi) {
9344                                 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9345                         }
9346
9347                         DELAY(10);
9348                 }
9349
9350                 if (!timer_count) {
9351                         PMD_DRV_LOG(NOTICE, sc, "Failed to empty BRB");
9352                 }
9353         }
9354
9355         /* No packets are in the pipeline, path is ready for reset */
9356         bnx2x_reset_common(sc);
9357
9358         if (mac_vals.xmac_addr) {
9359                 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9360         }
9361         if (mac_vals.umac_addr) {
9362                 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9363         }
9364         if (mac_vals.emac_addr) {
9365                 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9366         }
9367         if (mac_vals.bmac_addr) {
9368                 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9369                 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9370         }
9371
9372         rc = bnx2x_prev_mark_path(sc, prev_undi);
9373         if (rc) {
9374                 bnx2x_prev_mcp_done(sc);
9375                 return rc;
9376         }
9377
9378         return bnx2x_prev_mcp_done(sc);
9379 }
9380
9381 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9382 {
9383         int rc;
9384
9385         /* Test if previous unload process was already finished for this path */
9386         if (bnx2x_prev_is_path_marked(sc)) {
9387                 return bnx2x_prev_mcp_done(sc);
9388         }
9389
9390         /*
9391          * If function has FLR capabilities, and existing FW version matches
9392          * the one required, then FLR will be sufficient to clean any residue
9393          * left by previous driver
9394          */
9395         rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9396         if (!rc) {
9397                 /* fw version is good */
9398                 rc = bnx2x_do_flr(sc);
9399         }
9400
9401         if (!rc) {
9402                 /* FLR was performed */
9403                 return 0;
9404         }
9405
9406         PMD_DRV_LOG(INFO, sc, "Could not FLR");
9407
9408         /* Close the MCP request, return failure */
9409         rc = bnx2x_prev_mcp_done(sc);
9410         if (!rc) {
9411                 rc = BNX2X_PREV_WAIT_NEEDED;
9412         }
9413
9414         return rc;
9415 }
9416
9417 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9418 {
9419         int time_counter = 10;
9420         uint32_t fw, hw_lock_reg, hw_lock_val;
9421         uint32_t rc = 0;
9422
9423         PMD_INIT_FUNC_TRACE(sc);
9424
9425         /*
9426          * Clear HW from errors which may have resulted from an interrupted
9427          * DMAE transaction.
9428          */
9429         bnx2x_prev_interrupted_dmae(sc);
9430
9431         /* Release previously held locks */
9432         hw_lock_reg = (SC_FUNC(sc) <= 5) ?
9433                         (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
9434                         (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9435
9436         hw_lock_val = (REG_RD(sc, hw_lock_reg));
9437         if (hw_lock_val) {
9438                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9439                         PMD_DRV_LOG(DEBUG, sc, "Releasing previously held NVRAM lock\n");
9440                         REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9441                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9442                 }
9443                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held HW lock\n");
9444                 REG_WR(sc, hw_lock_reg, 0xffffffff);
9445         }
9446
9447         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9448                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held ALR\n");
9449                 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9450         }
9451
9452         do {
9453                 /* Lock MCP using an unload request */
9454                 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9455                 if (!fw) {
9456                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9457                         rc = -1;
9458                         break;
9459                 }
9460
9461                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9462                         rc = bnx2x_prev_unload_common(sc);
9463                         break;
9464                 }
9465
9466                 /* non-common reply from MCP might require looping */
9467                 rc = bnx2x_prev_unload_uncommon(sc);
9468                 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9469                         break;
9470                 }
9471
9472                 DELAY(20000);
9473         } while (--time_counter);
9474
9475         if (!time_counter || rc) {
9476                 PMD_DRV_LOG(NOTICE, sc, "Failed to unload previous driver!");
9477                 rc = -1;
9478         }
9479
9480         return rc;
9481 }
9482
9483 static void
9484 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9485 {
9486         if (!CHIP_IS_E1x(sc)) {
9487                 sc->dcb_state = dcb_on;
9488                 sc->dcbx_enabled = dcbx_enabled;
9489         } else {
9490                 sc->dcb_state = FALSE;
9491                 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9492         }
9493         PMD_DRV_LOG(DEBUG, sc,
9494                     "DCB state [%s:%s]",
9495                     dcb_on ? "ON" : "OFF",
9496                     (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9497                     (dcbx_enabled ==
9498                      BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9499                     : (dcbx_enabled ==
9500                        BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9501                     "on-chip with negotiation" : "invalid");
9502 }
9503
9504 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9505 {
9506         int cid_count = BNX2X_L2_MAX_CID(sc);
9507
9508         if (CNIC_SUPPORT(sc)) {
9509                 cid_count += CNIC_CID_MAX;
9510         }
9511
9512         return roundup(cid_count, QM_CID_ROUND);
9513 }
9514
9515 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9516 {
9517         int pri, cos;
9518
9519         uint32_t pri_map = 0;
9520
9521         for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9522                 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9523                 if (cos < sc->max_cos) {
9524                         sc->prio_to_cos[pri] = cos;
9525                 } else {
9526                         PMD_DRV_LOG(WARNING, sc,
9527                                     "Invalid COS %d for priority %d "
9528                                     "(max COS is %d), setting to 0", cos, pri,
9529                                     (sc->max_cos - 1));
9530                         sc->prio_to_cos[pri] = 0;
9531                 }
9532         }
9533 }
9534
9535 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9536 {
9537         struct {
9538                 uint8_t id;
9539                 uint8_t next;
9540         } pci_cap;
9541         uint16_t status;
9542         struct bnx2x_pci_cap *cap;
9543
9544         cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9545                                          RTE_CACHE_LINE_SIZE);
9546         if (!cap) {
9547                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9548                 return -ENOMEM;
9549         }
9550
9551 #ifndef __FreeBSD__
9552         pci_read(sc, PCI_STATUS, &status, 2);
9553         if (!(status & PCI_STATUS_CAP_LIST)) {
9554 #else
9555         pci_read(sc, PCIR_STATUS, &status, 2);
9556         if (!(status & PCIM_STATUS_CAPPRESENT)) {
9557 #endif
9558                 PMD_DRV_LOG(NOTICE, sc, "PCIe capability reading failed");
9559                 return -1;
9560         }
9561
9562 #ifndef __FreeBSD__
9563         pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9564 #else
9565         pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9566 #endif
9567         while (pci_cap.next) {
9568                 cap->addr = pci_cap.next & ~3;
9569                 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9570                 if (pci_cap.id == 0xff)
9571                         break;
9572                 cap->id = pci_cap.id;
9573                 cap->type = BNX2X_PCI_CAP;
9574                 cap->next = rte_zmalloc("pci_cap",
9575                                         sizeof(struct bnx2x_pci_cap),
9576                                         RTE_CACHE_LINE_SIZE);
9577                 if (!cap->next) {
9578                         PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9579                         return -ENOMEM;
9580                 }
9581                 cap = cap->next;
9582         }
9583
9584         return 0;
9585 }
9586
9587 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9588 {
9589         if (IS_VF(sc)) {
9590                 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9591                                         sc->igu_sb_cnt);
9592                 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9593                                         sc->igu_sb_cnt);
9594         } else {
9595                 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9596                 sc->max_tx_queues = sc->max_rx_queues;
9597         }
9598 }
9599
9600 #define FW_HEADER_LEN 104
9601 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9602 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9603
9604 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9605 {
9606         const char *fwname;
9607         int f;
9608         struct stat st;
9609
9610         fwname = sc->devinfo.device_id == CHIP_NUM_57711
9611                 ? FW_NAME_57711 : FW_NAME_57810;
9612         f = open(fwname, O_RDONLY);
9613         if (f < 0) {
9614                 PMD_DRV_LOG(NOTICE, sc, "Can't open firmware file");
9615                 return;
9616         }
9617
9618         if (fstat(f, &st) < 0) {
9619                 PMD_DRV_LOG(NOTICE, sc, "Can't stat firmware file");
9620                 close(f);
9621                 return;
9622         }
9623
9624         sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9625         if (!sc->firmware) {
9626                 PMD_DRV_LOG(NOTICE, sc, "Can't allocate memory for firmware");
9627                 close(f);
9628                 return;
9629         }
9630
9631         if (read(f, sc->firmware, st.st_size) != st.st_size) {
9632                 PMD_DRV_LOG(NOTICE, sc, "Can't read firmware data");
9633                 close(f);
9634                 return;
9635         }
9636         close(f);
9637
9638         sc->fw_len = st.st_size;
9639         if (sc->fw_len < FW_HEADER_LEN) {
9640                 PMD_DRV_LOG(NOTICE, sc,
9641                             "Invalid fw size: %" PRIu64, sc->fw_len);
9642                 return;
9643         }
9644         PMD_DRV_LOG(DEBUG, sc, "fw_len = %" PRIu64, sc->fw_len);
9645 }
9646
9647 static void
9648 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9649 {
9650         uint32_t *src = (uint32_t *) data;
9651         uint32_t i, j, tmp;
9652
9653         for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9654                 tmp = rte_be_to_cpu_32(src[j]);
9655                 dst[i].op = (tmp >> 24) & 0xFF;
9656                 dst[i].offset = tmp & 0xFFFFFF;
9657                 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9658         }
9659 }
9660
9661 static void
9662 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9663 {
9664         uint16_t *src = (uint16_t *) data;
9665         uint32_t i;
9666
9667         for (i = 0; i < len / 2; ++i)
9668                 dst[i] = rte_be_to_cpu_16(src[i]);
9669 }
9670
9671 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9672 {
9673         uint32_t *src = (uint32_t *) data;
9674         uint32_t i;
9675
9676         for (i = 0; i < len / 4; ++i)
9677                 dst[i] = rte_be_to_cpu_32(src[i]);
9678 }
9679
9680 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9681 {
9682         uint32_t *src = (uint32_t *) data;
9683         uint32_t i, j, tmp;
9684
9685         for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9686                 dst[i].base = rte_be_to_cpu_32(src[j++]);
9687                 tmp = rte_be_to_cpu_32(src[j]);
9688                 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9689                 dst[i].m2 = tmp & 0xFFFF;
9690                 ++j;
9691                 tmp = rte_be_to_cpu_32(src[j]);
9692                 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9693                 dst[i].size = tmp & 0xFFFF;
9694         }
9695 }
9696
9697 /*
9698 * Device attach function.
