New upstream version 16.11.5
[deb_dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 #define EM_EIAC                 0x000DC
60
61 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
62
63
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73                                 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75                                 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78                                 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80                                 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82                                 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
86 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
87 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
88                                                         void *param);
89
90 static int em_hw_init(struct e1000_hw *hw);
91 static int em_hardware_init(struct e1000_hw *hw);
92 static void em_hw_control_acquire(struct e1000_hw *hw);
93 static void em_hw_control_release(struct e1000_hw *hw);
94 static void em_init_manageability(struct e1000_hw *hw);
95 static void em_release_manageability(struct e1000_hw *hw);
96
97 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
98
99 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
100                 uint16_t vlan_id, int on);
101 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
102 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
103 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
106
107 /*
108 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
109                                         uint16_t vlan_id, int on);
110 */
111
112 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
113 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
114 static void em_lsc_intr_disable(struct e1000_hw *hw);
115 static void em_rxq_intr_enable(struct e1000_hw *hw);
116 static void em_rxq_intr_disable(struct e1000_hw *hw);
117
118 static int eth_em_led_on(struct rte_eth_dev *dev);
119 static int eth_em_led_off(struct rte_eth_dev *dev);
120
121 static int em_get_rx_buffer_size(struct e1000_hw *hw);
122 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
123                 uint32_t index, uint32_t pool);
124 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
125
126 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
127                                    struct ether_addr *mc_addr_set,
128                                    uint32_t nb_mc_addr);
129
130 #define EM_FC_PAUSE_TIME 0x0680
131 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
132 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
133
134 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
135
136 /*
137  * The set of PCI devices this driver supports
138  */
139 static const struct rte_pci_id pci_id_em_map[] = {
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
158         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
159         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
160         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
161         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
162         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
163         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
164         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
165         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
166         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
167         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
168         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
169         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
170         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
171         { .vendor_id = 0, /* sentinel */ },
172 };
173
174 static const struct eth_dev_ops eth_em_ops = {
175         .dev_configure        = eth_em_configure,
176         .dev_start            = eth_em_start,
177         .dev_stop             = eth_em_stop,
178         .dev_close            = eth_em_close,
179         .promiscuous_enable   = eth_em_promiscuous_enable,
180         .promiscuous_disable  = eth_em_promiscuous_disable,
181         .allmulticast_enable  = eth_em_allmulticast_enable,
182         .allmulticast_disable = eth_em_allmulticast_disable,
183         .link_update          = eth_em_link_update,
184         .stats_get            = eth_em_stats_get,
185         .stats_reset          = eth_em_stats_reset,
186         .dev_infos_get        = eth_em_infos_get,
187         .mtu_set              = eth_em_mtu_set,
188         .vlan_filter_set      = eth_em_vlan_filter_set,
189         .vlan_offload_set     = eth_em_vlan_offload_set,
190         .rx_queue_setup       = eth_em_rx_queue_setup,
191         .rx_queue_release     = eth_em_rx_queue_release,
192         .rx_queue_count       = eth_em_rx_queue_count,
193         .rx_descriptor_done   = eth_em_rx_descriptor_done,
194         .tx_queue_setup       = eth_em_tx_queue_setup,
195         .tx_queue_release     = eth_em_tx_queue_release,
196         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
197         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
198         .dev_led_on           = eth_em_led_on,
199         .dev_led_off          = eth_em_led_off,
200         .flow_ctrl_get        = eth_em_flow_ctrl_get,
201         .flow_ctrl_set        = eth_em_flow_ctrl_set,
202         .mac_addr_add         = eth_em_rar_set,
203         .mac_addr_remove      = eth_em_rar_clear,
204         .set_mc_addr_list     = eth_em_set_mc_addr_list,
205         .rxq_info_get         = em_rxq_info_get,
206         .txq_info_get         = em_txq_info_get,
207 };
208
209 /**
210  * Atomically reads the link status information from global
211  * structure rte_eth_dev.
212  *
213  * @param dev
214  *   - Pointer to the structure rte_eth_dev to read from.
215  *   - Pointer to the buffer to be saved with the link status.
216  *
217  * @return
218  *   - On success, zero.
219  *   - On failure, negative value.
220  */
221 static inline int
222 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
223                                 struct rte_eth_link *link)
224 {
225         struct rte_eth_link *dst = link;
226         struct rte_eth_link *src = &(dev->data->dev_link);
227
228         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
229                                         *(uint64_t *)src) == 0)
230                 return -1;
231
232         return 0;
233 }
234
235 /**
236  * Atomically writes the link status information into global
237  * structure rte_eth_dev.
238  *
239  * @param dev
240  *   - Pointer to the structure rte_eth_dev to read from.
241  *   - Pointer to the buffer to be saved with the link status.
242  *
243  * @return
244  *   - On success, zero.
245  *   - On failure, negative value.