9699 *
9700 * Allocates device resources, performs secondary chip identification, and
9701 * initializes driver instance variables. This function is called from driver
9702 * load after a successful probe.
9703 *
9704 * Returns:
9705 *   0 = Success, >0 = Failure
9706 */
9707 int bnx2x_attach(struct bnx2x_softc *sc)
9708 {
9709         int rc;
9710
9711         PMD_DRV_LOG(DEBUG, sc, "Starting attach...");
9712
9713         rc = bnx2x_pci_get_caps(sc);
9714         if (rc) {
9715                 PMD_DRV_LOG(NOTICE, sc, "PCIe caps reading was failed");
9716                 return rc;
9717         }
9718
9719         sc->state = BNX2X_STATE_CLOSED;
9720
9721         pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9722
9723         sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9724
9725         /* get PCI capabilites */
9726         bnx2x_probe_pci_caps(sc);
9727
9728         if (sc->devinfo.pcie_msix_cap_reg != 0) {
9729                 uint32_t val;
9730                 pci_read(sc,
9731                          (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9732                          2);
9733                 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9734         } else {
9735                 sc->igu_sb_cnt = 1;
9736         }
9737
9738         /* Init RTE stuff */
9739         bnx2x_init_rte(sc);
9740
9741         if (IS_PF(sc)) {
9742                 /* Enable internal target-read (in case we are probed after PF
9743                  * FLR). Must be done prior to any BAR read access. Only for
9744                  * 57712 and up
9745                  */
9746                 if (!CHIP_IS_E1x(sc)) {
9747                         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9748                                1);
9749                         DELAY(200000);
9750                 }
9751
9752                 /* get device info and set params */
9753                 if (bnx2x_get_device_info(sc) != 0) {
9754                         PMD_DRV_LOG(NOTICE, sc, "getting device info");
9755                         return -ENXIO;
9756                 }
9757
9758 /* get phy settings from shmem and 'and' against admin settings */
9759                 bnx2x_get_phy_info(sc);
9760         } else {
9761                 /* Left mac of VF unfilled, PF should set it for VF */
9762                 memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN);
9763         }
9764
9765         sc->wol = 0;
9766
9767         /* set the default MTU (changed via ifconfig) */
9768         sc->mtu = ETHER_MTU;
9769
9770         bnx2x_set_modes_bitmap(sc);
9771
9772         /* need to reset chip if UNDI was active */
9773         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9774 /* init fw_seq */
9775                 sc->fw_seq =
9776                     (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9777                      DRV_MSG_SEQ_NUMBER_MASK);
9778                 PMD_DRV_LOG(DEBUG, sc, "prev unload fw_seq 0x%04x",
9779                             sc->fw_seq);
9780                 bnx2x_prev_unload(sc);
9781         }
9782
9783         bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9784
9785         /* calculate qm_cid_count */
9786         sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9787
9788         sc->max_cos = 1;
9789         bnx2x_init_multi_cos(sc);
9790
9791         return 0;
9792 }
9793
9794 static void
9795 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9796                uint16_t index, uint8_t op, uint8_t update)
9797 {
9798         uint32_t igu_addr = sc->igu_base_addr;
9799         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9800         bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9801 }
9802
9803 static void
9804 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9805            uint16_t index, uint8_t op, uint8_t update)
9806 {
9807         if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9808                 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9809         else {
9810                 uint8_t segment;
9811                 if (CHIP_INT_MODE_IS_BC(sc)) {
9812                         segment = storm;
9813                 } else if (igu_sb_id != sc->igu_dsb_id) {
9814                         segment = IGU_SEG_ACCESS_DEF;
9815                 } else if (storm == ATTENTION_ID) {
9816                         segment = IGU_SEG_ACCESS_ATTN;
9817                 } else {
9818                         segment = IGU_SEG_ACCESS_DEF;
9819                 }
9820                 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9821         }
9822 }
9823
9824 static void
9825 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9826                      uint8_t is_pf)
9827 {
9828         uint32_t data, ctl, cnt = 100;
9829         uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9830         uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9831         uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9832             (idu_sb_id / 32) * 4;
9833         uint32_t sb_bit = 1 << (idu_sb_id % 32);
9834         uint32_t func_encode = func |
9835             (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9836         uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9837
9838         /* Not supported in BC mode */
9839         if (CHIP_INT_MODE_IS_BC(sc)) {
9840                 return;
9841         }
9842
9843         data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9844                  IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9845                 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9846
9847         ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9848                (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9849                (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9850
9851         REG_WR(sc, igu_addr_data, data);
9852
9853         mb();
9854
9855         PMD_DRV_LOG(DEBUG, sc, "write 0x%08x to IGU(via GRC) addr 0x%x",
9856                     ctl, igu_addr_ctl);
9857         REG_WR(sc, igu_addr_ctl, ctl);
9858
9859         mb();
9860
9861         /* wait for clean up to finish */
9862         while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9863                 DELAY(20000);
9864         }
9865
9866         if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9867                 PMD_DRV_LOG(DEBUG, sc,
9868                             "Unable to finish IGU cleanup: "
9869                             "idu_sb_id %d offset %d bit %d (cnt %d)",
9870                             idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9871         }
9872 }
9873
9874 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9875 {
9876         bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9877 }
9878
9879 /*******************/
9880 /* ECORE CALLBACKS */
9881 /*******************/
9882
9883 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9884 {
9885         uint32_t val = 0x1400;
9886
9887         PMD_INIT_FUNC_TRACE(sc);
9888
9889         /* reset_common */
9890         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9891                0xd3ffff7f);
9892
9893         if (CHIP_IS_E3(sc)) {
9894                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9895                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9896         }
9897
9898         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9899 }
9900
9901 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9902 {
9903         uint32_t shmem_base[2];
9904         uint32_t shmem2_base[2];
9905
9906         /* Avoid common init in case MFW supports LFA */
9907         if (SHMEM2_RD(sc, size) >
9908             (uint32_t) offsetof(struct shmem2_region,
9909                                 lfa_host_addr[SC_PORT(sc)])) {
9910                 return;
9911         }
9912
9913         shmem_base[0] = sc->devinfo.shmem_base;
9914         shmem2_base[0] = sc->devinfo.shmem2_base;
9915
9916         if (!CHIP_IS_E1x(sc)) {
9917                 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9918                 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9919         }
9920
9921         bnx2x_acquire_phy_lock(sc);
9922         elink_common_init_phy(sc, shmem_base, shmem2_base,
9923                               sc->devinfo.chip_id, 0);
9924         bnx2x_release_phy_lock(sc);
9925 }
9926
9927 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9928 {
9929         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9930
9931         val &= ~IGU_PF_CONF_FUNC_EN;
9932
9933         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9934         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9935         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9936 }
9937
9938 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9939 {
9940         uint16_t devctl;
9941         int r_order, w_order;
9942
9943         devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9944
9945         w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9946         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9947
9948         ecore_init_pxp_arb(sc, r_order, w_order);
9949 }
9950
9951 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9952 {
9953         uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9954         uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9955         return base + (SC_ABS_FUNC(sc)) * stride;
9956 }
9957
9958 /*
9959  * Called only on E1H or E2.
9960  * When pretending to be PF, the pretend value is the function number 0..7.
9961  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9962  * combination.
9963  */
9964 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9965 {
9966         uint32_t pretend_reg;
9967
9968         if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
9969                 return -1;
9970
9971         /* get my own pretend register */
9972         pretend_reg = bnx2x_get_pretend_reg(sc);
9973         REG_WR(sc, pretend_reg, pretend_func_val);
9974         REG_RD(sc, pretend_reg);
9975         return 0;
9976 }
9977
9978 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
9979 {
9980         int is_required;
9981         uint32_t val;
9982         int port;
9983
9984         is_required = 0;
9985         val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
9986                SHARED_HW_CFG_FAN_FAILURE_MASK);
9987
9988         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
9989                 is_required = 1;
9990         }
9991         /*
9992          * The fan failure mechanism is usually related to the PHY type since
9993          * the power consumption of the board is affected by the PHY. Currently,
9994          * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
9995          */
9996         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
9997                 for (port = PORT_0; port < PORT_MAX; port++) {
9998                         is_required |= elink_fan_failure_det_req(sc,
9999                                                                  sc->
10000                                                                  devinfo.shmem_base,
10001                                                                  sc->
10002                                                                  devinfo.shmem2_base,
10003                                                                  port);
10004                 }
10005         }
10006
10007         if (is_required == 0) {
10008                 return;
10009         }
10010
10011         /* Fan failure is indicated by SPIO 5 */
10012         bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
10013
10014         /* set to active low mode */
10015         val = REG_RD(sc, MISC_REG_SPIO_INT);
10016         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
10017         REG_WR(sc, MISC_REG_SPIO_INT, val);
10018
10019         /* enable interrupt to signal the IGU */
10020         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10021         val |= MISC_SPIO_SPIO5;
10022         REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
10023 }
10024
10025 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
10026 {
10027         uint32_t val;
10028
10029         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
10030         if (!CHIP_IS_E1x(sc)) {
10031                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
10032         } else {
10033                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
10034         }
10035         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10036         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10037         /*
10038          * mask read length error interrupts in brb for parser
10039          * (parsing unit and 'checksum and crc' unit)
10040          * these errors are legal (PU reads fixed length and CAC can cause
10041          * read length error on truncated packets)
10042          */
10043         REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10044         REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10045         REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10046         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10047         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10048         REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10049         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10050         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10051         REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10052         REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10053         REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10054         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10055         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10056         REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10057         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10058         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10059         REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10060         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10061         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10062
10063         val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10064                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10065                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10066         if (!CHIP_IS_E1x(sc)) {
10067                 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10068                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10069         }
10070         REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10071
10072         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10073         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10074         REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10075         /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10076
10077         if (!CHIP_IS_E1x(sc)) {
10078 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10079                 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10080         }
10081
10082         REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10083         REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10084         /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10085         REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10086 }
10087
10088 /**
10089  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10090  *
10091  * @sc:     driver handle
10092  */
10093 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10094 {
10095         uint8_t abs_func_id;
10096         uint32_t val;
10097
10098         PMD_DRV_LOG(DEBUG, sc,
10099                     "starting common init for func %d", SC_ABS_FUNC(sc));
10100
10101         /*
10102          * take the RESET lock to protect undi_unload flow from accessing
10103          * registers while we are resetting the chip
10104          */
10105         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10106
10107         bnx2x_reset_common(sc);
10108
10109         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10110
10111         val = 0xfffc;
10112         if (CHIP_IS_E3(sc)) {
10113                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10114                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10115         }
10116
10117         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10118
10119         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10120
10121         ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10122
10123         if (!CHIP_IS_E1x(sc)) {
10124 /*
10125  * 4-port mode or 2-port mode we need to turn off master-enable for
10126  * everyone. After that we turn it back on for self. So, we disregard
10127  * multi-function, and always disable all functions on the given path,
10128  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10129  */
10130                 for (abs_func_id = SC_PATH(sc);
10131                      abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10132                         if (abs_func_id == SC_ABS_FUNC(sc)) {
10133                                 REG_WR(sc,
10134                                        PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10135                                        1);
10136                                 continue;
10137                         }
10138
10139                         bnx2x_pretend_func(sc, abs_func_id);
10140
10141                         /* clear pf enable */
10142                         bnx2x_pf_disable(sc);
10143
10144                         bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10145                 }
10146         }
10147
10148         ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10149
10150         ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10151         bnx2x_init_pxp(sc);
10152
10153 #ifdef __BIG_ENDIAN
10154         REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10155         REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10156         REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10157         REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10158         REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10159         /* make sure this value is 0 */
10160         REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10161
10162         //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10163         REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10164         REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10165         REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10166         REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10167 #endif
10168
10169         ecore_ilt_init_page_size(sc, INITOP_SET);
10170
10171         if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10172                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10173         }
10174
10175         /* let the HW do it's magic... */
10176         DELAY(100000);
10177
10178         /* finish PXP init */
10179
10180         val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10181         if (val != 1) {
10182                 PMD_DRV_LOG(NOTICE, sc, "PXP2 CFG failed");
10183                 return -1;
10184         }
10185         val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10186         if (val != 1) {
10187                 PMD_DRV_LOG(NOTICE, sc, "PXP2 RD_INIT failed");
10188                 return -1;
10189         }
10190
10191         /*
10192          * Timer bug workaround for E2 only. We need to set the entire ILT to have
10193          * entries with value "0" and valid bit on. This needs to be done by the
10194          * first PF that is loaded in a path (i.e. common phase)
10195          */
10196         if (!CHIP_IS_E1x(sc)) {
10197 /*
10198  * In E2 there is a bug in the timers block that can cause function 6 / 7
10199  * (i.e. vnic3) to start even if it is marked as "scan-off".
10200  * This occurs when a different function (func2,3) is being marked
10201  * as "scan-off". Real-life scenario for example: if a driver is being
10202  * load-unloaded while func6,7 are down. This will cause the timer to access
10203  * the ilt, translate to a logical address and send a request to read/write.
10204  * Since the ilt for the function that is down is not valid, this will cause
10205  * a translation error which is unrecoverable.
10206  * The Workaround is intended to make sure that when this happens nothing
10207  * fatal will occur. The workaround:
10208  *  1.  First PF driver which loads on a path will:
10209  *      a.  After taking the chip out of reset, by using pretend,
10210  *          it will write "0" to the following registers of
10211  *          the other vnics.
10212  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10213  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10214  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10215  *          And for itself it will write '1' to
10216  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10217  *          dmae-operations (writing to pram for example.)
10218  *          note: can be done for only function 6,7 but cleaner this
10219  *            way.
10220  *      b.  Write zero+valid to the entire ILT.
10221  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10222  *          VNIC3 (of that port). The range allocated will be the
10223  *          entire ILT. This is needed to prevent  ILT range error.
10224  *  2.  Any PF driver load flow:
10225  *      a.  ILT update with the physical addresses of the allocated
10226  *          logical pages.
10227  *      b.  Wait 20msec. - note that this timeout is needed to make
10228  *          sure there are no requests in one of the PXP internal
10229  *          queues with "old" ILT addresses.
10230  *      c.  PF enable in the PGLC.
10231  *      d.  Clear the was_error of the PF in the PGLC. (could have
10232  *          occurred while driver was down)
10233  *      e.  PF enable in the CFC (WEAK + STRONG)
10234  *      f.  Timers scan enable
10235  *  3.  PF driver unload flow:
10236  *      a.  Clear the Timers scan_en.
10237  *      b.  Polling for scan_on=0 for that PF.
10238  *      c.  Clear the PF enable bit in the PXP.
10239  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10240  *      e.  Write zero+valid to all ILT entries (The valid bit must
10241  *          stay set)
10242  *      f.  If this is VNIC 3 of a port then also init
10243  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10244  *          to the last enrty in the ILT.
10245  *
10246  *      Notes:
10247  *      Currently the PF error in the PGLC is non recoverable.
10248  *      In the future the there will be a recovery routine for this error.
10249  *      Currently attention is masked.
10250  *      Having an MCP lock on the load/unload process does not guarantee that
10251  *      there is no Timer disable during Func6/7 enable. This is because the
10252  *      Timers scan is currently being cleared by the MCP on FLR.
10253  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10254  *      there is error before clearing it. But the flow above is simpler and
10255  *      more general.
10256  *      All ILT entries are written by zero+valid and not just PF6/7
10257  *      ILT entries since in the future the ILT entries allocation for
10258  *      PF-s might be dynamic.