246  */
247 static inline int
248 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
249                                 struct rte_eth_link *link)
250 {
251         struct rte_eth_link *dst = &(dev->data->dev_link);
252         struct rte_eth_link *src = link;
253
254         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
255                                         *(uint64_t *)src) == 0)
256                 return -1;
257
258         return 0;
259 }
260
261 /**
262  *  eth_em_dev_is_ich8 - Check for ICH8 device
263  *  @hw: pointer to the HW structure
264  *
265  *  return TRUE for ICH8, otherwise FALSE
266  **/
267 static bool
268 eth_em_dev_is_ich8(struct e1000_hw *hw)
269 {
270         DEBUGFUNC("eth_em_dev_is_ich8");
271
272         switch (hw->device_id) {
273         case E1000_DEV_ID_PCH_LPT_I217_LM:
274         case E1000_DEV_ID_PCH_LPT_I217_V:
275         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
276         case E1000_DEV_ID_PCH_LPTLP_I218_V:
277         case E1000_DEV_ID_PCH_I218_V2:
278         case E1000_DEV_ID_PCH_I218_LM2:
279         case E1000_DEV_ID_PCH_I218_V3:
280         case E1000_DEV_ID_PCH_I218_LM3:
281                 return 1;
282         default:
283                 return 0;
284         }
285 }
286
287 static int
288 eth_em_dev_init(struct rte_eth_dev *eth_dev)
289 {
290         struct rte_pci_device *pci_dev;
291         struct e1000_adapter *adapter =
292                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
293         struct e1000_hw *hw =
294                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
295         struct e1000_vfta * shadow_vfta =
296                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
297
298         pci_dev = eth_dev->pci_dev;
299
300         eth_dev->dev_ops = &eth_em_ops;
301         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
302         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
303
304         /* for secondary processes, we don't initialise any further as primary
305          * has already done this work. Only check we don't need a different
306          * RX function */
307         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
308                 if (eth_dev->data->scattered_rx)
309                         eth_dev->rx_pkt_burst =
310                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
311                 return 0;
312         }
313
314         rte_eth_copy_pci_info(eth_dev, pci_dev);
315
316         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
317         hw->device_id = pci_dev->id.device_id;
318         adapter->stopped = 0;
319
320         /* For ICH8 support we'll need to map the flash memory BAR */
321         if (eth_em_dev_is_ich8(hw))
322                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
323
324         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
325                         em_hw_init(hw) != 0) {
326                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
327                         "failed to init HW",
328                         eth_dev->data->port_id, pci_dev->id.vendor_id,
329                         pci_dev->id.device_id);
330                 return -ENODEV;
331         }
332
333         /* Allocate memory for storing MAC addresses */
334         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
335                         hw->mac.rar_entry_count, 0);
336         if (eth_dev->data->mac_addrs == NULL) {
337                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
338                         "store MAC addresses",
339                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
340                 return -ENOMEM;
341         }
342
343         /* Copy the permanent MAC address */
344         ether_addr_copy((struct ether_addr *) hw->mac.addr,
345                 eth_dev->data->mac_addrs);
346
347         /* initialize the vfta */
348         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
349
350         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
351                      eth_dev->data->port_id, pci_dev->id.vendor_id,
352                      pci_dev->id.device_id);
353
354         rte_intr_callback_register(&(pci_dev->intr_handle),
355                 eth_em_interrupt_handler, (void *)eth_dev);
356
357         return 0;
358 }
359
360 static int
361 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
362 {
363         struct rte_pci_device *pci_dev;
364         struct e1000_adapter *adapter =
365                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
366
367         PMD_INIT_FUNC_TRACE();
368
369         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
370                 return -EPERM;
371
372         pci_dev = eth_dev->pci_dev;
373
374         if (adapter->stopped == 0)
375                 eth_em_close(eth_dev);
376
377         eth_dev->dev_ops = NULL;
378         eth_dev->rx_pkt_burst = NULL;
379         eth_dev->tx_pkt_burst = NULL;
380
381         rte_free(eth_dev->data->mac_addrs);
382         eth_dev->data->mac_addrs = NULL;
383
384         /* disable uio intr before callback unregister */
385         rte_intr_disable(&(pci_dev->intr_handle));
386         rte_intr_callback_unregister(&(pci_dev->intr_handle),
387                 eth_em_interrupt_handler, (void *)eth_dev);
388
389         return 0;
390 }
391
392 static struct eth_driver rte_em_pmd = {
393         .pci_drv = {
394                 .id_table = pci_id_em_map,
395                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
396                         RTE_PCI_DRV_DETACHABLE,
397                 .probe = rte_eth_dev_pci_probe,
398                 .remove = rte_eth_dev_pci_remove,
399         },
400         .eth_dev_init = eth_em_dev_init,
401         .eth_dev_uninit = eth_em_dev_uninit,
402         .dev_private_size = sizeof(struct e1000_adapter),
403 };
404
405 static int
406 em_hw_init(struct e1000_hw *hw)
407 {
408         int diag;
409
410         diag = hw->mac.ops.init_params(hw);
411         if (diag != 0) {
412                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
413                 return diag;
414         }
415         diag = hw->nvm.ops.init_params(hw);
416         if (diag != 0) {
417                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
418                 return diag;
419         }
420         diag = hw->phy.ops.init_params(hw);
421         if (diag != 0) {
422                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
423                 return diag;
424         }
425         (void) e1000_get_bus_info(hw);
426
427         hw->mac.autoneg = 1;
428         hw->phy.autoneg_wait_to_complete = 0;
429         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
430
431         e1000_init_script_state_82541(hw, TRUE);
432         e1000_set_tbi_compatibility_82543(hw, TRUE);
433
434         /* Copper options */
435         if (hw->phy.media_type == e1000_media_type_copper) {
436                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
437                 hw->phy.disable_polarity_correction = 0;
438                 hw->phy.ms_type = e1000_ms_hw_default;
439         }
440
441         /*
442          * Start from a known state, this is important in reading the nvm
443          * and mac from that.
444          */
445         e1000_reset_hw(hw);
446
447         /* Make sure we have a good EEPROM before we read from it */
448         if (e1000_validate_nvm_checksum(hw) < 0) {
449                 /*
450                  * Some PCI-E parts fail the first check due to
451                  * the link being in sleep state, call it again,
452                  * if it fails a second time its a real issue.
453                  */
454                 diag = e1000_validate_nvm_checksum(hw);
455                 if (diag < 0) {
456                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
457                         goto error;
458                 }
459         }
460
461         /* Read the permanent MAC address out of the EEPROM */
462         diag = e1000_read_mac_addr(hw);
463         if (diag != 0) {
464                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
465                 goto error;
466         }
467
468         /* Now initialize the hardware */
469         diag = em_hardware_init(hw);
470         if (diag != 0) {
471                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
472                 goto error;
473         }
474
475         hw->mac.get_link_status = 1;
476
477         /* Indicate SOL/IDER usage */
478         diag = e1000_check_reset_block(hw);
479         if (diag < 0) {
480                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
481                         "SOL/IDER session");
482         }
483         return 0;
484
485 error:
486         em_hw_control_release(hw);
487         return diag;
488 }
489
490 static int
491 eth_em_configure(struct rte_eth_dev *dev)
492 {
493         struct e1000_interrupt *intr =
494                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
495
496         PMD_INIT_FUNC_TRACE();
497         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
498         PMD_INIT_FUNC_TRACE();
499
500         return 0;
501 }
502
503 static void
504 em_set_pba(struct e1000_hw *hw)
505 {
506         uint32_t pba;
507
508         /*
509          * Packet Buffer Allocation (PBA)
510          * Writing PBA sets the receive portion of the buffer
511          * the remainder is used for the transmit buffer.