10259  */
10260                 struct ilt_client_info ilt_cli;
10261                 struct ecore_ilt ilt;
10262
10263                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10264                 memset(&ilt, 0, sizeof(struct ecore_ilt));
10265
10266 /* initialize dummy TM client */
10267                 ilt_cli.start = 0;
10268                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10269                 ilt_cli.client_num = ILT_CLIENT_TM;
10270
10271 /*
10272  * Step 1: set zeroes to all ilt page entries with valid bit on
10273  * Step 2: set the timers first/last ilt entry to point
10274  * to the entire range to prevent ILT range error for 3rd/4th
10275  * vnic (this code assumes existence of the vnic)
10276  *
10277  * both steps performed by call to ecore_ilt_client_init_op()
10278  * with dummy TM client
10279  *
10280  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10281  * and his brother are split registers
10282  */
10283
10284                 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10285                 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10286                 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10287
10288                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10289                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10290                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10291         }
10292
10293         REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10294         REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10295
10296         if (!CHIP_IS_E1x(sc)) {
10297                 int factor = 0;
10298
10299                 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10300                 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10301
10302 /* let the HW do it's magic... */
10303                 do {
10304                         DELAY(200000);
10305                         val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10306                 } while (factor-- && (val != 1));
10307
10308                 if (val != 1) {
10309                         PMD_DRV_LOG(NOTICE, sc, "ATC_INIT failed");
10310                         return -1;
10311                 }
10312         }
10313
10314         ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10315
10316         /* clean the DMAE memory */
10317         sc->dmae_ready = 1;
10318         ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10319
10320         ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10321
10322         ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10323
10324         ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10325
10326         ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10327
10328         bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10329         bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10330         bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10331         bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10332
10333         ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10334
10335         /* QM queues pointers table */
10336         ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10337
10338         /* soft reset pulse */
10339         REG_WR(sc, QM_REG_SOFT_RESET, 1);
10340         REG_WR(sc, QM_REG_SOFT_RESET, 0);
10341
10342         if (CNIC_SUPPORT(sc))
10343                 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10344
10345         ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10346         REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10347
10348         if (!CHIP_REV_IS_SLOW(sc)) {
10349 /* enable hw interrupt from doorbell Q */
10350                 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10351         }
10352
10353         ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10354
10355         ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10356         REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10357         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10358
10359         if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10360                 if (IS_MF_AFEX(sc)) {
10361                         /*
10362                          * configure that AFEX and VLAN headers must be
10363                          * received in AFEX mode
10364                          */
10365                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10366                         REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10367                         REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10368                         REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10369                         REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10370                 } else {
10371                         /*
10372                          * Bit-map indicating which L2 hdrs may appear
10373                          * after the basic Ethernet header
10374                          */
10375                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10376                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10377                 }
10378         }
10379
10380         ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10381         ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10382         ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10383         ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10384
10385         if (!CHIP_IS_E1x(sc)) {
10386 /* reset VFC memories */
10387                 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10388                        VFC_MEMORIES_RST_REG_CAM_RST |
10389                        VFC_MEMORIES_RST_REG_RAM_RST);
10390                 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10391                        VFC_MEMORIES_RST_REG_CAM_RST |
10392                        VFC_MEMORIES_RST_REG_RAM_RST);
10393
10394                 DELAY(20000);
10395         }
10396
10397         ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10398         ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10399         ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10400         ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10401
10402         /* sync semi rtc */
10403         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10404         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10405
10406         ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10407         ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10408         ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10409
10410         if (!CHIP_IS_E1x(sc)) {
10411                 if (IS_MF_AFEX(sc)) {
10412                         /*
10413                          * configure that AFEX and VLAN headers must be
10414                          * sent in AFEX mode
10415                          */
10416                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10417                         REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10418                         REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10419                         REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10420                         REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10421                 } else {
10422                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10423                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10424                 }
10425         }
10426
10427         REG_WR(sc, SRC_REG_SOFT_RST, 1);
10428
10429         ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10430
10431         if (CNIC_SUPPORT(sc)) {
10432                 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10433                 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10434                 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10435                 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10436                 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10437                 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10438                 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10439                 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10440                 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10441                 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10442         }
10443         REG_WR(sc, SRC_REG_SOFT_RST, 0);
10444
10445         if (sizeof(union cdu_context) != 1024) {
10446 /* we currently assume that a context is 1024 bytes */
10447                 PMD_DRV_LOG(NOTICE, sc,
10448                             "please adjust the size of cdu_context(%ld)",
10449                             (long)sizeof(union cdu_context));
10450         }
10451
10452         ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10453         val = (4 << 24) + (0 << 12) + 1024;
10454         REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10455
10456         ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10457
10458         REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10459         /* enable context validation interrupt from CFC */
10460         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10461
10462         /* set the thresholds to prevent CFC/CDU race */
10463         REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10464         ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10465
10466         if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10467                 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10468         }
10469
10470         ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10471         ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10472
10473         /* Reset PCIE errors for debug */
10474         REG_WR(sc, 0x2814, 0xffffffff);
10475         REG_WR(sc, 0x3820, 0xffffffff);
10476
10477         if (!CHIP_IS_E1x(sc)) {
10478                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10479                        (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10480                         PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10481                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10482                        (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10483                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10484                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10485                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10486                        (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10487                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10488                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10489         }
10490
10491         ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10492
10493         /* in E3 this done in per-port section */
10494         if (!CHIP_IS_E3(sc))
10495                 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10496
10497         if (CHIP_IS_E1H(sc)) {
10498 /* not applicable for E2 (and above ...) */
10499                 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10500         }
10501
10502         if (CHIP_REV_IS_SLOW(sc)) {
10503                 DELAY(200000);
10504         }
10505
10506         /* finish CFC init */
10507         val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10508         if (val != 1) {
10509                 PMD_DRV_LOG(NOTICE, sc, "CFC LL_INIT failed");
10510                 return -1;
10511         }
10512         val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10513         if (val != 1) {
10514                 PMD_DRV_LOG(NOTICE, sc, "CFC AC_INIT failed");
10515                 return -1;
10516         }
10517         val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10518         if (val != 1) {
10519                 PMD_DRV_LOG(NOTICE, sc, "CFC CAM_INIT failed");
10520                 return -1;
10521         }
10522         REG_WR(sc, CFC_REG_DEBUG0, 0);
10523
10524         bnx2x_setup_fan_failure_detection(sc);
10525
10526         /* clear PXP2 attentions */
10527         REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10528
10529         bnx2x_enable_blocks_attention(sc);
10530
10531         if (!CHIP_REV_IS_SLOW(sc)) {
10532                 ecore_enable_blocks_parity(sc);
10533         }
10534
10535         if (!BNX2X_NOMCP(sc)) {
10536                 if (CHIP_IS_E1x(sc)) {
10537                         bnx2x_common_init_phy(sc);
10538                 }
10539         }
10540
10541         return 0;
10542 }
10543
10544 /**
10545  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10546  *
10547  * @sc:     driver handle
10548  */
10549 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10550 {
10551         int rc = bnx2x_init_hw_common(sc);
10552
10553         if (rc) {
10554                 return rc;
10555         }
10556
10557         /* In E2 2-PORT mode, same ext phy is used for the two paths */
10558         if (!BNX2X_NOMCP(sc)) {
10559                 bnx2x_common_init_phy(sc);
10560         }
10561
10562         return 0;
10563 }
10564
10565 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10566 {
10567         int port = SC_PORT(sc);
10568         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10569         uint32_t low, high;
10570         uint32_t val;
10571
10572         PMD_DRV_LOG(DEBUG, sc, "starting port init for port %d", port);
10573
10574         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10575
10576         ecore_init_block(sc, BLOCK_MISC, init_phase);
10577         ecore_init_block(sc, BLOCK_PXP, init_phase);
10578         ecore_init_block(sc, BLOCK_PXP2, init_phase);
10579
10580         /*
10581          * Timers bug workaround: disables the pf_master bit in pglue at
10582          * common phase, we need to enable it here before any dmae access are
10583          * attempted. Therefore we manually added the enable-master to the
10584          * port phase (it also happens in the function phase)
10585          */
10586         if (!CHIP_IS_E1x(sc)) {
10587                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10588         }
10589
10590         ecore_init_block(sc, BLOCK_ATC, init_phase);
10591         ecore_init_block(sc, BLOCK_DMAE, init_phase);
10592         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10593         ecore_init_block(sc, BLOCK_QM, init_phase);
10594
10595         ecore_init_block(sc, BLOCK_TCM, init_phase);
10596         ecore_init_block(sc, BLOCK_UCM, init_phase);
10597         ecore_init_block(sc, BLOCK_CCM, init_phase);
10598         ecore_init_block(sc, BLOCK_XCM, init_phase);
10599
10600         /* QM cid (connection) count */
10601         ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10602
10603         if (CNIC_SUPPORT(sc)) {
10604                 ecore_init_block(sc, BLOCK_TM, init_phase);
10605                 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10606                 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10607         }
10608
10609         ecore_init_block(sc, BLOCK_DORQ, init_phase);
10610
10611         ecore_init_block(sc, BLOCK_BRB1, init_phase);
10612
10613         if (CHIP_IS_E1H(sc)) {
10614                 if (IS_MF(sc)) {
10615                         low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10616                 } else if (sc->mtu > 4096) {
10617                         if (BNX2X_ONE_PORT(sc)) {
10618                                 low = 160;
10619                         } else {
10620                                 val = sc->mtu;
10621                                 /* (24*1024 + val*4)/256 */
10622                                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10623                         }
10624                 } else {
10625                         low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10626                 }
10627                 high = (low + 56);      /* 14*1024/256 */
10628                 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10629                 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10630         }
10631
10632         if (CHIP_IS_MODE_4_PORT(sc)) {
10633                 REG_WR(sc, SC_PORT(sc) ?
10634                        BRB1_REG_MAC_GUARANTIED_1 :
10635                        BRB1_REG_MAC_GUARANTIED_0, 40);
10636         }
10637
10638         ecore_init_block(sc, BLOCK_PRS, init_phase);
10639         if (CHIP_IS_E3B0(sc)) {
10640                 if (IS_MF_AFEX(sc)) {
10641                         /* configure headers for AFEX mode */
10642                         if (SC_PORT(sc)) {
10643                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10644                                        0xE);
10645                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10646                                        0x6);
10647                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10648                         } else {
10649                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10650                                        0xE);
10651                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10652                                        0x6);
10653                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10654                         }
10655                 } else {
10656                         /* Ovlan exists only if we are in multi-function +
10657                          * switch-dependent mode, in switch-independent there
10658                          * is no ovlan headers
10659                          */
10660                         REG_WR(sc, SC_PORT(sc) ?
10661                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10662                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10663                                (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10664                 }
10665         }
10666
10667         ecore_init_block(sc, BLOCK_TSDM, init_phase);
10668         ecore_init_block(sc, BLOCK_CSDM, init_phase);
10669         ecore_init_block(sc, BLOCK_USDM, init_phase);
10670         ecore_init_block(sc, BLOCK_XSDM, init_phase);
10671
10672         ecore_init_block(sc, BLOCK_TSEM, init_phase);
10673         ecore_init_block(sc, BLOCK_USEM, init_phase);
10674         ecore_init_block(sc, BLOCK_CSEM, init_phase);
10675         ecore_init_block(sc, BLOCK_XSEM, init_phase);
10676
10677         ecore_init_block(sc, BLOCK_UPB, init_phase);
10678         ecore_init_block(sc, BLOCK_XPB, init_phase);
10679
10680         ecore_init_block(sc, BLOCK_PBF, init_phase);
10681
10682         if (CHIP_IS_E1x(sc)) {
10683 /* configure PBF to work without PAUSE mtu 9000 */
10684                 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10685
10686 /* update threshold */
10687                 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10688 /* update init credit */
10689                 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10690                        (9040 / 16) + 553 - 22);
10691
10692 /* probe changes */
10693                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10694                 DELAY(50);
10695                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10696         }
10697
10698         if (CNIC_SUPPORT(sc)) {
10699                 ecore_init_block(sc, BLOCK_SRC, init_phase);
10700         }
10701
10702         ecore_init_block(sc, BLOCK_CDU, init_phase);
10703         ecore_init_block(sc, BLOCK_CFC, init_phase);
10704         ecore_init_block(sc, BLOCK_HC, init_phase);
10705         ecore_init_block(sc, BLOCK_IGU, init_phase);
10706         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10707         /* init aeu_mask_attn_func_0/1:
10708          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10709          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10710          *             bits 4-7 are used for "per vn group attention" */
10711         val = IS_MF(sc) ? 0xF7 : 0x7;
10712         val |= 0x10;
10713         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10714
10715         ecore_init_block(sc, BLOCK_NIG, init_phase);
10716
10717         if (!CHIP_IS_E1x(sc)) {
10718 /* Bit-map indicating which L2 hdrs may appear after the
10719  * basic Ethernet header
10720  */
10721                 if (IS_MF_AFEX(sc)) {
10722                         REG_WR(sc, SC_PORT(sc) ?
10723                                NIG_REG_P1_HDRS_AFTER_BASIC :
10724                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10725                 } else {
10726                         REG_WR(sc, SC_PORT(sc) ?
10727                                NIG_REG_P1_HDRS_AFTER_BASIC :
10728                                NIG_REG_P0_HDRS_AFTER_BASIC,
10729                                IS_MF_SD(sc) ? 7 : 6);
10730                 }
10731
10732                 if (CHIP_IS_E3(sc)) {
10733                         REG_WR(sc, SC_PORT(sc) ?
10734                                NIG_REG_LLH1_MF_MODE :
10735                                NIG_REG_LLH_MF_MODE, IS_MF(sc));
10736                 }
10737         }
10738         if (!CHIP_IS_E3(sc)) {
10739                 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10740         }
10741
10742         /* 0x2 disable mf_ov, 0x1 enable */
10743         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10744                (IS_MF_SD(sc) ? 0x1 : 0x2));
10745
10746         if (!CHIP_IS_E1x(sc)) {
10747                 val = 0;
10748                 switch (sc->devinfo.mf_info.mf_mode) {
10749                 case MULTI_FUNCTION_SD:
10750                         val = 1;
10751                         break;
10752                 case MULTI_FUNCTION_SI:
10753                 case MULTI_FUNCTION_AFEX:
10754                         val = 2;
10755                         break;
10756                 }
10757
10758                 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10759                             NIG_REG_LLH0_CLS_TYPE), val);
10760         }
10761         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10762         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10763         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10764
10765         /* If SPIO5 is set to generate interrupts, enable it for this port */
10766         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10767         if (val & MISC_SPIO_SPIO5) {
10768                 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10769                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10770                 val = REG_RD(sc, reg_addr);
10771                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10772                 REG_WR(sc, reg_addr, val);
10773         }
10774
10775         return 0;
10776 }
10777
10778 static uint32_t
10779 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10780                        uint32_t expected, uint32_t poll_count)
10781 {
10782         uint32_t cur_cnt = poll_count;
10783         uint32_t val;
10784
10785         while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10786                 DELAY(FLR_WAIT_INTERVAL);
10787         }
10788
10789         return val;
10790 }
10791
10792 static int
10793 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10794                               __rte_unused const char *msg, uint32_t poll_cnt)
10795 {
10796         uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10797
10798         if (val != 0) {
10799                 PMD_DRV_LOG(NOTICE, sc, "%s usage count=%d", msg, val);
10800                 return -1;
10801         }
10802
10803         return 0;
10804 }
10805
10806 /* Common routines with VF FLR cleanup */
10807 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10808 {
10809         /* adjust polling timeout */
10810         if (CHIP_REV_IS_EMUL(sc)) {
10811                 return FLR_POLL_CNT * 2000;
10812         }
10813
10814         if (CHIP_REV_IS_FPGA(sc)) {
10815                 return FLR_POLL_CNT * 120;
10816         }
10817
10818         return FLR_POLL_CNT;
10819 }
10820
10821 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10822 {
10823         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10824         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10825                                           CFC_REG_NUM_LCIDS_INSIDE_PF,
10826                                           "CFC PF usage counter timed out",
10827                                           poll_cnt)) {
10828                 return -1;
10829         }
10830
10831         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10832         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10833                                           DORQ_REG_PF_USAGE_CNT,
10834                                           "DQ PF usage counter timed out",
10835                                           poll_cnt)) {
10836                 return -1;
10837         }
10838
10839         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10840         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10841                                           QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10842                                           "QM PF usage counter timed out",
10843                                           poll_cnt)) {
10844                 return -1;
10845         }
10846
10847         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10848         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10849                                           TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10850                                           "Timers VNIC usage counter timed out",
10851                                           poll_cnt)) {
10852                 return -1;
10853         }
10854
10855         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10856                                           TM_REG_LIN0_NUM_SCANS +
10857                                           4 * SC_PORT(sc),
10858                                           "Timers NUM_SCANS usage counter timed out",
10859                                           poll_cnt)) {
10860                 return -1;
10861         }
10862
10863         /* Wait DMAE PF usage counter to zero */
10864         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10865                                           dmae_reg_go_c[INIT_DMAE_C(sc)],
10866                                           "DMAE dommand register timed out",
10867                                           poll_cnt)) {
10868                 return -1;
10869         }
10870
10871         return 0;
10872 }
10873
10874 #define OP_GEN_PARAM(param)                                            \
10875         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10876 #define OP_GEN_TYPE(type)                                           \
10877         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10878 #define OP_GEN_AGG_VECT(index)                                             \
10879         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10880
10881 static int
10882 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10883                      uint32_t poll_cnt)
10884 {
10885         uint32_t op_gen_command = 0;
10886         uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10887                               CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10888         int ret = 0;
10889
10890         if (REG_RD(sc, comp_addr)) {
10891                 PMD_DRV_LOG(NOTICE, sc,
10892                             "Cleanup complete was not 0 before sending");
10893                 return -1;
10894         }
10895
10896         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10897         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10898         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10899         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10900
10901         REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10902
10903         if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10904                 PMD_DRV_LOG(NOTICE, sc, "FW final cleanup did not succeed");
10905                 PMD_DRV_LOG(DEBUG, sc, "At timeout completion address contained %x",
10906                             (REG_RD(sc, comp_addr)));
10907                 rte_panic("FLR cleanup failed");
10908                 return -1;
10909         }
10910
10911         /* Zero completion for nxt FLR */
10912         REG_WR(sc, comp_addr, 0);
10913
10914         return ret;
10915 }
10916
10917 static void
10918 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10919                        uint32_t poll_count)
10920 {
10921         uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10922         uint32_t cur_cnt = poll_count;
10923
10924         crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10925         crd = crd_start = REG_RD(sc, regs->crd);
10926         init_crd = REG_RD(sc, regs->init_crd);
10927
10928         while ((crd != init_crd) &&
10929                ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10930                 (init_crd - crd_start))) {
10931                 if (cur_cnt--) {
10932                         DELAY(FLR_WAIT_INTERVAL);
10933                         crd = REG_RD(sc, regs->crd);
10934                         crd_freed = REG_RD(sc, regs->crd_freed);
10935                 } else {
10936                         break;
10937                 }
10938         }
10939 }
10940
10941 static void
10942 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10943                        uint32_t poll_count)
10944 {
10945         uint32_t occup, to_free, freed, freed_start;
10946         uint32_t cur_cnt = poll_count;
10947
10948         occup = to_free = REG_RD(sc, regs->lines_occup);
10949         freed = freed_start = REG_RD(sc, regs->lines_freed);
10950
10951         while (occup &&
10952                ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10953                 to_free)) {
10954                 if (cur_cnt--) {
10955                         DELAY(FLR_WAIT_INTERVAL);
10956                         occup = REG_RD(sc, regs->lines_occup);
10957                         freed = REG_RD(sc, regs->lines_freed);
10958                 } else {
10959                         break;
10960                 }
10961         }
10962 }
10963
10964 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10965 {
10966         struct pbf_pN_cmd_regs cmd_regs[] = {
10967                 {0, (CHIP_IS_E3B0(sc)) ?
10968                  PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
10969                  (CHIP_IS_E3B0(sc)) ?
10970                  PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
10971                 {1, (CHIP_IS_E3B0(sc)) ?
10972                  PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
10973                  (CHIP_IS_E3B0(sc)) ?
10974                  PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
10975                 {4, (CHIP_IS_E3B0(sc)) ?
10976                  PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
10977                  (CHIP_IS_E3B0(sc)) ?
10978                  PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
10979                  PBF_REG_P4_TQ_LINES_FREED_CNT}
10980         };
10981
10982         struct pbf_pN_buf_regs buf_regs[] = {
10983                 {0, (CHIP_IS_E3B0(sc)) ?
10984                  PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
10985                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
10986                  (CHIP_IS_E3B0(sc)) ?
10987                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
10988                  PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
10989                 {1, (CHIP_IS_E3B0(sc)) ?
10990                  PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
10991                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
10992                  (CHIP_IS_E3B0(sc)) ?
10993                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
10994                  PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
10995                 {4, (CHIP_IS_E3B0(sc)) ?
10996                  PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
10997                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
10998                  (CHIP_IS_E3B0(sc)) ?