512          * Devices before the 82547 had a Packet Buffer of 64K.
513          * After the 82547 the buffer was reduced to 40K.
514          */
515         switch (hw->mac.type) {
516                 case e1000_82547:
517                 case e1000_82547_rev_2:
518                 /* 82547: Total Packet Buffer is 40K */
519                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
520                         break;
521                 case e1000_82571:
522                 case e1000_82572:
523                 case e1000_80003es2lan:
524                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
525                         break;
526                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
527                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
528                         break;
529                 case e1000_82574:
530                 case e1000_82583:
531                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
532                         break;
533                 case e1000_ich8lan:
534                         pba = E1000_PBA_8K;
535                         break;
536                 case e1000_ich9lan:
537                 case e1000_ich10lan:
538                         pba = E1000_PBA_10K;
539                         break;
540                 case e1000_pchlan:
541                 case e1000_pch2lan:
542                 case e1000_pch_lpt:
543                         pba = E1000_PBA_26K;
544                         break;
545                 default:
546                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
547         }
548
549         E1000_WRITE_REG(hw, E1000_PBA, pba);
550 }
551
552 static int
553 eth_em_start(struct rte_eth_dev *dev)
554 {
555         struct e1000_adapter *adapter =
556                 E1000_DEV_PRIVATE(dev->data->dev_private);
557         struct e1000_hw *hw =
558                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
559         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
560         int ret, mask;
561         uint32_t intr_vector = 0;
562         uint32_t *speeds;
563         int num_speeds;
564         bool autoneg;
565
566         PMD_INIT_FUNC_TRACE();
567
568         eth_em_stop(dev);
569
570         e1000_power_up_phy(hw);
571
572         /* Set default PBA value */
573         em_set_pba(hw);
574
575         /* Put the address into the Receive Address Array */
576         e1000_rar_set(hw, hw->mac.addr, 0);
577
578         /*
579          * With the 82571 adapter, RAR[0] may be overwritten
580          * when the other port is reset, we make a duplicate
581          * in RAR[14] for that eventuality, this assures
582          * the interface continues to function.
583          */
584         if (hw->mac.type == e1000_82571) {
585                 e1000_set_laa_state_82571(hw, TRUE);
586                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
587         }
588
589         /* Initialize the hardware */
590         if (em_hardware_init(hw)) {
591                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
592                 return -EIO;
593         }
594
595         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
596
597         /* Configure for OS presence */
598         em_init_manageability(hw);
599
600         if (dev->data->dev_conf.intr_conf.rxq != 0) {
601                 intr_vector = dev->data->nb_rx_queues;
602                 if (rte_intr_efd_enable(intr_handle, intr_vector))
603                         return -1;
604         }
605
606         if (rte_intr_dp_is_en(intr_handle)) {
607                 intr_handle->intr_vec =
608                         rte_zmalloc("intr_vec",
609                                         dev->data->nb_rx_queues * sizeof(int), 0);
610                 if (intr_handle->intr_vec == NULL) {
611                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
612                                                 " intr_vec\n", dev->data->nb_rx_queues);
613                         return -ENOMEM;
614                 }
615
616                 /* enable rx interrupt */
617                 em_rxq_intr_enable(hw);
618         }
619
620         eth_em_tx_init(dev);
621
622         ret = eth_em_rx_init(dev);
623         if (ret) {
624                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
625                 em_dev_clear_queues(dev);
626                 return ret;
627         }
628
629         e1000_clear_hw_cntrs_base_generic(hw);
630
631         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
632                         ETH_VLAN_EXTEND_MASK;
633         eth_em_vlan_offload_set(dev, mask);
634
635         /* Set Interrupt Throttling Rate to maximum allowed value. */
636         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
637
638         /* Setup link speed and duplex */
639         speeds = &dev->data->dev_conf.link_speeds;
640         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
641                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
642                 hw->mac.autoneg = 1;
643         } else {
644                 num_speeds = 0;
645                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
646
647                 /* Reset */
648                 hw->phy.autoneg_advertised = 0;
649
650                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
651                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
652                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
653                         num_speeds = -1;
654                         goto error_invalid_config;
655                 }
656                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
657                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
658                         num_speeds++;
659                 }
660                 if (*speeds & ETH_LINK_SPEED_10M) {
661                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
662                         num_speeds++;
663                 }
664                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
665                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
666                         num_speeds++;
667                 }
668                 if (*speeds & ETH_LINK_SPEED_100M) {
669                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
670                         num_speeds++;
671                 }
672                 if (*speeds & ETH_LINK_SPEED_1G) {
673                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
674                         num_speeds++;
675                 }
676                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
677                         goto error_invalid_config;
678
679                 /* Set/reset the mac.autoneg based on the link speed,
680                  * fixed or not
681                  */
682                 if (!autoneg) {
683                         hw->mac.autoneg = 0;
684                         hw->mac.forced_speed_duplex =
685                                         hw->phy.autoneg_advertised;
686                 } else {
687                         hw->mac.autoneg = 1;
688                 }
689         }
690
691         e1000_setup_link(hw);
692
693         if (rte_intr_allow_others(intr_handle)) {
694                 /* check if lsc interrupt is enabled */
695                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
696                         ret = eth_em_interrupt_setup(dev);
697                         if (ret) {
698                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
699                                 em_dev_clear_queues(dev);
700                                 return ret;
701                         }
702                 }
703         } else {
704                 rte_intr_callback_unregister(intr_handle,
705                                                 eth_em_interrupt_handler,
706                                                 (void *)dev);
707                 if (dev->data->dev_conf.intr_conf.lsc != 0)
708                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
709                                      " no intr multiplex\n");
710         }
711         /* check if rxq interrupt is enabled */
712         if (dev->data->dev_conf.intr_conf.rxq != 0)
713                 eth_em_rxq_interrupt_setup(dev);
714
715         rte_intr_enable(intr_handle);
716
717         adapter->stopped = 0;
718
719         PMD_INIT_LOG(DEBUG, "<<");
720
721         return 0;
722
723 error_invalid_config:
724         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
725                      dev->data->dev_conf.link_speeds, dev->data->port_id);
726         em_dev_clear_queues(dev);
727         return -EINVAL;
728 }
729
730 /*********************************************************************
731  *
732  *  This routine disables all traffic on the adapter by issuing a
733  *  global reset on the MAC.