10999                  PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
11000                  PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
11001         };
11002
11003         uint32_t i;
11004
11005         /* Verify the command queues are flushed P0, P1, P4 */
11006         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
11007                 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
11008         }
11009
11010         /* Verify the transmission buffers are flushed P0, P1, P4 */
11011         for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
11012                 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
11013         }
11014 }
11015
11016 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
11017 {
11018         __rte_unused uint32_t val;
11019
11020         val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
11021         PMD_DRV_LOG(DEBUG, sc, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
11022
11023         val = REG_RD(sc, PBF_REG_DISABLE_PF);
11024         PMD_DRV_LOG(DEBUG, sc, "PBF_REG_DISABLE_PF is 0x%x", val);
11025
11026         val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
11027         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
11028
11029         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
11030         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
11031
11032         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
11033         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
11034
11035         val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
11036         PMD_DRV_LOG(DEBUG, sc,
11037                     "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
11038
11039         val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
11040         PMD_DRV_LOG(DEBUG, sc,
11041                     "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11042
11043         val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11044         PMD_DRV_LOG(DEBUG, sc, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11045                     val);
11046 }
11047
11048 /**
11049  *      bnx2x_pf_flr_clnup
11050  *      a. re-enable target read on the PF
11051  *      b. poll cfc per function usgae counter
11052  *      c. poll the qm perfunction usage counter
11053  *      d. poll the tm per function usage counter
11054  *      e. poll the tm per function scan-done indication
11055  *      f. clear the dmae channel associated wit hthe PF
11056  *      g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11057  *      h. call the common flr cleanup code with -1 (pf indication)
11058  */
11059 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11060 {
11061         uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11062
11063         /* Re-enable PF target read access */
11064         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11065
11066         /* Poll HW usage counters */
11067         if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11068                 return -1;
11069         }
11070
11071         /* Zero the igu 'trailing edge' and 'leading edge' */
11072
11073         /* Send the FW cleanup command */
11074         if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11075                 return -1;
11076         }
11077
11078         /* ATC cleanup */
11079
11080         /* Verify TX hw is flushed */
11081         bnx2x_tx_hw_flushed(sc, poll_cnt);
11082
11083         /* Wait 100ms (not adjusted according to platform) */
11084         DELAY(100000);
11085
11086         /* Verify no pending pci transactions */
11087         if (bnx2x_is_pcie_pending(sc)) {
11088                 PMD_DRV_LOG(NOTICE, sc, "PCIE Transactions still pending");
11089         }
11090
11091         /* Debug */
11092         bnx2x_hw_enable_status(sc);
11093
11094         /*
11095          * Master enable - Due to WB DMAE writes performed before this
11096          * register is re-initialized as part of the regular function init
11097          */
11098         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11099
11100         return 0;
11101 }
11102
11103 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11104 {
11105         int port = SC_PORT(sc);
11106         int func = SC_FUNC(sc);
11107         int init_phase = PHASE_PF0 + func;
11108         struct ecore_ilt *ilt = sc->ilt;
11109         uint16_t cdu_ilt_start;
11110         uint32_t addr, val;
11111         uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11112         int main_mem_width, rc;
11113         uint32_t i;
11114
11115         PMD_DRV_LOG(DEBUG, sc, "starting func init for func %d", func);
11116
11117         /* FLR cleanup */
11118         if (!CHIP_IS_E1x(sc)) {
11119                 rc = bnx2x_pf_flr_clnup(sc);
11120                 if (rc) {
11121                         PMD_DRV_LOG(NOTICE, sc, "FLR cleanup failed!");
11122                         return rc;
11123                 }
11124         }
11125
11126         /* set MSI reconfigure capability */
11127         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11128                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11129                 val = REG_RD(sc, addr);
11130                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11131                 REG_WR(sc, addr, val);
11132         }
11133
11134         ecore_init_block(sc, BLOCK_PXP, init_phase);
11135         ecore_init_block(sc, BLOCK_PXP2, init_phase);
11136
11137         ilt = sc->ilt;
11138         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11139
11140         for (i = 0; i < L2_ILT_LINES(sc); i++) {
11141                 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11142                 ilt->lines[cdu_ilt_start + i].page_mapping =
11143                     (phys_addr_t)sc->context[i].vcxt_dma.paddr;
11144                 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11145         }
11146         ecore_ilt_init_op(sc, INITOP_SET);
11147
11148         REG_WR(sc, PRS_REG_NIC_MODE, 1);
11149
11150         if (!CHIP_IS_E1x(sc)) {
11151                 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11152
11153 /* Turn on a single ISR mode in IGU if driver is going to use
11154  * INT#x or MSI
11155  */
11156                 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11157                     || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11158                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11159                 }
11160
11161 /*
11162  * Timers workaround bug: function init part.
11163  * Need to wait 20msec after initializing ILT,
11164  * needed to make sure there are no requests in
11165  * one of the PXP internal queues with "old" ILT addresses
11166  */
11167                 DELAY(20000);
11168
11169 /*
11170  * Master enable - Due to WB DMAE writes performed before this
11171  * register is re-initialized as part of the regular function
11172  * init
11173  */
11174                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11175 /* Enable the function in IGU */
11176                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11177         }
11178
11179         sc->dmae_ready = 1;
11180
11181         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11182
11183         if (!CHIP_IS_E1x(sc))
11184                 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11185
11186         ecore_init_block(sc, BLOCK_ATC, init_phase);
11187         ecore_init_block(sc, BLOCK_DMAE, init_phase);
11188         ecore_init_block(sc, BLOCK_NIG, init_phase);
11189         ecore_init_block(sc, BLOCK_SRC, init_phase);
11190         ecore_init_block(sc, BLOCK_MISC, init_phase);
11191         ecore_init_block(sc, BLOCK_TCM, init_phase);
11192         ecore_init_block(sc, BLOCK_UCM, init_phase);
11193         ecore_init_block(sc, BLOCK_CCM, init_phase);
11194         ecore_init_block(sc, BLOCK_XCM, init_phase);
11195         ecore_init_block(sc, BLOCK_TSEM, init_phase);
11196         ecore_init_block(sc, BLOCK_USEM, init_phase);
11197         ecore_init_block(sc, BLOCK_CSEM, init_phase);
11198         ecore_init_block(sc, BLOCK_XSEM, init_phase);
11199
11200         if (!CHIP_IS_E1x(sc))
11201                 REG_WR(sc, QM_REG_PF_EN, 1);
11202
11203         if (!CHIP_IS_E1x(sc)) {
11204                 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11205                 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11206                 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11207                 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11208         }
11209         ecore_init_block(sc, BLOCK_QM, init_phase);
11210
11211         ecore_init_block(sc, BLOCK_TM, init_phase);
11212         ecore_init_block(sc, BLOCK_DORQ, init_phase);
11213
11214         ecore_init_block(sc, BLOCK_BRB1, init_phase);
11215         ecore_init_block(sc, BLOCK_PRS, init_phase);
11216         ecore_init_block(sc, BLOCK_TSDM, init_phase);
11217         ecore_init_block(sc, BLOCK_CSDM, init_phase);
11218         ecore_init_block(sc, BLOCK_USDM, init_phase);
11219         ecore_init_block(sc, BLOCK_XSDM, init_phase);
11220         ecore_init_block(sc, BLOCK_UPB, init_phase);
11221         ecore_init_block(sc, BLOCK_XPB, init_phase);
11222         ecore_init_block(sc, BLOCK_PBF, init_phase);
11223         if (!CHIP_IS_E1x(sc))
11224                 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11225
11226         ecore_init_block(sc, BLOCK_CDU, init_phase);
11227
11228         ecore_init_block(sc, BLOCK_CFC, init_phase);
11229
11230         if (!CHIP_IS_E1x(sc))
11231                 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11232
11233         if (IS_MF(sc)) {
11234                 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11235                 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11236         }
11237
11238         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11239
11240         /* HC init per function */
11241         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11242                 if (CHIP_IS_E1H(sc)) {
11243                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11244
11245                         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11246                         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11247                 }
11248                 ecore_init_block(sc, BLOCK_HC, init_phase);
11249
11250         } else {
11251                 uint32_t num_segs, sb_idx, prod_offset;
11252
11253                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11254
11255                 if (!CHIP_IS_E1x(sc)) {
11256                         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11257                         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11258                 }
11259
11260                 ecore_init_block(sc, BLOCK_IGU, init_phase);
11261
11262                 if (!CHIP_IS_E1x(sc)) {
11263                         int dsb_idx = 0;
11264         /**
11265          * Producer memory:
11266          * E2 mode: address 0-135 match to the mapping memory;
11267          * 136 - PF0 default prod; 137 - PF1 default prod;
11268          * 138 - PF2 default prod; 139 - PF3 default prod;
11269          * 140 - PF0 attn prod;    141 - PF1 attn prod;
11270          * 142 - PF2 attn prod;    143 - PF3 attn prod;
11271          * 144-147 reserved.
11272          *
11273          * E1.5 mode - In backward compatible mode;
11274          * for non default SB; each even line in the memory
11275          * holds the U producer and each odd line hold
11276          * the C producer. The first 128 producers are for
11277          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11278          * producers are for the DSB for each PF.
11279          * Each PF has five segments: (the order inside each
11280          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11281          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11282          * 144-147 attn prods;
11283          */
11284                         /* non-default-status-blocks */
11285                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11286                             IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11287                         for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11288                                 prod_offset = (sc->igu_base_sb + sb_idx) *
11289                                     num_segs;
11290
11291                                 for (i = 0; i < num_segs; i++) {
11292                                         addr = IGU_REG_PROD_CONS_MEMORY +
11293                                             (prod_offset + i) * 4;
11294                                         REG_WR(sc, addr, 0);
11295                                 }
11296                                 /* send consumer update with value 0 */
11297                                 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11298                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11299                                 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11300                         }
11301
11302                         /* default-status-blocks */
11303                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11304                             IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11305
11306                         if (CHIP_IS_MODE_4_PORT(sc))
11307                                 dsb_idx = SC_FUNC(sc);
11308                         else
11309                                 dsb_idx = SC_VN(sc);
11310
11311                         prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11312                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
11313                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
11314
11315                         /*
11316                          * igu prods come in chunks of E1HVN_MAX (4) -
11317                          * does not matters what is the current chip mode
11318                          */
11319                         for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11320                                 addr = IGU_REG_PROD_CONS_MEMORY +
11321                                     (prod_offset + i) * 4;
11322                                 REG_WR(sc, addr, 0);
11323                         }
11324                         /* send consumer update with 0 */
11325                         if (CHIP_INT_MODE_IS_BC(sc)) {
11326                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11327                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11328                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11329                                            CSTORM_ID, 0, IGU_INT_NOP, 1);
11330                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11331                                            XSTORM_ID, 0, IGU_INT_NOP, 1);
11332                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11333                                            TSTORM_ID, 0, IGU_INT_NOP, 1);
11334                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11335                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11336                         } else {
11337                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11338                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11339                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11340                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11341                         }
11342                         bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11343
11344                         /* !!! these should become driver const once
11345                            rf-tool supports split-68 const */
11346                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11347                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11348                         REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11349                         REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11350                         REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11351                         REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11352                 }
11353         }
11354
11355         /* Reset PCIE errors for debug */
11356         REG_WR(sc, 0x2114, 0xffffffff);
11357         REG_WR(sc, 0x2120, 0xffffffff);
11358
11359         if (CHIP_IS_E1x(sc)) {
11360                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;    /*dwords */
11361                 main_mem_base = HC_REG_MAIN_MEMORY +
11362                     SC_PORT(sc) * (main_mem_size * 4);
11363                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11364                 main_mem_width = 8;
11365
11366                 val = REG_RD(sc, main_mem_prty_clr);
11367                 if (val) {
11368                         PMD_DRV_LOG(DEBUG, sc,
11369                                     "Parity errors in HC block during function init (0x%x)!",
11370                                     val);
11371                 }
11372
11373 /* Clear "false" parity errors in MSI-X table */
11374                 for (i = main_mem_base;
11375                      i < main_mem_base + main_mem_size * 4;
11376                      i += main_mem_width) {
11377                         bnx2x_read_dmae(sc, i, main_mem_width / 4);
11378                         bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11379                                        i, main_mem_width / 4);
11380                 }
11381 /* Clear HC parity attention */
11382                 REG_RD(sc, main_mem_prty_clr);
11383         }
11384
11385         /* Enable STORMs SP logging */
11386         REG_WR8(sc, BAR_USTRORM_INTMEM +
11387                 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11388         REG_WR8(sc, BAR_TSTRORM_INTMEM +
11389                 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11390         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11391                 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11392         REG_WR8(sc, BAR_XSTRORM_INTMEM +
11393                 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11394
11395         elink_phy_probe(&sc->link_params);
11396
11397         return 0;
11398 }
11399
11400 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11401 {
11402         if (!BNX2X_NOMCP(sc)) {
11403                 bnx2x_acquire_phy_lock(sc);
11404                 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11405                 bnx2x_release_phy_lock(sc);
11406         } else {
11407                 if (!CHIP_REV_IS_SLOW(sc)) {
11408                         PMD_DRV_LOG(WARNING, sc,
11409                                     "Bootcode is missing - cannot reset link");
11410                 }
11411         }
11412 }
11413
11414 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11415 {
11416         int port = SC_PORT(sc);
11417         uint32_t val;
11418
11419         /* reset physical Link */
11420         bnx2x_link_reset(sc);
11421
11422         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11423
11424         /* Do not rcv packets to BRB */
11425         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11426         /* Do not direct rcv packets that are not for MCP to the BRB */
11427         REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11428                     NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11429
11430         /* Configure AEU */
11431         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11432
11433         DELAY(100000);
11434
11435         /* Check for BRB port occupancy */
11436         val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11437         if (val) {
11438                 PMD_DRV_LOG(DEBUG, sc,
11439                             "BRB1 is not empty, %d blocks are occupied", val);
11440         }
11441 }
11442
11443 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, phys_addr_t addr)
11444 {
11445         int reg;
11446         uint32_t wb_write[2];
11447
11448         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11449
11450         wb_write[0] = ONCHIP_ADDR1(addr);
11451         wb_write[1] = ONCHIP_ADDR2(addr);
11452         REG_WR_DMAE(sc, reg, wb_write, 2);
11453 }
11454
11455 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11456 {
11457         uint32_t i, base = FUNC_ILT_BASE(func);
11458         for (i = base; i < base + ILT_PER_FUNC; i++) {
11459                 bnx2x_ilt_wr(sc, i, 0);
11460         }
11461 }
11462
11463 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11464 {
11465         struct bnx2x_fastpath *fp;
11466         int port = SC_PORT(sc);
11467         int func = SC_FUNC(sc);
11468         int i;
11469
11470         /* Disable the function in the FW */
11471         REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11472         REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11473         REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11474         REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11475
11476         /* FP SBs */
11477         FOR_EACH_ETH_QUEUE(sc, i) {
11478                 fp = &sc->fp[i];
11479                 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11480                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11481                         SB_DISABLED);
11482         }
11483
11484         /* SP SB */
11485         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11486                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11487
11488         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11489                 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11490                        0);
11491         }
11492
11493         /* Configure IGU */
11494         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11495                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11496                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11497         } else {
11498                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11499                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11500         }
11501
11502         if (CNIC_LOADED(sc)) {
11503 /* Disable Timer scan */
11504                 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11505 /*
11506  * Wait for at least 10ms and up to 2 second for the timers
11507  * scan to complete
11508  */
11509                 for (i = 0; i < 200; i++) {
11510                         DELAY(10000);
11511                         if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11512                                 break;
11513                 }
11514         }
11515
11516         /* Clear ILT */
11517         bnx2x_clear_func_ilt(sc, func);
11518
11519         /*
11520          * Timers workaround bug for E2: if this is vnic-3,
11521          * we need to set the entire ilt range for this timers.
11522          */
11523         if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11524                 struct ilt_client_info ilt_cli;
11525 /* use dummy TM client */
11526                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11527                 ilt_cli.start = 0;
11528                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11529                 ilt_cli.client_num = ILT_CLIENT_TM;
11530
11531                 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11532         }
11533
11534         /* this assumes that reset_port() called before reset_func() */
11535         if (!CHIP_IS_E1x(sc)) {
11536                 bnx2x_pf_disable(sc);
11537         }
11538
11539         sc->dmae_ready = 0;
11540 }
11541
11542 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11543 {
11544         rte_free(sc->init_ops);
11545         rte_free(sc->init_ops_offsets);
11546         rte_free(sc->init_data);
11547         rte_free(sc->iro_array);
11548 }
11549
11550 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11551 {
11552         uint32_t len, i;
11553         uint8_t *p = sc->firmware;
11554         uint32_t off[24];
11555
11556         for (i = 0; i < 24; ++i)
11557                 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11558
11559         len = off[0];
11560         sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11561         if (!sc->init_ops)
11562                 goto alloc_failed;
11563         bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11564
11565         len = off[2];
11566         sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11567         if (!sc->init_ops_offsets)
11568                 goto alloc_failed;
11569         bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11570
11571         len = off[4];
11572         sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11573         if (!sc->init_data)
11574                 goto alloc_failed;
11575         bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11576
11577         sc->tsem_int_table_data = p + off[7];
11578         sc->tsem_pram_data = p + off[9];