734  *
735  **********************************************************************/
736 static void
737 eth_em_stop(struct rte_eth_dev *dev)
738 {
739         struct rte_eth_link link;
740         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
741         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
742
743         em_rxq_intr_disable(hw);
744         em_lsc_intr_disable(hw);
745
746         e1000_reset_hw(hw);
747         if (hw->mac.type >= e1000_82544)
748                 E1000_WRITE_REG(hw, E1000_WUC, 0);
749
750         /* Power down the phy. Needed to make the link go down */
751         e1000_power_down_phy(hw);
752
753         em_dev_clear_queues(dev);
754
755         /* clear the recorded link status */
756         memset(&link, 0, sizeof(link));
757         rte_em_dev_atomic_write_link_status(dev, &link);
758
759         if (!rte_intr_allow_others(intr_handle))
760                 /* resume to the default handler */
761                 rte_intr_callback_register(intr_handle,
762                                            eth_em_interrupt_handler,
763                                            (void *)dev);
764
765         /* Clean datapath event and queue/vec mapping */
766         rte_intr_efd_disable(intr_handle);
767         if (intr_handle->intr_vec != NULL) {
768                 rte_free(intr_handle->intr_vec);
769                 intr_handle->intr_vec = NULL;
770         }
771 }
772
773 static void
774 eth_em_close(struct rte_eth_dev *dev)
775 {
776         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
777         struct e1000_adapter *adapter =
778                 E1000_DEV_PRIVATE(dev->data->dev_private);
779
780         eth_em_stop(dev);
781         adapter->stopped = 1;
782         em_dev_free_queues(dev);
783         e1000_phy_hw_reset(hw);
784         em_release_manageability(hw);
785         em_hw_control_release(hw);
786 }
787
788 static int
789 em_get_rx_buffer_size(struct e1000_hw *hw)
790 {
791         uint32_t rx_buf_size;
792
793         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
794         return rx_buf_size;
795 }
796
797 /*********************************************************************
798  *
799  *  Initialize the hardware
800  *
801  **********************************************************************/
802 static int
803 em_hardware_init(struct e1000_hw *hw)
804 {
805         uint32_t rx_buf_size;
806         int diag;
807
808         /* Issue a global reset */
809         e1000_reset_hw(hw);
810
811         /* Let the firmware know the OS is in control */
812         em_hw_control_acquire(hw);
813
814         /*
815          * These parameters control the automatic generation (Tx) and
816          * response (Rx) to Ethernet PAUSE frames.
817          * - High water mark should allow for at least two standard size (1518)
818          *   frames to be received after sending an XOFF.
819          * - Low water mark works best when it is very near the high water mark.
820          *   This allows the receiver to restart by sending XON when it has
821          *   drained a bit. Here we use an arbitrary value of 1500 which will
822          *   restart after one full frame is pulled from the buffer. There
823          *   could be several smaller frames in the buffer and if so they will
824          *   not trigger the XON until their total number reduces the buffer
825          *   by 1500.
826          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
827          */
828         rx_buf_size = em_get_rx_buffer_size(hw);
829
830         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
831         hw->fc.low_water = hw->fc.high_water - 1500;
832
833         if (hw->mac.type == e1000_80003es2lan)
834                 hw->fc.pause_time = UINT16_MAX;
835         else
836                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
837
838         hw->fc.send_xon = 1;
839
840         /* Set Flow control, use the tunable location if sane */
841         if (em_fc_setting <= e1000_fc_full)
842                 hw->fc.requested_mode = em_fc_setting;
843         else
844                 hw->fc.requested_mode = e1000_fc_none;
845
846         /* Workaround: no TX flow ctrl for PCH */
847         if (hw->mac.type == e1000_pchlan)
848                 hw->fc.requested_mode = e1000_fc_rx_pause;
849
850         /* Override - settings for PCH2LAN, ya its magic :) */
851         if (hw->mac.type == e1000_pch2lan) {
852                 hw->fc.high_water = 0x5C20;
853                 hw->fc.low_water = 0x5048;
854                 hw->fc.pause_time = 0x0650;
855                 hw->fc.refresh_time = 0x0400;
856         } else if (hw->mac.type == e1000_pch_lpt) {
857                 hw->fc.requested_mode = e1000_fc_full;
858         }
859
860         diag = e1000_init_hw(hw);
861         if (diag < 0)
862                 return diag;
863         e1000_check_for_link(hw);
864         return 0;
865 }
866
867 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
868 static void
869 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
870 {
871         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
872         struct e1000_hw_stats *stats =
873                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
874         int pause_frames;
875
876         if(hw->phy.media_type == e1000_media_type_copper ||
877                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
878                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
879                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
880         }
881
882         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
883         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
884         stats->scc += E1000_READ_REG(hw, E1000_SCC);
885         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
886
887         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
888         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
889         stats->colc += E1000_READ_REG(hw, E1000_COLC);
890         stats->dc += E1000_READ_REG(hw, E1000_DC);
891         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
892         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
893         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
894
895         /*
896          * For watchdog management we need to know if we have been
897          * paused during the last interval, so capture that here.
898          */
899         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
900         stats->xoffrxc += pause_frames;
901         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
902         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
903         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
904         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
905         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
906         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
907         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
908         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
909         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
910         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
911         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
912         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
913
914         /*
915          * For the 64-bit byte counters the low dword must be read first.
916          * Both registers clear on the read of the high dword.
917          */
918
919         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
920         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
921         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
922         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
923
924         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
925         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
926         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
927         stats->roc += E1000_READ_REG(hw, E1000_ROC);
928         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
929
930         stats->tor += E1000_READ_REG(hw, E1000_TORH);
931         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
932
933         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
934         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
935         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
936         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
937         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
938         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
939         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
940         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
941         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
942         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
943
944         /* Interrupt Counts */
945
946         if (hw->mac.type >= e1000_82571) {
947                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
948                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
949                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
950                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
951                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
952                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
953                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
954                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
955                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
956         }
957
958         if (hw->mac.type >= e1000_82543) {
959                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
960                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
961                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
962                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
963                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
964                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
965         }
966
967         if (rte_stats == NULL)
968                 return;
969
970         /* Rx Errors */
971         rte_stats->imissed = stats->mpc;
972         rte_stats->ierrors = stats->crcerrs +
973                              stats->rlec + stats->ruc + stats->roc +
974                              stats->rxerrc + stats->algnerrc + stats->cexterr;
975
976         /* Tx Errors */
977         rte_stats->oerrors = stats->ecol + stats->latecol;
978
979         rte_stats->ipackets = stats->gprc;
980         rte_stats->opackets = stats->gptc;
981         rte_stats->ibytes   = stats->gorc;
982         rte_stats->obytes   = stats->gotc;
983 }
984
985 static void
986 eth_em_stats_reset(struct rte_eth_dev *dev)
987 {
988         struct e1000_hw_stats *hw_stats =
989                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
990
991         /* HW registers are cleared on read */
992         eth_em_stats_get(dev, NULL);
993
994         /* Reset software totals */
995         memset(hw_stats, 0, sizeof(*hw_stats));
996 }
997
998 static int
999 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1000 {
1001         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1002
1003         em_rxq_intr_enable(hw);
1004         rte_intr_enable(&dev->pci_dev->intr_handle);
1005
1006         return 0;
1007 }
1008
1009 static int
1010 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1011 {
1012         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1013
1014         em_rxq_intr_disable(hw);
1015
1016         return 0;
1017 }
1018
1019 static uint32_t
1020 em_get_max_pktlen(const struct e1000_hw *hw)
1021 {
1022         switch (hw->mac.type) {
1023         case e1000_82571:
1024         case e1000_82572:
1025         case e1000_ich9lan:
1026         case e1000_ich10lan:
1027         case e1000_pch2lan:
1028         case e1000_pch_lpt:
1029         case e1000_82574:
1030         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1031         case e1000_82583:
1032                 return 0x2412;
1033         case e1000_pchlan:
1034                 return 0x1000;
1035         /* Adapters that do not support jumbo frames */
1036         case e1000_ich8lan:
1037                 return ETHER_MAX_LEN;
1038         default:
1039                 return MAX_JUMBO_FRAME_SIZE;
1040         }
1041 }
1042
1043 static void
1044 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1045 {
1046         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1047
1048         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1049         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
1050         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1051
1052         /*
1053          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1054          * Unfortunatelly, all these nics have just one TX context.
1055          * So we have few choises for TX:
1056          * - Use just one TX queue.
1057          * - Allow cksum offload only for one TX queue.
1058          * - Don't allow TX cksum offload at all.
1059          * For now, option #1 was chosen.
1060          * To use second RX queue we have to use extended RX descriptor
1061          * (Multiple Receive Queues are mutually exclusive with UDP
1062          * fragmentation and are not supported when a legacy receive
1063          * descriptor format is used).
1064          * Which means separate RX routinies - as legacy nics (82540, 82545)
1065          * don't support extended RXD.
1066          * To avoid it we support just one RX queue for now (no RSS).
1067          */
1068
1069         dev_info->max_rx_queues = 1;
1070         dev_info->max_tx_queues = 1;
1071
1072         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1073                 .nb_max = E1000_MAX_RING_DESC,
1074                 .nb_min = E1000_MIN_RING_DESC,
1075                 .nb_align = EM_RXD_ALIGN,
1076         };
1077
1078         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1079                 .nb_max = E1000_MAX_RING_DESC,
1080                 .nb_min = E1000_MIN_RING_DESC,
1081                 .nb_align = EM_TXD_ALIGN,
1082         };
1083
1084         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1085                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1086                         ETH_LINK_SPEED_1G;
1087 }
1088
1089 /* return 0 means link status changed, -1 means not changed */
1090 static int
1091 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1092 {
1093         struct e1000_hw *hw =
1094                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1095         struct rte_eth_link link, old;
1096         int link_check, count;
1097
1098         link_check = 0;
1099         hw->mac.get_link_status = 1;
1100
1101         /* possible wait-to-complete in up to 9 seconds */
1102         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1103                 /* Read the real link status */
1104                 switch (hw->phy.media_type) {
1105                 case e1000_media_type_copper:
1106                         /* Do the work to read phy */
1107                         e1000_check_for_link(hw);
1108                         link_check = !hw->mac.get_link_status;
1109                         break;
1110
1111                 case e1000_media_type_fiber:
1112                         e1000_check_for_link(hw);
1113                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1114                                         E1000_STATUS_LU);
1115                         break;
1116
1117                 case e1000_media_type_internal_serdes:
1118                         e1000_check_for_link(hw);
1119                         link_check = hw->mac.serdes_has_link;
1120                         break;
1121
1122                 default:
1123                         break;
1124                 }
1125                 if (link_check || wait_to_complete == 0)
1126                         break;
1127                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1128         }
1129         memset(&link, 0, sizeof(link));
1130         rte_em_dev_atomic_read_link_status(dev, &link);
1131         old = link;
1132
1133         /* Now we check if a transition has happened */
1134         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1135                 uint16_t duplex, speed;
1136                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1137                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1138                                 ETH_LINK_FULL_DUPLEX :
1139                                 ETH_LINK_HALF_DUPLEX;
1140                 link.link_speed = speed;
1141                 link.link_status = ETH_LINK_UP;
1142                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1143                                 ETH_LINK_SPEED_FIXED);
1144         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1145                 link.link_speed = 0;
1146                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1147                 link.link_status = ETH_LINK_DOWN;
1148                 link.link_autoneg = ETH_LINK_FIXED;
1149         }
1150         rte_em_dev_atomic_write_link_status(dev, &link);
1151
1152         /* not changed */
1153         if (old.link_status == link.link_status)
1154                 return -1;
1155
1156         /* changed */
1157         return 0;
1158 }
1159
1160 /*
1161  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1162  * For ASF and Pass Through versions of f/w this means
1163  * that the driver is loaded. For AMT version type f/w
1164  * this means that the network i/f is open.