11579         sc->usem_int_table_data = p + off[11];
11580         sc->usem_pram_data = p + off[13];
11581         sc->csem_int_table_data = p + off[15];
11582         sc->csem_pram_data = p + off[17];
11583         sc->xsem_int_table_data = p + off[19];
11584         sc->xsem_pram_data = p + off[21];
11585
11586         len = off[22];
11587         sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11588         if (!sc->iro_array)
11589                 goto alloc_failed;
11590         bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11591
11592         return 0;
11593
11594 alloc_failed:
11595         bnx2x_release_firmware(sc);
11596         return -1;
11597 }
11598
11599 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11600 {
11601 #define MIN_PREFIX_SIZE (10)
11602
11603         int n = MIN_PREFIX_SIZE;
11604         uint16_t xlen;
11605
11606         if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11607             len <= MIN_PREFIX_SIZE) {
11608                 return -1;
11609         }
11610
11611         /* optional extra fields are present */
11612         if (zbuf[3] & 0x4) {
11613                 xlen = zbuf[13];
11614                 xlen <<= 8;
11615                 xlen += zbuf[12];
11616
11617                 n += xlen;
11618         }
11619         /* file name is present */
11620         if (zbuf[3] & 0x8) {
11621                 while ((zbuf[n++] != 0) && (n < len)) ;
11622         }
11623
11624         return n;
11625 }
11626
11627 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11628 {
11629         int ret;
11630         int data_begin = cut_gzip_prefix(zbuf, len);
11631
11632         PMD_DRV_LOG(DEBUG, sc, "ecore_gunzip %d", len);
11633
11634         if (data_begin <= 0) {
11635                 PMD_DRV_LOG(NOTICE, sc, "bad gzip prefix");
11636                 return -1;
11637         }
11638
11639         memset(&zlib_stream, 0, sizeof(zlib_stream));
11640         zlib_stream.next_in = zbuf + data_begin;
11641         zlib_stream.avail_in = len - data_begin;
11642         zlib_stream.next_out = sc->gz_buf;
11643         zlib_stream.avail_out = FW_BUF_SIZE;
11644
11645         ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11646         if (ret != Z_OK) {
11647                 PMD_DRV_LOG(NOTICE, sc, "zlib inflateInit2 error");
11648                 return ret;
11649         }
11650
11651         ret = inflate(&zlib_stream, Z_FINISH);
11652         if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11653                 PMD_DRV_LOG(NOTICE, sc, "zlib inflate error: %d %s", ret,
11654                             zlib_stream.msg);
11655         }
11656
11657         sc->gz_outlen = zlib_stream.total_out;
11658         if (sc->gz_outlen & 0x3) {
11659                 PMD_DRV_LOG(NOTICE, sc, "firmware is not aligned. gz_outlen == %d",
11660                             sc->gz_outlen);
11661         }
11662         sc->gz_outlen >>= 2;
11663
11664         inflateEnd(&zlib_stream);
11665
11666         if (ret == Z_STREAM_END)
11667                 return 0;
11668
11669         return ret;
11670 }
11671
11672 static void
11673 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr,
11674                           uint32_t addr, uint32_t len)
11675 {
11676         bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11677 }
11678
11679 void
11680 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11681                           uint32_t * data)
11682 {
11683         uint8_t i;
11684         for (i = 0; i < size / 4; i++) {
11685                 REG_WR(sc, addr + (i * 4), data[i]);
11686         }
11687 }
11688
11689 __rte_unused static const char *get_ext_phy_type(uint32_t ext_phy_type)
11690 {
11691         uint32_t phy_type_idx = ext_phy_type >> 8;
11692         static const char *types[] =
11693             { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11694                 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11695                 "BNX2X-8727",
11696                 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11697         };
11698
11699         if (phy_type_idx < 12)
11700                 return types[phy_type_idx];
11701         else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11702                 return types[12];
11703         else
11704                 return types[13];
11705 }
11706
11707 __rte_unused static const char *get_state(uint32_t state)
11708 {
11709         uint32_t state_idx = state >> 12;
11710         static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11711                 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11712                 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11713                 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11714                 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11715         };
11716
11717         if (state_idx <= 0xF)
11718                 return states[state_idx];
11719         else
11720                 return states[0x10];
11721 }
11722
11723 __rte_unused static const char *get_recovery_state(uint32_t state)
11724 {
11725         static const char *states[] = { "NONE", "DONE", "INIT",
11726                 "WAIT", "FAILED", "NIC_LOADING"
11727         };
11728         return states[state];
11729 }
11730
11731 __rte_unused static const char *get_rx_mode(uint32_t mode)
11732 {
11733         static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11734                 "PROMISC", "MAX_MULTICAST", "ERROR"
11735         };
11736
11737         if (mode < 0x4)
11738                 return modes[mode];
11739         else if (BNX2X_MAX_MULTICAST == mode)
11740                 return modes[4];
11741         else
11742                 return modes[5];
11743 }
11744
11745 #define BNX2X_INFO_STR_MAX 256
11746 __rte_unused static const char *get_bnx2x_flags(uint32_t flags)
11747 {
11748         int i;
11749         static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11750                 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11751                 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11752                 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11753         };
11754         static char flag_str[BNX2X_INFO_STR_MAX];
11755         memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11756
11757         for (i = 0; i < 5; i++)
11758                 if (flags & (1 << i)) {
11759                         strcat(flag_str, flag[i]);
11760                         flags ^= (1 << i);
11761                 }
11762         if (flags) {
11763                 static char unknown[BNX2X_INFO_STR_MAX];
11764                 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11765                 strcat(flag_str, unknown);
11766         }
11767         return flag_str;
11768 }
11769
11770 /*
11771  * Prints useful adapter info.
11772  */
11773 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11774 {
11775         int i = 0;
11776         __rte_unused uint32_t ext_phy_type;
11777
11778         PMD_INIT_FUNC_TRACE(sc);
11779         if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11780                 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(REG_RD(sc,
11781                                                               sc->
11782                                                               devinfo.shmem_base
11783                                                               + offsetof(struct
11784                                                                          shmem_region,
11785                                                                          dev_info.port_hw_config
11786                                                                          [0].external_phy_config)));
11787         else
11788                 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(REG_RD(sc,
11789                                                                 sc->
11790                                                                 devinfo.shmem_base
11791                                                                 +
11792                                                                 offsetof(struct
11793                                                                          shmem_region,
11794                                                                          dev_info.port_hw_config
11795                                                                          [0].external_phy_config)));
11796
11797         PMD_DRV_LOG(INFO, sc, "\n\n===================================\n");
11798         /* Hardware chip info. */
11799         PMD_DRV_LOG(INFO, sc, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11800         PMD_DRV_LOG(INFO, sc, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11801                      (CHIP_METAL(sc) >> 4));
11802
11803         /* Bus info. */
11804         PMD_DRV_LOG(INFO, sc,
11805                     "%12s : %d, ", "Bus PCIe", sc->devinfo.pcie_link_width);
11806         switch (sc->devinfo.pcie_link_speed) {
11807         case 1:
11808                 PMD_DRV_LOG(INFO, sc, "%23s", "2.5 Gbps");
11809                 break;
11810         case 2:
11811                 PMD_DRV_LOG(INFO, sc, "%21s", "5 Gbps");
11812                 break;
11813         case 4:
11814                 PMD_DRV_LOG(INFO, sc, "%21s", "8 Gbps");
11815                 break;
11816         default:
11817                 PMD_DRV_LOG(INFO, sc, "%33s", "Unknown link speed");
11818         }
11819
11820         /* Device features. */
11821         PMD_DRV_LOG(INFO, sc, "%12s : ", "Flags");
11822
11823         /* Miscellaneous flags. */
11824         if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11825                 PMD_DRV_LOG(INFO, sc, "%18s", "MSI");
11826                 i++;
11827         }
11828
11829         if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11830                 if (i > 0)
11831                         PMD_DRV_LOG(INFO, sc, "|");
11832                 PMD_DRV_LOG(INFO, sc, "%20s", "MSI-X");
11833                 i++;
11834         }
11835
11836         if (IS_PF(sc)) {
11837                 PMD_DRV_LOG(INFO, sc, "%12s : ", "Queues");
11838                 switch (sc->sp->rss_rdata.rss_mode) {
11839                 case ETH_RSS_MODE_DISABLED:
11840                         PMD_DRV_LOG(INFO, sc, "%19s", "None");
11841                         break;
11842                 case ETH_RSS_MODE_REGULAR:
11843                         PMD_DRV_LOG(INFO, sc,
11844                                     "%18s : %d", "RSS", sc->num_queues);
11845                         break;
11846                 default:
11847                         PMD_DRV_LOG(INFO, sc, "%22s", "Unknown");
11848                         break;
11849                 }
11850         }
11851
11852         /* RTE and Driver versions */
11853         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DPDK",
11854                         rte_version());
11855         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Driver",
11856                         bnx2x_pmd_version());
11857
11858         /* Firmware versions and device features. */
11859         PMD_DRV_LOG(INFO, sc, "%12s : %d.%d.%d",
11860                      "Firmware",
11861                      BNX2X_5710_FW_MAJOR_VERSION,
11862                      BNX2X_5710_FW_MINOR_VERSION,
11863                      BNX2X_5710_FW_REVISION_VERSION);
11864         PMD_DRV_LOG(INFO, sc, "%12s : %s",
11865                      "Bootcode", sc->devinfo.bc_ver_str);
11866
11867         PMD_DRV_LOG(INFO, sc, "\n\n===================================\n");
11868         PMD_DRV_LOG(INFO, sc, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11869         PMD_DRV_LOG(INFO, sc,
11870                     "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11871         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DMAE Is",
11872                      (sc->dmae_ready ? "Ready" : "Not Ready"));
11873         PMD_DRV_LOG(INFO, sc, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11874         PMD_DRV_LOG(INFO, sc, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11875         PMD_DRV_LOG(INFO, sc, "%12s : %u", "MTU", sc->mtu);
11876         PMD_DRV_LOG(INFO, sc,
11877                     "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11878         PMD_DRV_LOG(INFO, sc, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11879                         sc->link_params.mac_addr[0],
11880                         sc->link_params.mac_addr[1],
11881                         sc->link_params.mac_addr[2],
11882                         sc->link_params.mac_addr[3],
11883                         sc->link_params.mac_addr[4],
11884                         sc->link_params.mac_addr[5]);
11885         PMD_DRV_LOG(INFO, sc, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11886         PMD_DRV_LOG(INFO, sc, "%12s : %s", "State", get_state(sc->state));
11887         if (sc->recovery_state)
11888                 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Recovery",
11889                              get_recovery_state(sc->recovery_state));
11890         PMD_DRV_LOG(INFO, sc, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11891                      sc->cq_spq_left, sc->eq_spq_left);
11892         PMD_DRV_LOG(INFO, sc,
11893                     "%12s : %x", "Switch", sc->link_params.switch_cfg);
11894         PMD_DRV_LOG(INFO, sc, "\n\n===================================\n");
11895 }