1165  */
1166 static void
1167 em_hw_control_acquire(struct e1000_hw *hw)
1168 {
1169         uint32_t ctrl_ext, swsm;
1170
1171         /* Let firmware know the driver has taken over */
1172         if (hw->mac.type == e1000_82573) {
1173                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1174                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1175
1176         } else {
1177                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1178                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1179                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1180         }
1181 }
1182
1183 /*
1184  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1185  * For ASF and Pass Through versions of f/w this means that the
1186  * driver is no longer loaded. For AMT versions of the
1187  * f/w this means that the network i/f is closed.
1188  */
1189 static void
1190 em_hw_control_release(struct e1000_hw *hw)
1191 {
1192         uint32_t ctrl_ext, swsm;
1193
1194         /* Let firmware taken over control of h/w */
1195         if (hw->mac.type == e1000_82573) {
1196                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1197                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1198         } else {
1199                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1200                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1201                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1202         }
1203 }
1204
1205 /*
1206  * Bit of a misnomer, what this really means is
1207  * to enable OS management of the system... aka
1208  * to disable special hardware management features.
1209  */
1210 static void
1211 em_init_manageability(struct e1000_hw *hw)
1212 {
1213         if (e1000_enable_mng_pass_thru(hw)) {
1214                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1215                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1216
1217                 /* disable hardware interception of ARP */
1218                 manc &= ~(E1000_MANC_ARP_EN);
1219
1220                 /* enable receiving management packets to the host */
1221                 manc |= E1000_MANC_EN_MNG2HOST;
1222                 manc2h |= 1 << 5;  /* Mng Port 623 */
1223                 manc2h |= 1 << 6;  /* Mng Port 664 */
1224                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1225                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1226         }
1227 }
1228
1229 /*
1230  * Give control back to hardware management
1231  * controller if there is one.
1232  */
1233 static void
1234 em_release_manageability(struct e1000_hw *hw)
1235 {
1236         uint32_t manc;
1237
1238         if (e1000_enable_mng_pass_thru(hw)) {
1239                 manc = E1000_READ_REG(hw, E1000_MANC);
1240
1241                 /* re-enable hardware interception of ARP */
1242                 manc |= E1000_MANC_ARP_EN;
1243                 manc &= ~E1000_MANC_EN_MNG2HOST;
1244
1245                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1246         }
1247 }
1248
1249 static void
1250 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1251 {
1252         struct e1000_hw *hw =
1253                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1254         uint32_t rctl;
1255
1256         rctl = E1000_READ_REG(hw, E1000_RCTL);
1257         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1258         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1259 }
1260
1261 static void
1262 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1263 {
1264         struct e1000_hw *hw =
1265                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1266         uint32_t rctl;
1267
1268         rctl = E1000_READ_REG(hw, E1000_RCTL);
1269         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1270         if (dev->data->all_multicast == 1)
1271                 rctl |= E1000_RCTL_MPE;
1272         else
1273                 rctl &= (~E1000_RCTL_MPE);
1274         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1275 }
1276
1277 static void
1278 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1279 {
1280         struct e1000_hw *hw =
1281                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1282         uint32_t rctl;
1283
1284         rctl = E1000_READ_REG(hw, E1000_RCTL);
1285         rctl |= E1000_RCTL_MPE;
1286         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1287 }
1288
1289 static void
1290 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1291 {
1292         struct e1000_hw *hw =
1293                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1294         uint32_t rctl;
1295
1296         if (dev->data->promiscuous == 1)
1297                 return; /* must remain in all_multicast mode */
1298         rctl = E1000_READ_REG(hw, E1000_RCTL);
1299         rctl &= (~E1000_RCTL_MPE);
1300         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1301 }
1302
1303 static int
1304 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1305 {
1306         struct e1000_hw *hw =
1307                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1308         struct e1000_vfta * shadow_vfta =
1309                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1310         uint32_t vfta;
1311         uint32_t vid_idx;
1312         uint32_t vid_bit;
1313
1314         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1315                               E1000_VFTA_ENTRY_MASK);
1316         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1317         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1318         if (on)
1319                 vfta |= vid_bit;
1320         else
1321                 vfta &= ~vid_bit;
1322         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1323
1324         /* update local VFTA copy */
1325         shadow_vfta->vfta[vid_idx] = vfta;
1326
1327         return 0;
1328 }
1329
1330 static void
1331 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1332 {
1333         struct e1000_hw *hw =
1334                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1335         uint32_t reg;
1336
1337         /* Filter Table Disable */
1338         reg = E1000_READ_REG(hw, E1000_RCTL);
1339         reg &= ~E1000_RCTL_CFIEN;
1340         reg &= ~E1000_RCTL_VFE;
1341         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1342 }
1343
1344 static void
1345 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1346 {
1347         struct e1000_hw *hw =
1348                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1349         struct e1000_vfta * shadow_vfta =
1350                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1351         uint32_t reg;
1352         int i;
1353
1354         /* Filter Table Enable, CFI not used for packet acceptance */
1355         reg = E1000_READ_REG(hw, E1000_RCTL);
1356         reg &= ~E1000_RCTL_CFIEN;
1357         reg |= E1000_RCTL_VFE;
1358         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1359
1360         /* restore vfta from local copy */
1361         for (i = 0; i < IGB_VFTA_SIZE; i++)
1362                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1363 }
1364
1365 static void
1366 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1367 {
1368         struct e1000_hw *hw =
1369                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1370         uint32_t reg;
1371
1372         /* VLAN Mode Disable */
1373         reg = E1000_READ_REG(hw, E1000_CTRL);
1374         reg &= ~E1000_CTRL_VME;
1375         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1376
1377 }
1378
1379 static void
1380 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1381 {
1382         struct e1000_hw *hw =
1383                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1384         uint32_t reg;
1385
1386         /* VLAN Mode Enable */
1387         reg = E1000_READ_REG(hw, E1000_CTRL);
1388         reg |= E1000_CTRL_VME;
1389         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1390 }
1391
1392 static void
1393 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1394 {
1395         if(mask & ETH_VLAN_STRIP_MASK){
1396                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1397                         em_vlan_hw_strip_enable(dev);
1398                 else
1399                         em_vlan_hw_strip_disable(dev);
1400         }
1401
1402         if(mask & ETH_VLAN_FILTER_MASK){
1403                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1404                         em_vlan_hw_filter_enable(dev);
1405                 else
1406                         em_vlan_hw_filter_disable(dev);
1407         }
1408 }
1409
1410 /*
1411  * It enables the interrupt mask and then enable the interrupt.
1412  *
1413  * @param dev
1414  *  Pointer to struct rte_eth_dev.
1415  *
1416  * @return
1417  *  - On success, zero.
1418  *  - On failure, a negative value.
1419  */
1420 static int
1421 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1422 {
1423         uint32_t regval;
1424         struct e1000_hw *hw =
1425                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1426
1427         /* clear interrupt */
1428         E1000_READ_REG(hw, E1000_ICR);
1429         regval = E1000_READ_REG(hw, E1000_IMS);
1430         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1431         return 0;
1432 }
1433
1434 /*
1435  * It clears the interrupt causes and enables the interrupt.
1436  * It will be called once only during nic initialized.
1437  *
1438  * @param dev
1439  *  Pointer to struct rte_eth_dev.
1440  *
1441  * @return
1442  *  - On success, zero.
1443  *  - On failure, a negative value.
1444  */
1445 static int
1446 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1447 {
1448         struct e1000_hw *hw =
1449         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1450
1451         E1000_READ_REG(hw, E1000_ICR);
1452         em_rxq_intr_enable(hw);
1453         return 0;
1454 }
1455
1456 /*
1457  * It enable receive packet interrupt.
1458  * @param hw
1459  * Pointer to struct e1000_hw
1460  *
1461  * @return
1462  */
1463 static void
1464 em_rxq_intr_enable(struct e1000_hw *hw)
1465 {
1466         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1467         E1000_WRITE_FLUSH(hw);
1468 }
1469
1470 /*
1471  * It disabled lsc interrupt.
1472  * @param hw
1473  * Pointer to struct e1000_hw
1474  *
1475  * @return
1476  */
1477 static void
1478 em_lsc_intr_disable(struct e1000_hw *hw)
1479 {
1480         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1481         E1000_WRITE_FLUSH(hw);
1482 }
1483
1484 /*
1485  * It disabled receive packet interrupt.
1486  * @param hw
1487  * Pointer to struct e1000_hw
1488  *
1489  * @return
1490  */
1491 static void
1492 em_rxq_intr_disable(struct e1000_hw *hw)
1493 {
1494         E1000_READ_REG(hw, E1000_ICR);
1495         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1496         E1000_WRITE_FLUSH(hw);
1497 }
1498
1499 /*
1500  * It reads ICR and gets interrupt causes, check it and set a bit flag
1501  * to update link status.
1502  *
1503  * @param dev
1504  *  Pointer to struct rte_eth_dev.
1505  *
1506  * @return
1507  *  - On success, zero.
1508  *  - On failure, a negative value.
1509  */
1510 static int
1511 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1512 {
1513         uint32_t icr;
1514         struct e1000_hw *hw =
1515                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1516         struct e1000_interrupt *intr =
1517                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1518
1519         /* read-on-clear nic registers here */
1520         icr = E1000_READ_REG(hw, E1000_ICR);
1521         if (icr & E1000_ICR_LSC) {
1522                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1523         }
1524
1525         return 0;
1526 }
1527
1528 /*
1529  * It executes link_update after knowing an interrupt is prsent.
1530  *
1531  * @param dev
1532  *  Pointer to struct rte_eth_dev.
1533  *
1534  * @return
1535  *  - On success, zero.
1536  *  - On failure, a negative value.
1537  */
1538 static int
1539 eth_em_interrupt_action(struct rte_eth_dev *dev)
1540 {
1541         struct e1000_hw *hw =
1542                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1543         struct e1000_interrupt *intr =
1544                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1545         uint32_t tctl, rctl;
1546         struct rte_eth_link link;
1547         int ret;
1548
1549         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1550                 return -1;
1551
1552         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1553         rte_intr_enable(&(dev->pci_dev->intr_handle));
1554
1555         /* set get_link_status to check register later */
1556         hw->mac.get_link_status = 1;
1557         ret = eth_em_link_update(dev, 0);
1558
1559         /* check if link has changed */
1560         if (ret < 0)
1561                 return 0;
1562
1563         memset(&link, 0, sizeof(link));
1564         rte_em_dev_atomic_read_link_status(dev, &link);
1565         if (link.link_status) {
1566                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1567                              dev->data->port_id, (unsigned)link.link_speed,
1568                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1569                              "full-duplex" : "half-duplex");
1570         } else {
1571                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1572         }
1573         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1574                      dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
1575                      dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
1576
1577         tctl = E1000_READ_REG(hw, E1000_TCTL);
1578         rctl = E1000_READ_REG(hw, E1000_RCTL);
1579         if (link.link_status) {
1580                 /* enable Tx/Rx */
1581                 tctl |= E1000_TCTL_EN;
1582                 rctl |= E1000_RCTL_EN;
1583         } else {
1584                 /* disable Tx/Rx */
1585                 tctl &= ~E1000_TCTL_EN;
1586                 rctl &= ~E1000_RCTL_EN;
1587         }
1588         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1589         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1590         E1000_WRITE_FLUSH(hw);
1591
1592         return 0;
1593 }
1594
1595 /**
1596  * Interrupt handler which shall be registered at first.
1597  *
1598  * @param handle
1599  *  Pointer to interrupt handle.
1600  * @param param
1601  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1602  *
1603  * @return
1604  *  void
1605  */
1606 static void
1607 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1608                                                         void *param)
1609 {
1610         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1611
1612         eth_em_interrupt_get_status(dev);
1613         eth_em_interrupt_action(dev);
1614         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1615 }
1616
1617 static int
1618 eth_em_led_on(struct rte_eth_dev *dev)
1619 {
1620         struct e1000_hw *hw;
1621
1622         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1623         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1624 }
1625
1626 static int
1627 eth_em_led_off(struct rte_eth_dev *dev)
1628 {
1629         struct e1000_hw *hw;
1630
1631         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1632         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1633 }
1634
1635 static int
1636 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1637 {
1638         struct e1000_hw *hw;
1639         uint32_t ctrl;
1640         int tx_pause;
1641         int rx_pause;
1642
1643         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1644         fc_conf->pause_time = hw->fc.pause_time;
1645         fc_conf->high_water = hw->fc.high_water;
1646         fc_conf->low_water = hw->fc.low_water;
1647         fc_conf->send_xon = hw->fc.send_xon;
1648         fc_conf->autoneg = hw->mac.autoneg;
1649
1650         /*
1651          * Return rx_pause and tx_pause status according to actual setting of
1652          * the TFCE and RFCE bits in the CTRL register.
1653          */
1654         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1655         if (ctrl & E1000_CTRL_TFCE)
1656                 tx_pause = 1;
1657         else
1658                 tx_pause = 0;
1659
1660         if (ctrl & E1000_CTRL_RFCE)
1661                 rx_pause = 1;
1662         else
1663                 rx_pause = 0;
1664
1665         if (rx_pause && tx_pause)
1666                 fc_conf->mode = RTE_FC_FULL;
1667         else if (rx_pause)
1668                 fc_conf->mode = RTE_FC_RX_PAUSE;
1669         else if (tx_pause)
1670                 fc_conf->mode = RTE_FC_TX_PAUSE;
1671         else
1672                 fc_conf->mode = RTE_FC_NONE;
1673
1674         return 0;
1675 }
1676
1677 static int
1678 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1679 {
1680         struct e1000_hw *hw;
1681         int err;
1682         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1683                 e1000_fc_none,
1684                 e1000_fc_rx_pause,
1685                 e1000_fc_tx_pause,
1686                 e1000_fc_full
1687         };
1688         uint32_t rx_buf_size;
1689         uint32_t max_high_water;
1690         uint32_t rctl;
1691
1692         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1693         if (fc_conf->autoneg != hw->mac.autoneg)
1694                 return -ENOTSUP;
1695         rx_buf_size = em_get_rx_buffer_size(hw);
1696         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1697
1698         /* At least reserve one Ethernet frame for watermark */
1699         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1700         if ((fc_conf->high_water > max_high_water) ||
1701             (fc_conf->high_water < fc_conf->low_water)) {
1702                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1703                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1704                 return -EINVAL;
1705         }
1706
1707         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1708         hw->fc.pause_time     = fc_conf->pause_time;
1709         hw->fc.high_water     = fc_conf->high_water;
1710         hw->fc.low_water      = fc_conf->low_water;
1711         hw->fc.send_xon       = fc_conf->send_xon;
1712
1713         err = e1000_setup_link_generic(hw);
1714         if (err == E1000_SUCCESS) {
1715
1716                 /* check if we want to forward MAC frames - driver doesn't have native
1717                  * capability to do that, so we'll write the registers ourselves */
1718
1719                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1720
1721                 /* set or clear MFLCN.PMCF bit depending on configuration */
1722                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1723                         rctl |= E1000_RCTL_PMCF;
1724                 else
1725                         rctl &= ~E1000_RCTL_PMCF;
1726
1727                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1728                 E1000_WRITE_FLUSH(hw);
1729
1730                 return 0;
1731         }
1732
1733         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1734         return -EIO;
1735 }
1736
1737 static void
1738 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1739                 uint32_t index, __rte_unused uint32_t pool)
1740 {
1741         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1742
1743         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1744 }
1745
1746 static void
1747 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1748 {
1749         uint8_t addr[ETHER_ADDR_LEN];
1750         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1751
1752         memset(addr, 0, sizeof(addr));
1753
1754         e1000_rar_set(hw, addr, index);
1755 }
1756
1757 static int
1758 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1759 {
1760         struct rte_eth_dev_info dev_info;
1761         struct e1000_hw *hw;
1762         uint32_t frame_size;
1763         uint32_t rctl;
1764
1765         eth_em_infos_get(dev, &dev_info);
1766         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1767
1768         /* check that mtu is within the allowed range */
1769         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1770                 return -EINVAL;
1771
1772         /* refuse mtu that requires the support of scattered packets when this
1773          * feature has not been enabled before. */
1774         if (!dev->data->scattered_rx &&
1775             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1776                 return -EINVAL;
1777
1778         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1779         rctl = E1000_READ_REG(hw, E1000_RCTL);
1780
1781         /* switch to jumbo mode if needed */
1782         if (frame_size > ETHER_MAX_LEN) {
1783                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1784                 rctl |= E1000_RCTL_LPE;
1785         } else {
1786                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1787                 rctl &= ~E1000_RCTL_LPE;
1788         }
1789         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1790
1791         /* update max frame size */
1792         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1793         return 0;
1794 }
1795
1796 static int
1797 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1798                         struct ether_addr *mc_addr_set,
1799                         uint32_t nb_mc_addr)
1800 {
1801         struct e1000_hw *hw;
1802
1803         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1804         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1805         return 0;
1806 }
1807
1808 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd.pci_drv);
1809 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);